Investigation on Intermetallic Nickel Aluminides was carried to determine the suitability of this material to replace the existing automotive body. The purpose is to produce vehicles which are lighter, more fuel efficient and cause less pollution. Attractive properties of Ni-Al intermetallic including low density resulting lightweight, high oxidation and corrosion resistance, combined with their ability to retain strength and stiffness at elevated temperatures lead to its selection as a candidate of alternative material. The properties obtained was compared with current or existing material which are high strength steel (HSS) and aluminum (luxury cars). It can be eloquent that intermetallic nickel aluminides enfold most of the basic quality for a material to be suggested or recommended as alternative material for body in white application.

Joseph Sahaya Anand
Dr TJS Anand is an Associate Professor from Technical University of Malaysia Malacca. An expatriate staff who graduated in Physics from St. Joseph’s College, Bharathidasan University India. Completed his Doctoral degree in Materials Science from the University of Hong Kong. His research interest includes Intermetallics and Thin Films.