BORANG PENGESAHAN STATUS TESIS

JUDUL: BLASTER.A ATTACK PATTERN GENERALIZATION

SESi PENG AJAN: SESI 2011/2012

Saya LIM SOK MING mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/)

__________ SULIT
(Mengandungi maklumat yang berdarah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

__________ TERHAD
(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

__________ TIDAK TERHAD

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat tetap :33, Lorong Sejahtera 11,
Taman Sejahtera, 14000 Bukit Mertajam,
Pulau Pinang, Malaysia
Tarikh : 29/8/2012

Dr. Robiah Yusof
Nama Penyelia
Tariakh: 5/8/2012
BLASTER.A ATTACK PATTERN GENERALIZATION

LIM SOK MING

This report is submitted in partial fulfillment of the requirement for the Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2012
DECLARATION

I hereby declare that this project entitled

BLASTER.A ATTACK PATTERN GENERALIZATION

is written by me and is my own effort and that no part has been plagiarized without citations

STUDENT: ___________________________ DATE: 29/8/2012

(LIM SOK MING)

SUPERVISOR: _________________________ DATE: 29/8/2012

(DR. ROBIAH BINTI YUSOF)
DEDICATION

Dear Parent
Thank you for your sacrifice and love.

Dear Teachers and Supervisors
Thank you for all the knowledge and guidance.

Dear Friends
Thank you for all the knowledge, guide, encouragement and love.
ACKNOWLEDGEMENTS

I would like to show my gratitude and appreciation to my supervisor, Dr. Robiah bt Yusof for all ideas and advices in guiding me throughout the project.

I would also like to thank my family members especially my parents. They have been giving me moral supports and all sorts of material supports throughout my years studying in this university.

Last but not least, I would like to say thank you to all my friends and course mates for their kindness in sharing knowledge and resources.

Thanks a lot.
ABSTRACT

The number of crime committed based on the malware intrusion is never ending as the number of malware infection is growing tremendously. The significant threats of traditional worms such as Blaster, Sasser, Code Red and Slammer are still continuing due to hasty spreading nature in the Internet. In this project, network traffic is extracted to identify worm attack pattern. These worm attack pattern are further analyzed to form the general worm's attack pattern which describes the process of worm's infection. This project proposes a general attack pattern for worm in two different perspectives which is attacker and victim using only Blaster.A variant. Thus, the general attack pattern can be extended into research areas in computer forensic investigation.
ABSTRAK

Bilanganjenayahyangberdasarkanpenceroohanomalwaretidakpemahberhenti
halini disebabkan bilangan jangkitan malware semakin meningkat. Worm tradisional
seperti Blaster, Sasser, Code Red dan Slammer masih menjadi ancaman besar kepada
Internet. Dalam projek ini, rangkaian trafik diekstrak untuk mengenal pasti corak
serangan worm. Kemudian corak serangan tersebut dianalisa untuk menghasilkan corak
serangan umum worm yang justeru menerangkan proses jangkitan worm. Projek ini
mencadang menghasilkan corak serangan worm dari dua perspektif yang berbeza iaitu
penyerang dan mangsa dengan menggunakan worm Blaster. A sahaja. Seterusnya, hasil
tersebut boleh digunakan dalam penyelidikan dan penyisatan forensik komputer.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Project Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Scopes</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.5 Project Significance</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.6 Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW AND PROJECT METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
</tbody>
</table>

vi
2.2 Fact and Finding

2.2.1 Malware Definition
 2.2.1.1 Worm Definition
 2.2.1.2 Worm classification
 2.2.1.3 Blaster. A Worm
 2.2.1.4 Blaster A Characteristic

2.2.2 Attack Pattern
 2.2.2.1 Definition
 2.2.2.2 Importance
 2.2.2.3 Attack pattern of Blaster .A from attacker perspective
 2.2.2.4 Attack pattern of Blaster .A from victim perspective

2.2.3 Network Traffic
 2.2.3.1 Definition
 2.2.3.2 IP Header
 2.2.3.3 TCP Header
 2.2.3.4 Wireshark
 2.2.3.5 Summary of Literature Review

2.3 Project Methodology
 2.3.1 Phase I: Literature Review
 2.3.2 Phase II: Analysis
 2.3.3 Phase III: Design and Development
 2.3.4 Phase IV: Implementation
 2.3.5 Phase V: Testing and Evaluation

2.4 Project Requirements
 2.4.1 Software Requirement
 2.4.2 Hardware Requirement

2.5 Project Schedule and Milestones

2.6 Conclusion
3 ANALYSIS

3.1 Introduction 31
3.2 Problem Analysis 32
3.3 Requirement Analysis 36
 3.3.1 Data Requirements 37
 3.3.1.1 Dumpfile 37
 3.3.1.2 Reading Manually line by line in Wireshark 37
 3.3.1.3 Flow Graph Capturing 46
 3.3.1.4 Scenario Sketching of Each Data Set in Dumpfile 47
 3.3.1.5 Percentage of Features on Scenario 50
 3.3.1.6 Features Selection 58
 3.3.2 Software Requirements 58
 3.3.3 Hardware Requirements 59
3.4 Conclusion 59

4 DESIGN

4.1 Introduction 60
4.2 Process Flow Blaster. A in Perspective of Attacker and Victim 61
4.3 Attack Pattern Design 63
 4.3.1 Basic Attack Model 63
 4.3.2 Attack Pattern of Blaster. A 64
 4.3.3 Attack Pattern of Worm (Blaster.A, Blaster.T and Sasser.B) 66
4.4 Scripting design 68
 4.4.1 Flowchart of the Script 69
 4.4.2 Data Flow Diagram of the Script 71
4.5 Conclusion 73
5 IMPLEMENTATION
5.1 Introduction 74
5.2 Software Development Environment Setup 74
5.3 Software Configuration Management 75
5.4 Implementation Status 85
5.5 Conclusion 86

6 TESTING
6.1 Introduction 87
6.2 Test Plan 88
 6.2.1 Test Organization 89
 6.2.2 Test Environment 89
 6.2.3 Test Schedule 91
6.3 Test Strategy 92
 6.3.1 Classes of Tests 93
6.4 Test Design 93
 6.4.1 Test Description 94
 6.4.2 Test Data 94
6.5 Test Results and Analysis 95
 6.5.1 Team A – Blaster.A 95
 6.5.2 Team T- Blaster.T 100
 6.5.3 Team B – Sasser.B 105
6.5 Conclusion 108

7 PROJECT CONCLUSION
7.1 Observation on Weaknesses and Strengths 109
7.2 Propositions for Improvement 110
7.3 Contribution 110
7.4 Conclusion 111

REFERENCES
APPEDICES A
APPEDICES B
APPEDICES C
APPEDICES D
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Summary of research question</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary of research objectives</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Definitions and details on each category of malware [8]</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Blaster worm naming [17]</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Description of each field in IP Header</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Description of each field in TCP Header</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Packet List Pane</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Features that selected and with it description</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Hardware Specification</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary on Blaster.A's attacker pattern</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(attributes found= √, attributes not found= X, nil) [9]</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Summary on Blaster.A's victim pattern</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(attributes found= √, attributes not found= X, nil) [9]</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of features for 3 scenarios</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of Features's Percentage for 3 Scenarios</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Features that selected and with it description</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of progress of development</td>
<td>85</td>
</tr>
<tr>
<td>6.1</td>
<td>Testers in the Testing Phase</td>
<td>89</td>
</tr>
<tr>
<td>6.2</td>
<td>Hardware Requirements</td>
<td>90</td>
</tr>
<tr>
<td>6.3</td>
<td>Software Requirements</td>
<td>90</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.4</td>
<td>Testing Schedule using Blaster.A</td>
<td>91</td>
</tr>
<tr>
<td>6.5</td>
<td>Testing Schedule using Blaster.T</td>
<td>91</td>
</tr>
<tr>
<td>6.6</td>
<td>Testing Schedule using Sasser.B</td>
<td>92</td>
</tr>
<tr>
<td>6.7</td>
<td>Data to be tested</td>
<td>94</td>
</tr>
<tr>
<td>6.8</td>
<td>Comparison of Testing Output of Blaster. A - 8Mac2010_0100pm</td>
<td>96</td>
</tr>
<tr>
<td>6.9</td>
<td>Comparison of Testing Output of Blaster. A - 9Mac2010_1220am</td>
<td>97</td>
</tr>
<tr>
<td>6.10</td>
<td>Comparison of Testing Output of Blaster. A - 9Mac2010_1730pm</td>
<td>99</td>
</tr>
<tr>
<td>6.11</td>
<td>Comparison of Testing Output of BlasterT_5.00pm</td>
<td>101</td>
</tr>
<tr>
<td>6.12</td>
<td>Comparison of Testing Output of BlasterT_10.15am</td>
<td>103</td>
</tr>
<tr>
<td>6.13</td>
<td>Comparison of Testing Output of BlasterT_12.45pm</td>
<td>105</td>
</tr>
<tr>
<td>6.14</td>
<td>Comparison of Testing Output of SasserB-230410</td>
<td>106</td>
</tr>
<tr>
<td>6.15</td>
<td>Comparison of Testing Output of SasserB-260410</td>
<td>107</td>
</tr>
<tr>
<td>6.16</td>
<td>Comparison of Testing Output of SasserB-270410</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Incident type that occurred from 1982 until 2010 year [1]</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Operational framework: Literature review phase</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Malware Category [8]</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Worm Taxonomy as Described by [9]</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>IP Header version 4</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>TCP Header</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Packet List Pane in Wireshark</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Packet Detail Pane in Wireshark</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Packet Byte Pane in Wireshark</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Project Methodology</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Framework of identify the attacker and victim [9]</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>IPv4 Header [21]</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>TCP Header [21]</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Process flow to select feature</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Connection on port 135, protocol TCP</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Connection on port 135, protocol DCERPC</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Connection on port 135, TCP protocol</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Connection on port 4444 with TCP protocol (1)</td>
<td>39</td>
</tr>
<tr>
<td>3.9</td>
<td>Connection on port 4444 with TCP protocol (2)</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>Connection on port 4444 with TCP protocol (3)</td>
<td>40</td>
</tr>
<tr>
<td>3.11</td>
<td>Connection on port 4444 with TCP protocol (4)</td>
<td>41</td>
</tr>
</tbody>
</table>
3.12 Connection on port 69 with TFTP protocol
3.13 Connection of port 4444 with TCP protocol (5)
3.14 Data packet of msblast.exe
3.15 Connection of port 4444 with TCP protocol (6)
3.16 Connection of port 4444 with TCP protocol (7)
3.17 Connection of port 4444 with TCP protocol (8)
3.18 Scenario 1 of Blaster. A - 8Mac2010_0100pm
3.19 Scenario 2 of Blaster. A - 9Mac2010_1220am
3.20 Scenario 3 of BlasterA - 9Mac2010_1730pm
3.21 Percentage of Features on Scenario 1 of Blaster. A - 8Mac2010_0100pm
3.22 Percentage of Features on Scenario 1 of Blaster. A - 8Mac2010_0100pm
3.23 Percentage of Features on Scenario 2 of Blaster. A - 9Mac2010_1220am
3.24 Percentage of Features on Scenario 2 of Blaster. A - 9Mac2010_1220am
3.25 Percentage of Features on Scenario 3 of BlasterA - 9Mac2010_1730pm
3.26 Percentage of Features on Scenario 3 of BlasterA - 9Mac2010_1730pm
4.1 Process flow of scripting design
4.2 Blaster. A attacker process flow
4.3 Blaster. A victim process flow
4.4 Basic Attack Model
4.5 Blaster. A attack pattern design on attacker perspective
4.6 Blaster. A attack pattern design on victim perspective
4.7 Worm attack pattern design on attacker perspective
4.8 Worm attack pattern design on victim perspective
4.9 General script design
4.10 Script design
4.11 Context diagram of Data Flow Diagram (DFD)
4.12 Level 0 of Data Flow Diagram (DFD)
5.1 Code fragment for reading pcap file.
5.2 Code fragment for capturing packets
5.3 Window and its components
5.4 Code fragment of window
5.5 Code fragment of event listener
5.6 JFileChooser
5.7 Code fragment to show result
5.8 JOptionPane – Blaster
5.9 JOptionPane – Attacker and victim
5.10 Save file to MALWARE.txt
6.1 Testing Phase life cycle
6.2 Classes of Test
6.3 Testing output of Blaster. A - 8Mac2010_0100pm
6.4 Testing Output of Blaster. A - 9Mac2010_1220am
6.5 Testing Output of Blaster. A - 9Mac2010_1730pm (1)
6.6 Testing Output of Blaster. A - 9Mac2010_1730pm (2)
6.7 Testing Output of Blaster. A - 9Mac2010_1730pm (3)
6.8 Testing Output of Blaster. A - 9Mac2010_1730pm (4)
6.9 Testing Output of BlasterT_5.00pm (1)
6.10 Testing Output of BlasterT_5.00pm (2)
6.11 Testing Output of BlasterT_10.15am (1)
6.12 Testing Output of BlasterT_10.15am (2)
6.13 Testing Output of BlasterT_12.45pm (1)
6.14 Testing Output of BlasterT_12.45pm (2)
6.15 Testing Output of SasserB-230410
6.16 Testing Output of SasserB-260410
6.17 Testing Output of SasserB-270410
CHAPTER I

INTRODUCTION

1.1 Project Background

Nowadays, the Internet is growing rapidly, same goes to malware attacks as is showed in Figure 1.1 and becomes a serious threat to the user in the Internet. As the end of 2010, the RISI database reported 60 confirmed malware incidents that occurred between 1982 and 2010[1]. Malware or malicious software is software that is residing in a system and cause harm to the system, such as Trojan, virus and worm. The most well known traditional worm such as Blaster, Sasser, Code Red and Slammer, are the major threats to the security of the internet [2]. Therefore, we need to study and analyze the traces of these malware attacks from perspective of attacker and victim in order to ensure the security on the Internet. Besides that, the attack pattern can also be used in investigation for collecting and tracing the evidence in forensic field.
Figure 1.1 Incident types that occurred from 1982 until 2010 year [1]

As a result, a network environment of this project is conducted in Windows and Linux operating system workstations and IDS. The network is purposely infected by worm (Blaster.A) then, collect and analyze the network traffic data in order to generate specific worm attack pattern of Blaster.A of attacker and victim perspective. The network traffic is captured by using tcpdump tool. Tcpdump is a powerful command line interface packet sniffer and has ability to analyze network behavior by reading the detail of packets [1]. The worm attack pattern is important in order to provide a clear view on how the attack has performed [4] and from the result of it, the attacker and victim also can be identified which will help how the crime is being committed.
1.2 Problem Statements

Malware is widespread rapidly and is happened within second in network. This characteristic had lead to difficulty to identify the malware’s behavior. The Research Problem (PR) is summarized into Table 1.1.

<table>
<thead>
<tr>
<th>No</th>
<th>Research Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1</td>
<td>Malware is an epidemic and lead to difficulty to identify the behavior of the malware.</td>
</tr>
</tbody>
</table>

Thus, one Research Questions (RQ) is constructed to identify the research problem as discussed in previous section is depicted in Table 1.2.

<table>
<thead>
<tr>
<th>RP</th>
<th>RQ</th>
<th>Research Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1</td>
<td>RQ1</td>
<td>How can we identify the behavior of the malware?</td>
</tr>
</tbody>
</table>

RQ 1: How can we identify the behavior of the malware?

This research question is formulated by considering the malware’s behavior issue which is epidemic as highlighted in RP1 in Table 1.1. This RQ is the primary guides to formulate the research objectives (RO) of this project.
1.3 Objective

Based on the research questions formulated in previous section, appropriate research objectives (RO) are developed as follows:

RO 1: To identify the feature of the malware in perspective of victim and attacker.
In order to identify the behavior of malware, first need to find out the feature of the malware. Features of malware when malware is victim, and also when malware act as attacker.

RO 2: To generate attack pattern of malware in perspective of victim and attacker.
After that, based on the features that had been identified can used to generate the attack of the malware in attacker and victim’s perspective.

RO3: To generalize attack pattern malware in perspective of victim and attacker.
Next, generalize attack pattern from the attack pattern of malware that had been defined before. From the attack pattern can point out the attacker and victim identity.

<table>
<thead>
<tr>
<th>RP</th>
<th>RQ</th>
<th>RO</th>
<th>Research Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1</td>
<td>RQ1</td>
<td>RO1</td>
<td>To identify the feature of the malware in perspective of victim and attacker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO2</td>
<td>To generate attack pattern of the malware in perspective of victim and attacker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO3</td>
<td>To generalize attack pattern malware in perspective of victim and attacker</td>
</tr>
</tbody>
</table>

Table 1.3 Summary of research objectives
1.4 Scopes

Scope of project that is going to be conducted as follows:

1. Using only one specific type of traditional worm—Blaster.A
2. Focusing on attack pattern of victim and attacker perspective.
3. Using network traffic data (tcpdump).

1.5 Project Significant

The worm attack pattern of Blaster.A will help in network security to identify the identity of attacker and victim in network forensic.

1.6 Conclusion

In conclusion, this project will identify features and behaviors of worm (Blaster.A), then construct the worm attack pattern from perspective of attacker and victim. In the next chapter, I will do more research about Blaster.A and network traffic. At the same time, literature review and project methodology will also be done.
CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter, the two main topics are literature review and project methodology will be discussed. First of all, findings from the literature review about malware issues will discover the one research objective (RQ1) which to identify the behaviour of the malware that had been formulated in Chapter I, while, the first, second and third research objective (RO1, RO2, RO3) which are to identify the feature of the malware attack, then from the information gathered to construct a malware attack pattern from perspective of attacker and victim.
Figure 2.1 Operational framework: Literature review phase

In the Literature Review phase, as depicted in Figure 2.1, further information on malware, attack pattern and network traffic issues are gathered. During the Literature Review phase, the relevant literature in journals, articles, thesis, technical reports, books, websites and other academic sources are reviewed.