KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: IMPLEMENTING KOBETSU KAIZEN STEPS IN A MANUFACTURING COMPANY

SESI PENG AJIAN: 2004 / 2005

Saya: MURUGAN A/L NAGARETINAM

(HURUF BESAR)

mengaku membencarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berharga keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYELIA)

Alamat Tetap:
NO 6, LADANG BUKIT PELANDOK,
71009 PORT DICKSON,
NEGERI SEMBILAN D. KHUSUS

Tari kh: 9hb DESEMBER 2005

Tarikh: 16 Dec 2005

* Tes is dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

(© Universiti Teknikal Malaysia Melaka)
FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) : 09 Disember 2005
Rujukan Tuan (Your Ref):

Pustakawan
Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia
KUTKM, Ayer Keroh
MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD
- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN):
MURUGAN A/L NAGARETINAM
TAJUK: IMPLEMENTING KOBETSU KAIZEN STEPS IN A MANUFACTURING
COMPANY

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk
"Implementing Kobetsu Kaizen Steps In A Manufacturing Company"
mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh
surat ini memandangkan ia mempunyai nilai dan potensi untuk
dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA"

Yang benar,

EN. PUVANASWARAN PERUMAL
Pensyarah,
Fakulti Kejuruteraan Pembuatan
(Penyeselia)
IMPLEMENTING KOBETSU KAIZEN STEPS IN A MANUFACTURING COMPANY GOODWAY RUBBER INDUSTRIES (M) SDN BHD

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree Bachelor of Manufacturing Engineering (Process)

By

MURUGAN S/O NAGARETINAM

Faculty of Manufacturing Engineering
November 2005
DECLARATION

I hereby, declare this thesis entitled “Implementing Kobetsu Kaizen In A Manufacturing Company- Goodway Rubber Industries Sdn. Bhd” is the results of my own research except as cited in the reference.

Signature

MNRU

Author’s Name

NAGARETINAM

Date

16-12-2005
ABSTRACT

With the Japanese re-export of several prominent management concepts such as total quality control (TQC), just-in-time production (JIT) and lean production, one common factor cited for operational excellence has received considerable attention during the last decade. The concept of KAIZEN has been introduced to the management arena, at times as the “missing link” in explanations for the widely noted operational excellence of Japanese firms. The first well-known and most frequently cited proponent of kaizen was Imai, who wrote KAIZEN – The Key to Japan’s Competitive Success (1986). He outlined the concept, its core values and principles, its relation to other concepts and the practices used in the improvement process. Kaizen is a Japanese philosophy that means continual incremental improvement. “Kai” translates as Change and “Zen” translates as good or for the better. Implementation of the Kaizen system needs the involvement of all level of employees in a company. Manufacturing industries is the best place to implement the Kaizen project and evaluating its efficiency. This paper illustrates about Kaizen project at GOODWAY Rubber Industries (M) Sdn. Bhd. Goodway Rubber Industries is a well known re-tread tyre maker for automotives. The implementation is done at factory 4. The improvement project undertaken is based on line 2. Various losses and process downtime are affecting the specified process line. Kobetsu Kaizen 10 steps are used as guidelines to tackle the surfacing problems. The proposed Kaizen project would be able to increase the productivity, reducing abnormal time and eliminating the Six big losses recorded. The implementation of Kobetsu Kaizen steps in the production line number two have significantly increase the Overall Equipment Effectiveness (OEE) from 81.42% to 87.8% thus allowing an improvement of 6.38%. The contribution of Kaizen to the Overall Equipment Losses also records a decrease from 18.58% to 12.2%. The main concern of the project is to focus on performance losses which consists minor stoppages and speed loss. The elimination of losses results in higher productivity output and more decent work condition.

Keywords:- Kaizen, Productivity and Process improvement, Overall Equipment Effectiveness
ABSTRAK

DEDICATION

For My Beloved parents and wonderful family members.
ACKNOWLEDGEMENT

The past one year have been overwhelming and I could not have through it without the help of the people I want to thank right here. To my supervisor Mr. Puvanasvaran, for giving me ample guidance and for always making time for me each time I needed help. Without your guidance, this report is not possible to be finished.

To my family who used to give me encouragement and guidance during my hardest time on completing this paper. There’s no anyone else to match your support and enormous sacrifices.

To my uncle Mr. Letchumanan Saras and family for their help and moral support by giving shelter and place to stay for the period of performing this project.

To my batch mates Jaikanth, Loganathan, Letchkumar, Kesa, Letchu, Linges, Vijin, Jeeva and Mages for their moral support and help.
TABLE OF CONTENTS

Declaration.. i
Abstract.. ii
Abstrak... iii
Dedication... iv
Acknowledgement... v
Table Of Contents... vi
List of Figures.. xii
List of Tables.. xiv
List of Abbreviations, Symbols, Specialized Nomenclature................. xv

1. INTRODUCTION... 1
1.1. Objectives of the research... 2
1.2. Scope of the research... 2
1.3. Limitations of the Research.. 2
1.4. Background of company.. 3
1.5. Problem Statements... 4
1.6. Planning of Project... 5
1.7. Organization of the Report.. 6

2. LITERATURE REVIEW... 7
2.1 Definitions of Kaizen... 7
2.2 History of Kaizen.. 9
2.3 The Benefits of Kaizen... 11
2.4 Overview of Kaizen Philosophy.. 12
2.5 Principles of Kaizen... 13
 2.5.1 Principle 1... 14
 2.5.2 Principle 2... 15
 2.5.3 Principle 3... 16
2.6 Ten steps of Kobetsu Kaizen.. 18
2.6.1 Model Selection.. 18
2.6.2 Organize Project Team.. 19
2.6.3 Identify Present Losses.. 19
2.6.4 Kōbetsu Kaizen Theme and Goal Setting.................... 20
2.6.5 Scheduling... 20
2.6.6 Analysis and Countermeasure.................................. 20
2.6.7 Implementations.. 21
2.6.8 Confirm Effectiveness... 21
2.6.9 Taking Action to Prevent Recurrence.......................... 22
2.6.10 Horizontal Replication... 22

2.7 Overall Equipment Effectiveness (OEE) and Six Big Losses...... 22
2.7.1 Defining Overall Equipment Effectiveness (OEE).............. 22
2.7.2 Defining the Six Big Losses..................................... 23
2.7.3 Addressing the Six Big Losses................................... 23
 2.7.3.1 Breakdown... 23
 2.7.3.2 Setup and Adjustments..................................... 24
 2.7.3.3 Small Stops and Reduced Speeds.......................... 24
 2.7.3.4 Startup Rejects and Production Rejects.................... 25

2.8 Summary.. 25

3. METHODOLOGY.. 27
3.1 Kōbetsu Kaizen 10 steps... 27
 3.1.1 Model Selection.. 28
 3.1.1.1 Productivity Up.. 28
 3.1.1.2 Necessary for Department................................. 28
 3.1.1.3 Confident Level... 29
 3.1.1.4 Synchronize with Auto Machines........................ 29
 3.1.1.5 Quality Level Up.. 29
 3.1.1.6 Cost Reduction at Factory 4............................... 30
 3.1.1.7 Reduce OEL at Line 2...................................... 30
 3.1.1.8 Increase Output Rate....................................... 30
 3.1.1.9 Reduce Brush Consumption Ratio......................... 30
3.1.1.10. Reduce Raw Material Wastages ... 31
3.1.1.11. Reduce Cement Consumption ... 31
3.1.2. Organize Project Team ... 31
3.1.3. Identify Present Losses ... 32
 3.1.3.1. Process Time Study ... 32
 3.1.3.2. Production Rate Study .. 32
 3.1.3.3. Stoppage Time Analysis .. 32
 3.1.3.4. Calculation of Actual and Ideal Target 33
 3.1.3.5. Losses Identification Study ... 33
 3.1.3.6. OEE and OEL Clarification Study 33
 3.1.3.7. Performance Losses Study .. 33
 3.1.3.8. Losses Classification Study ... 34
3.1.4. Kobetsu Kaizen Theme and Goal Setting 34
3.1.5. Scheduling ... 34
3.1.6. Analysis and Countermeasure ... 34
 3.1.6.1. Cause and Effect Analysis ... 34
 3.1.6.2. Why Why Analysis ... 35
3.1.7. Implementations .. 35
3.1.8. Confirm Effectiveness ... 35
 3.1.8.1. OEE Comparison Before and After Implementations 35
 3.1.8.2. Minor Stoppages Comparison Before and After 35
 Implementations
 3.1.8.3. Speed Loss Comparison Before and After Implementations 36
3.1.9. Taking Action to Prevent Recurrence 36
3.1.10. Horizontal Replication .. 36

4. RESULT .. 37
4.1. Model Selection ... 37
4.2. Organize Project Team .. 38
4.3. Identify Present Losses ... 39
 4.3.1. Process Flow Chart of Line 2 .. 39
 4.3.1.1. Process Set-up Overview .. 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2. Machine and Operator Set-up Layout</td>
<td>41</td>
</tr>
<tr>
<td>4.3.3. Material Flow in Line 2</td>
<td>43</td>
</tr>
<tr>
<td>4.3.4. Process Time Study</td>
<td>44</td>
</tr>
<tr>
<td>4.3.5. Production Rate Study</td>
<td>45</td>
</tr>
<tr>
<td>4.3.6. Stoppage Time Analysis</td>
<td>46</td>
</tr>
<tr>
<td>4.3.7. Calculations</td>
<td>46</td>
</tr>
<tr>
<td>4.3.7.1. Ideal Output Target Calculations</td>
<td></td>
</tr>
<tr>
<td>4.3.7.1.1. For 3 meter PTL</td>
<td>47</td>
</tr>
<tr>
<td>4.3.7.1.2. For 10 meter PTL</td>
<td>47</td>
</tr>
<tr>
<td>4.3.7.2. Actual Output Target Calculations</td>
<td></td>
</tr>
<tr>
<td>4.3.7.2.1. For 3 meter PTL</td>
<td>48</td>
</tr>
<tr>
<td>4.3.7.2.2. For 10 meter PTL</td>
<td>49</td>
</tr>
<tr>
<td>4.3.8. Losses Identification Study</td>
<td>51</td>
</tr>
<tr>
<td>4.3.9. Performance Loss Study</td>
<td>53</td>
</tr>
<tr>
<td>4.3.10. Losses Classification Study</td>
<td>54</td>
</tr>
<tr>
<td>4.4. Kobetsu Kaizen Theme and Goal Setting</td>
<td>56</td>
</tr>
<tr>
<td>4.5. Scheduling</td>
<td>56</td>
</tr>
<tr>
<td>4.6. Analysis and Countermeasure</td>
<td>57</td>
</tr>
<tr>
<td>4.6.1. Cause and Effect Analysis on Speed Loss</td>
<td>57</td>
</tr>
<tr>
<td>4.6.2. Cause and Effect Analysis on Minor Stoppages</td>
<td>58</td>
</tr>
<tr>
<td>4.6.3. Why Why Analysis on Speed Loss</td>
<td>60</td>
</tr>
<tr>
<td>4.6.3.1. Slow Movements of Manpower/Workers</td>
<td>60</td>
</tr>
<tr>
<td>4.6.3.2. Due to Manual Cementing</td>
<td>61</td>
</tr>
<tr>
<td>4.6.3.3. Running Machine at Low Speed</td>
<td>61</td>
</tr>
<tr>
<td>4.6.3.4. More Time Consumption for Shiny Spot Removing</td>
<td>62</td>
</tr>
<tr>
<td>4.6.4. Why Why Analysis for Minor Stoppages</td>
<td>63</td>
</tr>
<tr>
<td>4.6.4.1. Irregular Communication</td>
<td>63</td>
</tr>
<tr>
<td>4.6.4.2. Long Time Taken To Confirm Product Information</td>
<td>63</td>
</tr>
<tr>
<td>4.6.4.3. Due to Incoming PTL Rejection</td>
<td>64</td>
</tr>
<tr>
<td>4.6.4.4. PTL Stuck at Brush</td>
<td>64</td>
</tr>
<tr>
<td>4.6.4.5. Failure to Follow Work Instruction</td>
<td>65</td>
</tr>
<tr>
<td>4.6.4.6. Due to Uneven Cement</td>
<td>65</td>
</tr>
</tbody>
</table>
4.6.4.7. Due to Jam at Conveyer .. 66
4.7. Implementations .. 66
 4.7.2. Fixing an Amp Indicator at Panel Box 68
 4.7.3. Fixing an Air Regulator for Auto Cementing Machine 68
 4.7.4. Adding Two Hand Grinder Machine 69
4.8. Confirm Effectiveness ... 70
 4.8.1. Overall Equipment Effectiveness (OEE) Comparison 71
 Before and After Implementation
 4.8.2. Minor Stoppages Comparison Before and After 72
 Implementation
 4.8.3. Speed Loss Comparison Before and After Implementation 73
4.9. Taking Action to Prevent Recurrence 74
 4.9.1. Work Instruction Manual .. 75
 4.9.2. One Point Lesson .. 75
 4.9.3. Pre- Inspection Checklist .. 76
 4.9.4. Do’s and Don’t’s of Operation .. 76
 4.9.5. Preventive Maintenance of Line 76
 4.9.6. Workers Involvement ... 77
 4.9.7. Management Strict Involvement 77
4.10. Horizontal Replication ... 78

5. DISCUSSION AND CONCLUSION ... 79
 5.1. Discussion ... 79
 5.2. Conclusion ... 81
 5.3. Recommendation for Future Study 82

REFERENCES ... 83

APPENDICES .. 88

A Overview of Project
B Six Big Losses and Classifications
C Schedule of Project
D Organization Chart of Team
E Production Output Rate of April 2005
F Minor Stoppages Analysis before Implementations
G Why Why Analysis for Speed Loss
H Why Why Analysis for Minor Stoppages
I Implementation Schedule
J Implementation Priority Ratings
K Production Rate Analysis after Implementations
L Minor Stoppages Analysis after Implementations
M Example of One-Point Lesson
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Normal and Abnormal time differentiation</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>Principles and Types of Kaizen</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Overall Equipment Effectiveness Elements</td>
<td>23</td>
</tr>
<tr>
<td>3.0</td>
<td>10 steps of Kobetsu Kaizen Flow Chart</td>
<td>27</td>
</tr>
<tr>
<td>4.0</td>
<td>Relationship between criteria, activities and evaluation</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Process Flow Chart of Line 2</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Process Set Up Overview of Line 2</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Machine and Operator Set up On Line 2</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Explanations of operator and machine placement</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Material Flow in Line 2</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>OEE and OEL classification</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>A, P, Y Losses of Line 2</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Minor stoppages by problem and time loss</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>Performance Loss Classifications</td>
<td>55</td>
</tr>
<tr>
<td>4.10</td>
<td>Cause and Effect analysis for Speed Loss 4.33%</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>Cause and Effect analysis for Minor Stoppages 14.25%</td>
<td>59</td>
</tr>
<tr>
<td>4.13</td>
<td>Implementation of Fixing an Amp Indicator at the Panel Box at Line 2</td>
<td>68</td>
</tr>
<tr>
<td>4.14</td>
<td>Implementation of Air Regulator at the line 2</td>
<td>69</td>
</tr>
<tr>
<td>4.15</td>
<td>Implementation of Two Hand Grinding Machine at line 2</td>
<td>70</td>
</tr>
<tr>
<td>4.16</td>
<td>OEE Comparison before and after implementation</td>
<td>71</td>
</tr>
<tr>
<td>4.17</td>
<td>Minor Stoppages Comparison before and after implementations</td>
<td>72</td>
</tr>
<tr>
<td>4.18</td>
<td>Minor Stoppages percentage value</td>
<td>73</td>
</tr>
<tr>
<td>4.19</td>
<td>Speed loss comparison before and after implementation</td>
<td>74</td>
</tr>
<tr>
<td>4.20</td>
<td>Actions to prevent recurrence</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1.0 Description of Output Losses in Project Line.................................4

4.0 Time study of 10meter length PTL..45
4.1 Time study of 3meter length PTL..45
4.2 Unavoidable Stoppage Analysis (24 hour basis)...............................46
4.3 Horizontal Replication Countermeasures Details.............................78
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m</td>
<td>10 meter</td>
</tr>
<tr>
<td>3m</td>
<td>3 meter</td>
</tr>
<tr>
<td>A</td>
<td>Availability Loss</td>
</tr>
<tr>
<td>JUSE</td>
<td>Japanese Union for Scientist and Engineers</td>
</tr>
<tr>
<td>KK</td>
<td>Kobetsu Kaizen</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>OEL</td>
<td>Overall Equipment Losses</td>
</tr>
<tr>
<td>P</td>
<td>Performance Loss</td>
</tr>
<tr>
<td>PTL</td>
<td>Precured Tyre Length</td>
</tr>
<tr>
<td>QCC</td>
<td>Quality Control Circle</td>
</tr>
<tr>
<td>SMED</td>
<td>Single Minute Exchange of Dies Program</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>SPG</td>
<td>Superior Global Competitor</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>Y</td>
<td>Yield Loss</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

KAIZEN, pronounced by Ky Zen, is a Japanese philosophy that means continuous, incremental improvement. "Kai" translates as Change and "Zen" translates as good or for the better. When applied to the workplace, it means continual improvement that involves managers and workers alike (Vincent S. Palmer, 2001). The development of kaizen also known as continuous improvement is vital for a developing company to keep on moving with current market flow.

Kokuo (1996) describes Kaizen as a Japanese word meaning gradually and orderly, continuous improvement. The KAIZEN business strategy involves everyone in an organization working together to make improvements without large capital investments. As per explained, Kaizen contributes much to improvement of an organization or any working atmosphere. Kaizen can be applied to any area in need of improvement (Joseph C. Chen et al., 1997). In fact, the overall concept of continuous improvement appears to be relevant to every area of industrial and logistics activity, from the production of basic materials such as steel, aluminium and timber to manufacturing industries as diverse as automotive, furniture, canning, food and drink (Leigh Pomlet 1994). Kaizen strives toward perfection by eliminating waste. It eliminates waste to be any activity that is not value adding (Kevin O'Brien, 2003).
1.1 OBJECTIVES OF STUDY

Kobetsu Kaizen improvement method proves to be the backbone of every success companies. The objectives of the project are:-

1. To implement Kobetsu Kaizen improvement steps in Goodway Rubber (M) Sdn. Bhd.

2. To analyze and define the contribution of the case study done at Goodway Rubber.

1.2 SCOPE OF STUDY

The project evolves in manufacturing company which practices kaizen improvement method in its production arena. The main concern of the study is to highlight the importance and impact of the kaizen continuous improvement project approach in manufacturing companies. The scope is narrowed to Goodway Rubber (M) Sdn Bhd in its production line. Factory 4 buffing section especially at line 2. What would be the manufacturing sector’s alternative way of increasing productivity or reducing waste rather than conventional method? This question is highlighted in the further discussion and literature surveys which have been done. Apart from that, the case study was conducted through references made from Kobetsu Kaizen 10 steps, journals, books and websites which contain information about kaizen. The thesis paper also includes comparisons which are obtained by using the Kobetsu Kaizen method. A clear understanding of kaizen and its application in industry is the main concern of why the study is performed.

1.3 LIMITATIONS OF STUDY

The study is limited to Kobetsu Kaizen and doesn’t include any other improvement methods available around. The scope is narrowed to the Kaizen
application at Goodway Rubber and all relative information about it.

1.4 BACKGROUND OF COMPANY

Goodway Integrated was incorporated in Malaysia under the Companies Act, 1965 on 19th June 2003 as a private limited company under the name of Prosperous Image Sdn Bhd. Subsequently, on 9th September 2003; it was converted to a public limited company and assumed its present name on 15th October 2003 (Company profile, 2004).

The Group is principally involved in the development, manufacturing and distribution of technical compounds, tyre compounds and other rubber related products. The Group also provides retreading services (Company profile, 2004). Since being founded in 1990, Goodway Rubber Industries Sdn Bhd has made deep in roads into the highly established rubber industry (Company profile, 2004).

Despite being the youngest player, Goodway has successfully harnessed its roaring energy to state-of-the-art German technological expertise in rubber compounding. The result is a consistent delivery of an impressive range of innovative and high quality products (Company profile, 2004). This delivery of excellence each and every time has earned Goodway the proud title, "The largest retread rubber manufacturer in Asia." (Source: - Company profile, 2004).

Goodway now supplies an impressive range of retread materials and high quality technical rubber compounds to leading retread manufacturers, commercial vehicle proprietors, new tyre manufacturers along with Fortune 500 companies dealing in hoses and other rubber related products. Goodway’s loyal customer base today spans over 50 countries including the Asia Pacific, Middle East, Oceania and the Americas (Company profile, 2004).
Goodway delivers a series of superior precured treads for the cold retreading process (vulcanization of retread tyres in a chamber or autoclave at temperatures ranging from 95°C to 120°C). Each precured tread has its unique tread pattern and utilizes a series of specially engineered compounds suited to various applications and targeted road conditions (Company profile, 2004).

1.5 PROBLEM STATEMENT

Problem identification is vital in every project to be done. As per stated in the objective section of this paper, Kobetsu Kaizen Improvement Project is used as guideline to improve OEE and eliminating the OEL are discussed further in the next pages to come. The current working set-up contains losses from various factors. Losses are identified and rectified. The company found it to be a decline in production rate in the factory 4 buffing section. The output rate per day doesn’t reach the target. There are two types of product in the section, 10m PTL and 3m PTL. Here are some of the descriptions of the problem. Refer to Table 1.0 below. There are two lines in producing the finished part in the buffing section. It involves manpower and conveyer to transport the PTL.

<table>
<thead>
<tr>
<th>Description</th>
<th>3 meter PTL</th>
<th>10 meter PTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Target</td>
<td>80 pieces/ Hour</td>
<td>30 pieces/ Hour</td>
</tr>
<tr>
<td>Current Output</td>
<td>59.72 pieces/ Hour</td>
<td>2.03 rolls/ Hour</td>
</tr>
<tr>
<td>Differences Between Target and Current Output</td>
<td>20 pieces</td>
<td>28 rolls</td>
</tr>
<tr>
<td>Decrease In Output Rate</td>
<td>25.35%</td>
<td>93.23%</td>
</tr>
<tr>
<td>Total Loss of Time</td>
<td>50.65 seconds</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.0:- Description of Output losses in the project line
Hence, it is obvious that there is a major loss in the line. The major losses in the line are identified and Kobetsu Kaizen 10 steps are followed gradually. Figure 1.0 at the next page shows the normal and abnormal time for each of the 11 processes involved in the project line. Take note that the abnormal time is higher than the normal time.

![NORMAL AND ABNORMAL TIME OF PROCESSES](image)

Figure 1.0:- Normal and Abnormal time differentiation
Source:- Goodway Rubber Industries (M) Sdn Bhd

1.6 PLANNING OF PROJECT

The duration of the project is four months. It took four months to fully adapt the Kobetsu Kaizen 10 steps as it requires much longer time for analysis and implementation time. The effectiveness of the countermeasures done was analyzed for a period of one month so that a more reliable and trustable data are gathered. Refer to Appendix C for the scheduling of the project.
1.7 ORGANIZATION OF THE REPORT

The report is logically organized into five (5) chapters and appendices:

Chapter one is the introduction and is composed of objectives, scope of study, limitations, background of company and problem statement.

Chapter two comprises literature review of all terminologies of KOBETSU KAIZEN, definition of Kaizen, History of Kaizen, Benefits of Kaizen, Overview of Kaizen philosophy, Principles of Kaizen, Ten steps of Kobetsu Kaizen and Overall Equipment Losses (OEL) and Six Big Losses Identifications.

Chapter three describes in detail the methodology followed in this research study.

Chapter four investigates the adoption and implementation of Kobetsu Kaizen improvement method in the production line number 2 of factory 4 Goodway Rubber Industries (M) Sdn. Bhd. The results of each step of Kobetsu Kaizen implementations are explained in detail in the sequence. Based on the data obtained from each step, a graphical tool in the form of a *cause and effect diagram* was used in studying and improving the processes to determine the root cause. Finally, a series comparison is done to prove the project has fulfilled the objective and target set by the group.

Chapter five is more concerned on discussion and conclusion. The overall improvements that have been done at the project line are evaluated and graphical comparison is done for every aspect such as OEE, OEL, Minor Stoppages and Speed loss. Comparison between before and after implementation is done and discussed. The Chapter is more emphasis on overall view as each of the comparisons has been explained in Chapter 4 briefly. Conclusion and recommendation for future studies are explained in brief.