BORANG PENGESAHAN STATUS TESIS

JUDUL: EQUIPMENT PERFORMANCE ON LINE TRACKING SYSTEM

SESI PENGAJIAN: 1 2006/2007

Saya NORAZLINAWATI BINTI AZMI

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/)

SULIT

RASMI

TERHAD

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat tetap : NO. 145, JALAN PANTAI JOHOR
05250 ALOR STAR KEDAH

Nama Penyelia: Cik. NOR MAS AINDA MD BOHARI

Tarih: 20 NOVEMBER 2006

CATATAN: ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.
Tesis dimaksudkan sebagai Laporan Projek Sarjana Muda (PSM)
This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Database Management)
DECLARATION

I hereby declare that this project report entitled

EQUIPMENT PERFORMANCE ONLINE TRACKING SYSTEM

is written by me and is my own effort and that no part has been plagiarized
without citations.

STUDENT : __________________________ Date : 20 NOVEMBER 2004
(NOR AZLIN AWATI BINTI AZMI)

SUPERVISOR : _____________________ Date : 20 NOVEMBER 2006
(MISS NOR MAS AINA BINTI MD. BOHARI)
DEDICATION

To my beloved parents, Mr. AZMI BIN AHMAD and Madam SALMIAH BINTI OTHMAN.

Thank you for the fully support.
ACKNOWLEDGEMENT

Alhamdulillah to ALLAH SWT for his gratefulness and kindness for allowing me and has help me in so many ways in completing my Project Sarjana Muda

Firstly, I would like to pin point my gratitude to Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) for offering me this courses, BITU 3973 Projek Sarjana Muda 1 (PSM 1) and BITU 3983 Projek Sarjana Muda II (PSM 2). The most important person that I would like to express my gratitude and appreciation is to my supervisor Miss Nor Mas Aina bt Md Bohari, who has helped me a lot through all the rough time and has shared her knowledge with me during my day in last semester in KUTKM.

Secondly, I would like to thank my entire lecturer from the Faculty of Computer Science who had teaches and guides me during my studies in KUTKM, also to the whole BITD course mate their support, knowledge and skill exchange. Without them, it would be difficult for me to perform my Final Project as a KUTKM student, carryout my responsibilities as final year student and complete the project, which is still in progress.

Besides that, I would also like to thank everybody in Intel Technology Penang from Engineering Department, Engineering Planner, Quality and Reliability Team and others for all their help while I was performing my Industrial Training where I was first assign to develop this Equipment Performance Online Tracking System (EPTS).

Last but not least, I would like to conclude my thanks to my parents, family and all my friends for all their support. To my special friends, who has helps me a lot, besides his fully support in terms of mental, emotional and spiritual. Thank you.
ABSTRAK

ABSTRACT

Equipment Performance Online Tracking System (EPTS) is a web based application which is specially designed to assist the management of Intel Corporation located in Penang in dealing with the inventory of the faulty spares for the plant usage. Generally there are six topics in the development of this system. The first topic is the introduction consisting of the detail description of the project background, problem description, objective, scope and the importance of this project.

The second topic captured the Literature study and Project Methodology whereby all the supporting facts about the systems that is using web based application is analyzed and studied to assist the system designer in designing and completing a good system.

Early preparation was carried out to plan all the required activities in developing this system. The third topic is the Analysis, the result of the analysis on the current system and the design of the system that is going to be developed is being studied and compared. The designer tried to overcome all the weaknesses of the current system by adding in more functions in the new system.

The forth topic covers the Design whereby the new system that is going to be developed is designed in couple of phases like the initial design and followed by the detail design. Microsoft SQL Server 2000 been chosen as a database engine for the system.

The fifth topic is the implementation where the system will be fully developed based on the results of the phases before. This topic explains the development of the design application and the software development that have been planned in topic four. The sixth topic stressed on the test planning, test design, test result and analysis for the Equipment Performance Online Tracking System (EPTS). All the strength and weaknesses of the system are analyzed in the last topic which is the conclusion which also explains the progress and the achievement of the developed system.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLE</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTIONS

1.1 Project Background
1.2 Problem Statements
1.3 Objectives
1.4 Scopes
1.5 Project Significance
1.6 Expected Output
1.7 Conclusion

CHAPTER II LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction
2.2 Fact And Finding On Web Based Application
2.2.1 Case Study 1
2.2.2 Case Study 2
CHAPTER III ANALYSIS

3.1 Introduction 34
3.2 Analysis Of Current System 35
 3.2.1 Flow Design Of Current System 35
 3.2.2 Problem Analysis 39
3.3 Analysis Of To-Be System 40
 3.3.1 Functional Requirement 41
 3.3.2 Actor 46
 3.3.3 Use Case Description 47
 3.3.4 Activity Diagram For Future System 49
3.3.5 Data Analysis 50
3.3.6 Technical Requirement 53
3.4 Conclusion 57

CHAPTER IV DESIGN

4.1 Introduction 58
4.2 High Level Design 59
 4.2.1 System Architecture 59
 4.2.1.1 Layering Architecture 61
4.2.1.2 High Level Class Diagram 65
4.2.1.3 Interaction Diagram 67
4.2.2 User Interface Design 68
4.2.2.1 Navigation Design 68
4.2.2.2 Input Design 70
4.2.2.3 Output Design 71
4.2.3 Conceptual and Logical Database Design 72
4.2.3.1 Business Rules 74
4.2.3.2 Data Dictionary 75
4.2.3.3 Normalization 76
4.2.3.4 DBMS selection 79

4.3 Detail Design 80
4.3.1 Software Specification 80
4.3.2 Physical Database Design (Ddl/Dcl) 81
4.3.2.1 Create Tables 82
4.3.2.2 Create Constraint 85
4.3.2.3 Create Indexes 86
4.3.2.4 Create View 86
4.3.2.5 Grant Privileges 87
4.3.2.6 Create Password 87
4.3.2.7 Grant Option or User Level 88
4.3.2.8 Database Contingency - Trigger 88
4.3.2.9 Database Contingency – Stored Procedure 89

4.4 Conclusion 89

CHAPTER V IMPLEMENTATION

5.1 Introduction 91
5.2 Software Development Environment Setup 92
5.2.1 Operating System 93
5.2.1.1 Window XP Professional 93
5.2.2 Programming Language 93
5.2.2.1 Active Server Pages (ASP) 94
5.2.3 Web Server – Internet Information 96
Service (IIS)
5.2.4 Programming Development Tools 96
5.2.4.1 VB Script 96
5.2.4.2 Java Script 97
5.2.5 Database Server 97
5.2.5.1 Microsoft SQL Server 2000 98
5.2.6 Web Browser 98
5.2.6.1 Microsoft Internet Explorer 99
5.3 Database Implementation 99
5.4 Software Configuration Management 103
5.4.1 Configuration Environment Setup 103
5.4.1.1 Server Configuration 103
5.4.1.2 Enabling Web Application Development 104
5.4.1.3 Microsoft SQL Server 2000 Installation 104
5.4.2 Version Control Procedure 105
5.5 Implementation Status 106
5.6 Conclusion 108

CHAPTER VI TESTING
6.1 Introduction 109
6.2 Test Plan 110
6.2.1 Test Organization 110
6.2.2 Test Environment 110
6.2.3 Test Schedule 112
6.3 Test Strategy 113
6.3.1 Classes of Test 115
6.4 Test Design 115
6.4.1 Test Description 116
6.4.1.1 Unit Testing 116
6.4.2 Test Data 117
6.5 Test Result and Analysis 119
6.6 Conclusion

CHAPTER VII

Project Conclusion

7.1 Observation On Weaknesses And Strengths

7.1.1 System Strengths

7.1.2 System Weakness

7.2 Propositions for Improvement

7.3 Contribution

7.4 Conclusion

REFERENCES

BIBLIOGRAFI

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Architecture Layer of EPTS Description</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>User Login Page - Input Design Field</td>
<td>71</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Personal Computer Configuration (Windows XP Professional)</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Personal Computer Configuration (Window 98)</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Testing schedule for Equipment Performance Online Tracking System.</td>
<td>121</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Unit Testing –Login Module</td>
<td>125</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Test Data for Administration Module</td>
<td>126</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Test Case Result</td>
<td>127</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Present Market Condition Graph</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Use Case Diagram of Existing System</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Entity Relationship Diagram</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Use Case Diagram for Future System</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Activity Diagram for Adding User Module</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>EPTS Architecture Overview in Three (3) Tier Architecture</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Architecture Layering</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>High Level Class Diagram</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Manage View Transaction Sequence Diagram</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Navigation Design for All Users</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Users Login Page</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.24</td>
<td>Page Validation Error Message</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.32</td>
<td>Entity Relation Diagram (ERD) for EPTS in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crow's Foot Format</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.33</td>
<td>Normalization of EPTS</td>
<td>85</td>
</tr>
<tr>
<td>Figure 4.34</td>
<td>Database Management in a Client and Server Architecture</td>
<td>87</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Software Development Environment Setup Architecture</td>
<td>101</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>SQL Server Service Manager Interface</td>
<td>113</td>
</tr>
<tr>
<td>Figure 5.30</td>
<td>Version Control Procedure</td>
<td>114</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Unit Testing – Login Module</td>
<td>125</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>EPTS</td>
<td>Equipment Performance Online Tracking System</td>
<td></td>
</tr>
<tr>
<td>KUTKM</td>
<td>Kolej Universiti Teknikal Kebangsaan Malaysia</td>
<td></td>
</tr>
<tr>
<td>PSM</td>
<td>Projek Sarjana Muda</td>
<td></td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
<td></td>
</tr>
<tr>
<td>ERD</td>
<td>Entity Relationship Diagram</td>
<td></td>
</tr>
<tr>
<td>EERD</td>
<td>Enhanced Entity Relationship Diagram</td>
<td></td>
</tr>
<tr>
<td>OOAD</td>
<td>Object Oriented Analysis Design</td>
<td></td>
</tr>
<tr>
<td>OOAD</td>
<td>Object Oriented Software Engineering</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>Internet Explorer</td>
<td></td>
</tr>
<tr>
<td>ASP</td>
<td>Active Server Pages</td>
<td></td>
</tr>
<tr>
<td>IIS</td>
<td>Internet Information Service</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
<td></td>
</tr>
<tr>
<td>CPVM</td>
<td>Component Platform Validation Monitoring</td>
<td></td>
</tr>
<tr>
<td>CPVS</td>
<td>Component Platform Validation Sampling</td>
<td></td>
</tr>
<tr>
<td>TIU</td>
<td>Test Head Indicator Unit</td>
<td></td>
</tr>
<tr>
<td>MTE</td>
<td>Maintenance Technician Engineer or Shift Technician</td>
<td></td>
</tr>
<tr>
<td>PM CREW</td>
<td>Professional Maintenance Crew or Senior Technician</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Product Engineer</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GANTT CHART</td>
<td>130</td>
</tr>
<tr>
<td>B</td>
<td>ERD IN CHEN'S FORMAT</td>
<td>131</td>
</tr>
<tr>
<td>C</td>
<td>FLOW DESIGN OF CURRENT SYSTEM</td>
<td>133</td>
</tr>
<tr>
<td>D</td>
<td>USE CASE DESCRIPTION</td>
<td>138</td>
</tr>
<tr>
<td>E</td>
<td>INTERACTION DIAGRAM</td>
<td>149</td>
</tr>
<tr>
<td>F</td>
<td>NAVIGATION DESIGN</td>
<td>152</td>
</tr>
<tr>
<td>G</td>
<td>ACTIVITY DIAGRAM FOR FUTURE SYSTEM</td>
<td>158</td>
</tr>
<tr>
<td>H</td>
<td>INPUT DESIGN FOR EPTS</td>
<td>169</td>
</tr>
<tr>
<td>I</td>
<td>OUTPUT DESIGN</td>
<td>189</td>
</tr>
<tr>
<td>J</td>
<td>DATA DICTIONARY FOR EPTS</td>
<td>194</td>
</tr>
<tr>
<td>K</td>
<td>SOFTWARE SPECIFICATION FOR EPTS</td>
<td>204</td>
</tr>
<tr>
<td>L</td>
<td>SERVER CONFIGURATION</td>
<td>212</td>
</tr>
<tr>
<td>M</td>
<td>STEPS TO INSTALL OR SET UP MICROSOFT SQL SERVER 2000</td>
<td>225</td>
</tr>
<tr>
<td>N</td>
<td>UNIT TEST CASE FORM</td>
<td>235</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Project Background

Overall this chapter will cover briefing and sufficient background on Equipment Performance Online Tracking System (EPTS) for Intel (M) Technology Sdn. Bhd. specifically for Engineering Department usage. Other topics that will be highlighted in this chapter are problem statement, objectives of the system, project’s scope, project’s significance or contribution and the last section will be conclusion for this chapter.

Equipment Performance Online Tracking System is actually a web-based system, which will operate online 24 hours a day and 7 days a week. The plan is to implement this system in Intel Penang and hence will use the existing Intel server. EPTS will concentrate on the equipment operation whereby system will capture their down time as well as their operation time.

Besides that, EPTS can work as an automated system to track all the part that has been used in each equipment and handler. From this system, Module Engineer (ME) can easily track the Equipment Performance without the need to be present at the Production Floor. Total number of equipment usages can also be track from time to time meaning Product Engineer (PE) can have a clearer picture of the volume of the product tested at each tester. For any problem regarding the equipment, EPTS
will auto mail to Equipment owner which is the Module Engineer. This system can save up and archive data such as equipment’s history, part details, and others.

This system also plays a role as an online inventory database for those parts in Component Platform Validation (CPV) area. From this inventory reports, user will know the total number that is available currently and also the status for each part such as spare, in use, send out to Intel’s Repair Station (ACTS) for repair and scrap as well as reason for swap purpose.

The system access will be granted to three kind of users which are Shift Technician (MTE), Senior Technician (PM CREW) and Product Engineer (PE). Each of this control level will definitely have different level of authorization.

Currently, the PM Crew is manually collecting the data and it is hard to maintain the database. As for now, there is no such system to maintain the Motherboard (MB) and Contactor management. By using this system, PM Crew and Product Engineer will be able to monitor the down time, which will help reduce the production cost. All data will be stored in the related table inside the database and only the admin or system developer has the right to access this database.

1.2 Problem Statement

Based on the observation and some researches carried out in the CPV area, there are quite a number of issues that can be considered as the problem statement for this Project:

1. Equipment Management

Currently there are no automatic systems to maintain and manage Equipment Performance in CPV area considering an online system that can cover 24 hours 7 day per week. Hence the Equipment Engineer needs to go to the Production Floor to get the Equipment Performance’s results.
2. **Time Consuming**

 Sometimes searching for a critical part can be very time consuming especially pertaining to equipment like Motherboard and Contactor.

3. **High risk of missing important data and critical parts**

 Since there is no suitable and sufficient database system to store all important data and results, this will lead to a high risk and potential of missing equipment part’s and hardcopy reports.

4. **Manual Equipment Performance Monitoring**

 User needs additional resources to support equipment performances tracking and report. There are no sufficient triggering systems that can trigger equipment’s owner automatically either by sending auto mail or any other auto action.

5. **Manual Equipment Inventory Tracking**

 Due to no auto generating inventory system, the inventory calculation in the CPV area is done in the manual tracking sheets. This is not aligned to today’s technology whereby all tracking can be done automatically. With this manual tracking, Product Engineer does not have accurate number of current inventory for each status and product.

6. **Security**

 Currently, equipment’s owners do not have any data or record on who is the one who fully responsible for his action towards this equipment parts. All theses parts can be considered as very expensive so any action taken towards these equipment part need to have details record on user’s who work with that particular equipment. Manually record taken is not accurate and sometimes lead to a highly budget consuming.
1.3 Objectives

The expected outcomes are reflected to the problem statement that been discussed in previous portion and the objectives are:

1. To have an online application that will be able to track critical part in CPV Area (Production Floor)

2. To capture down time for each equipment automatically and define pattern and root cause for each equipment down time and solve it.

3. To have details history of each equipment being used from time to time.

4. To automatic track the equipment lifetime in terms of quality, budget and supplier.

5. To have an automatic system that will trigger whenever the system does not work by sending auto mail to that particular equipment owner.

6. To create a secure environment for CPV team whereby system can automatic capture user identification, have backup and recovery data using the log file inside the Database Management System (DBMS).

1.4 Scope

This Equipment Performance Online Tracking System will be implemented in Engineering Department and the scopes are user, module, platform, development tools and system methodology.
1. **User**

 Basically all users will be categorized into three (3) types of Access Level that are:

 i) **MTE (Shift Technician)**

 Have right to access Transaction Page and View Reports from all View Page. MTE will have different function at Down Page where they only can Suspect Down those down equipment hence PM Crew will confirm it later.

 ii) **PM Crew (Senior Technician)**

 PM Crew will play the most critical role in this system whereby they will be able to access Shipment Page, Transaction Page, View and Contact Page. At Down Page, PM Crew is the one who have the right to confirm the equipments which are down. For example, once the MTE click “Suspect Down” button, PM Crew will receive an auto mail triggering them on any equipment which was suspected to be down. This will help trigger the PM Crew for further investigations.

 iii) **System Admin**

 User that is granted with this access level will have full access to the entire system and theses will cover the database manipulation and definition languages as well.

2. **Module**

 Each of these users will definitely have their own access right to read, write and run the system or specifically the interfaces or page. This module is decomposed into smaller parts called unit that are:
i) Security

Each user need to use their own username and password as the system will automatically capture their action in minutes, based on the log on session or session expired.

a) System requisition, store and update important data (for PM Crew)
b) Verify or reject system’s logon request (for Admin)
c) Generate a report or Online inventory (System or Auto Generate)
d) Suspected Equipment to be Down (for MTE)
e) Confirm Down (for PM Crew)
f) Auto Triggering mail (for PM Crew)
g) Highlight Each Equipment’s Parts Status (System or auto generate)
h) Export File from View Report to Excel Format (System or auto generate)

3. Development tools and System Platform

The main development tools to develop this system are Active Server Page (ASP) and Microsoft SQL Server 2000 as a Database Management System (DBMS). Rational Rose 2000 Enterprise Edition is used to visualize the system design and analysis in the form of Unified Modeling Language (UML). Microsoft Office-Visio and Project helps to demonstrates system design from Enhance Entity Relationship (EERD) site and cover the project milestones as well. Macromedia Dreamweaver MX 2004 and Microsoft Office Front Page are used to design the interfaces and the portion to join with multimedia element is smooth using these two types of software. The platform for this system will be Microsoft XP Professional.
4. Project Methodology

The methodology chosen to develop this database system is Object Oriented Analysis and Design (OOAD) methodology. For system database development, the methodology will follow the steps in Database Life Cycle (DBLC)

5. System Deployment

Basically, since the system been request by the Intel Technology Corporation, the deployment process will take place in Component Platform Validation (CPV) Area under Engineering Department in Intel Penang (M) Sdn. Bhd itself. Fully implementation for the system will be done once the system completes the testing process such as Alpha Testing and Beta Testing.

1.5 Project Significance

Project Significance shows the benefits and the system’s contribution towards the user and corporation in terms of time, effort, risks and cost reduction.

Besides tying in the system’s users during the initial stage, a lots of resources, time and efforts from the system developer have been put in to make sure the best system been developed. The main intention is for this Equipment Performance Online Tracking System will give a long term impacts to the CPV process capability.

However, the main benefits will goes to the end user as well as Intel Corporation. By implementing this EPTS, regular maintenance from the PM CREW can prevent, hence will reduce the CPV equipment downtime itself. Besides, higher equipment stability will lead to a higher run rate of CPV modules and the process capability. Other while, less downtime and higher run rate is the improvement to resolve equipment shortage which will eventually lead to lower production cost.
1.6 Expected Output

The expected output for this project is not only to develop one Online Tracking System that can manage daily Production Floor process but to work as an Online Inventory System whereby Product Engineer do not have to be present physically at Production Floor whenever they need to have the total number of each Equipment or product.

This system can also reduce the time taken for the user to find the location of the Equipment due to the bureaucracy or layout of the Equipment in Production Floor. It also can cater for the basic process such as Ship-In, Ship-Out and at the same time capture the users’ Identification (ID) and ensure better data management.

Few features has been design into this system to ease user’s role such as triggering user using the auto mail, highlight different kind of status using different type of color, security characteristic, tracking all action done by user, maintaining equipment history and lifespan, and generating report and query.

1.7 Conclusion

In conclusion, indirectly low effective equipment parts (motherboards and contactor) can cause several CPV modules problems. Equipment Performance Online Tracking System is a very useful system to fix these problems. It can help to lead to higher equipment stability as well as better equipment performances. Low modules downtime and stable equipment can ensure higher process capability. Even though it does not affect the output of the process directly, the health of the motherboard and contactor is important to the production just like any other key spare part.

The next chapter will be focusing on the System Methodology that has been chosen to develop and improve this system and Literature Review from the proven sources to support system’s documentation as well.