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Abstract. At present, positioning plants in machine tools are looking for high degree of
accuracy and robustness attributes for the purpose of compensating various disturbance forces.
The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear
PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance
forces in the form of cutting forces. Cutting force characteristics at different cutting
parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The
tracking performance of a Nonlinear cascade controller in presence of these cutting forces is
compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in
compensating different cutting characteristics is compared based on reduction in the
amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-
cascade controller performs better than both NPID controller and Cascade P/PI controller. The
average percentage error reduction between N-cascade controller and Cascade P/PI controller
is about 65 % whereas the average percentage error reduction between cascade controller and
NPID controller is about 82 % at spindle speed of 3000 rpm spindle speed rotation. The
finalized design of N-cascade controller could be utilized further for machining application
such as milling process. The implementation of N-cascade in machine tools applications will
increase the quality of the end product and the productivity in industry by saving the machining
time. It is suggested that the range of the spindle speed could be made wider to accommodate
the needs for high speed machining. .

1. Introduction
High tracking accuracy and precision are two vital components required in the manufacturing process.
A good example of machining application is milling operation where a work piece is fed past a
rotating cylindrical tool with multiple cutting edges. Both of these components are paramount
important because it will lead to high-quality end product that will be delivered to customer. In an
interrupted cutting operation, the teeth of a milling cutter enter and exit the work piece at each
revolution. Therefore, it is highly critical that the tool material and the cutter geometry are chosen
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carefully to withstand the cycles of impact cutting forces and thermal shock that might result from
these physical interactions [1]. These forces are natural consequences of the cutting process and could
not be avoided. For performance purposes, the ability of the system to withstand these forces and its
impact will determine the standard and quality of the end product to be manufactured.

Knowledge on characteristics of these cutting forces is essential in designing the appropriate
technique for its compensation [2-5]. The cutting force characteristics are influenced by the cutting
parameters such as feed rate, depth of cut, and spindle speed. Variations in these cutting conditions
will affect behaviour of the cutting forces in terms of its magnitudes and its harmonics content. Failure
to realise this phenomenon could reduce the quality of the finished product as the cutting forces may
cause vibration of the structure thus leading to a poor surface roughness measurement. Hence, an
efficient and reliable compensation technique is desired in order to improve the tracking performance
in machine tools applications. Previous researches on several compensation methods and approaches
are discovered and have shown promising results; for example, Inverse Model Based Disturbance
Observer [6], classical cascade controller [7] and Repetitive Controller [8,9], and based on the familiar
PID control. Result based on PID controller [5] shows that the tracking error can be trim down until
millimeter point only whereas results based on [8,9] show that the tracking error is reduced up to
micron meter level via direct drive xy table. Furthermore, it is found that most of the research work
were based on dedicated cutting forces and did not consider changing of the spindle speed. As a result,
there is a need to conduct a research based on various spindle speed. In this research work, the
controller designed is based on this needs in which the spindle speed is varied.

2. Methods
Figure 1 shows the ball-screw driven XY milling table of an XYZ-Stage produced by Googol Tech.
The XY milling table consists of two axes namely; x and y axes, driven by two Panasonic MSMD
022G1U A.C. servo motors respectively. Both axes are equipped with an incremental encoder for
positioning measurement. The resolution of the encoder is 2500 pulse/rev with screw pitch of 5 mm
and multiple frequencies of 4. In other words, the resolution of the encoder is 0.0005 mm/pulse. Two
limit switches are located in the near end of both axes. The total mass of x-axis is 36.8 kg while the
total mass of the y-axis is 23.4 kg. The XY milling table consists of two axes namely; x and y axes,
driven by two Panasonic MSMD 022G1U A.C. servo motors respectively. Both axes are equipped
with an incremental encoder for positioning measurement. The resolution of the encoder is 2500 pulse/
rev with screw pitch of 5 mm and multiple frequencies of 4. In other words, the resolution of the
encoder is 0.0005 mm/pulse. Two limit switches are located in the near end of both axes. The total
mass of x-axis is 36.8 kg while the total mass of the y-axis is 23.4 kg.

Figure 1. Googoltech xy milling table ballscrew drive system
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Figure 2 shows the milling process during the collection of disturbance cutting force data. The
aluminium block is placed on top of the Kistler Dynamometer. The diameter of the milling cutter is
10mm. The depth of cut is 0.5mm with the feed rate of 502 mm/min.

Figure 2. Milling operation performed for the purpose of collection of cutting force data

Figure 3 shows a schematic diagram of the overall system. The XY milling table is linked to a servo
amplifier which is then connected to a DS1104 DSP board. A personal computer, equipped with
ControlDesk and MATLAB software is linked to the DSP board to apply control design and data
collection.

Figure 3. Schematic diagram of the overall system

3. Controller design
Three types of controller namely; Cascade Proportional/Proportional Integral (P/PI) controller,
Nonlinear PID (NPID) controller and Nonlinear Cascade (N-cascade) controller is chosen to control
the position of the system. The system identification process has been carried out  in [10-12]. In
general, the plant is an XY table system driven by ballscrew drive. The transfer function of the plant is
as follows:

3.1668.144

69380
2 


SSU

Y
(1)

where Y is the position of the table in millimeter and U is the input voltage signal in volt.
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3.1. Design of controller 1(Cascade P/PI)
Cascade P/PI controller belongs to the conventional group of controller and this control structure is
widely applied in most machine control algorithm. The cascade P/PI control consists of a PI controlled
inner velocity loop with a P controller in the outer position loop. Figure 4 shows the basic structure of
a cascade P/PI controller [13].

Figure 4. Basic structure of a cascade P/PI controller

The velocity PI controller is first designed before the P (position) controller. Figure 9 and 10 show the
Bode open loop transfer function of the speed loop and the Nyquist plot of the position open loop
respectively. Figure 11 shows the Bode diagram of the position loop sensitivity transfer function that
indicates a system bandwidth of about 41.2 Hz. To conclude, Table 2 illustrates the finalized values of
Kp, Ki and Kv for the controlled system.
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Figure 7. Bode plot of position sensitivity transfer function via cascade P/PI

Table 2: List of the control parameters of the cascade P/PI controller

Parameters Values
Kp (velocity loop) 0.0326 [volts.s]
Ki (velocity loop) 0.0015 [volts. 2]
Kv (position loop) 282s-1

Force - voltage converter 1/1623.49  N/V
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3.2. Design of controller 2[Nonlinear PID(NPID) controller]
In general the suggested nonlinear PID (NPID) controller is developed by a sector bounded nonlinear
gain, K(e) that is integrated in series (cascade) with PID controller. Figure 8 illustrates the block
diagram of the NPID control system. The parameters of the traditional  PID controller are acquired
based on previous work [14] which is based on the desired gain and phase margin. The self tuned gain
adjustment, K(e) behave as a nonlinear function of error, e(t) which is bounded in the sector
0 ≤ K(e) ≤ K(emax) as pointed out in equation 2 and equation 3. These can be classified as the range of
available choice for the nonlinear gain, K(e). The output formed from this nonlinear function is
acknowledged as scaled error, fe and the equation of fe is presented in equation 4. Alternatively, the
overall equation of NPID controller can be viewed as in equation 5.

Figure 8. Block diagram of the NPID control system [15]

Nonlinear Gain , (2)

e           ;     if             |e| ≤  emax

Error, e    =               emax*sign(e);    else |e| >  emax (3)

Scaled Error, fe = K(e)*e(t) (4)

General transfer function of NPID, GNPID(s) = [Kp*fe]+[Ki/S*fe]+[KdS*fe] (5)

Table 3. List of the control parameters of NPID controller

Parameters Values
Range of error, Emax 3.0 [mm]
Range of variation of Nonlinear Gain,  0.5
Proportional Gain, Kp 1.32          [volts/mm]
Integral Gain, Ki 0.000825 [volts/mm.s]
Derivative Gain, Kd 0.006805 [volts. s/mm]
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3.3. Design of controller 3[Nonlinear cascade (N-Cascade) controller]
Basically, the proposed nonlinear cascade controller is constructed by a combination of two basic
function block; namely nonlinear function and  cascade P/PI function block. By combining those two
function blocks, it is expected that this controller could inherit the plus point of Nonlinear function in
NPID controller and the robustness characteristic from cascade P/PI controller. In other words, by
having the characteristics of nonlinear function and robustness properties, the controller could have the
ability not only to compensate cutting force disturbance at fix value but also at multiple value. It is
because the nonlinear algorithm has automatic self-adjusting mechanism in which it will inject higher
gain when the system detect higher value of error and in contrast, it will inject lower gain when the
system detect lower value of error. Figure 9 portrays the block diagram of nonlinear cascade control
structure.

Figure 9. Block diagram of the nonlinear cascade control system

Table 4. List of the control parameters of Nonlinear Cascade controller

Parameters Values
Range of error, Emax 0.1465 [mm]
Range of variation of Nonlinear Gain,  2.0
Proportional Gain, Kv (Position Loop) 450           [s-1]
Proportional Gain, Kp (Velocity Loop) 0.007594 [volts.s]
Integral Gain, Ki (Velocity Loop) 1.0 [volts. 2]
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4. Result and discussion
The measured cutting forces are injected to the system (as illustrated in figure 4) as disturbances. The
tracking performance cascade P/PI, Nonlinear PID (NPID) and Nonlinear Cascade (N-cascade)
controller are analysed and compared based on their robustness against variable cutting force
disturbance. Analyses on magnitudes of the harmonic components of the error signal is conducted in
order to quantify the compensation performance of these controllers against external cutting forces.
Table 5 compares the harmonic amplitudes of the position error signal recorded between cascade P/PI,
Nonlinear PID (NPID) and Nonlinear Cascade (N-cascade) at varying spindle speed rotations. As
expected, the N-cascade controller produces improved performance compared to the other two
controllers. The results appeared to concur as N-cascade controller successfully inherit the attributes of
NPID controller and cascade P/PI controller.

Table 5. FFT Analyses on harmonic components of the position errors

Spindle
speed
[rpm]

Harmonic
Frequencies

[Hz]

Amplitude of Tracking Error [µm] Error Reduction [%]

Cascade
P/PI NPID N-Cascade

Cascade
P/PI with

NPID

N-
Cascade

with
NPID

N-
Cascade

with
Cascade

P/PI

1000

2.0 0.03495 0.4264 0.04247 91.80 90.03 -21.51
3.5 0.13260 0.7743 0.04212 82.87 94.56 68.23
5.0 0.08883 0.5321 0.04697 83.31 91.17 47.12
6.3 0.09024 0.5446 0.05025 83.43 90.77 44.32
7.7 0.10050 0.6331 0.06248 84.13 99.01 37.83

2000

2.0 0.04617 0.3975 0.03692 88.38 90.71 20.03
3.5 0.05869 0.6987 0.03747 91.60 94.64 36.16
5.0 0.07327 0.5718 0.03528 87.19 93.83 51.84
6.3 0.05534 0.6676 0.03773 91.71 94.35 31.82
7.7 0.05068 0.5319 0.05635 90.47 89.40 -11.18

3000

2.0 0.07913 0.2349 0.02098 66.31 91.07 73.49
3.5 0.07545 0.7151 0.03752 89.45 94.75 50.27
5.0 0.16180 0.4540 0.05117 64.36 88.73 68.37
6.3 0.19010 0.2831 0.07471 32.85 73.61 60.69
7.7 0.28960 0.2048 0.07318 -41.40 64.27 74.73

Referring to table 5, it is observed that nonlinear cascade controller demonstrates better performance
compared to the other two controllers. Figure 10 ,11 and 12 show the spectrum analysis (Fast Fourier
Transform, FFT of the position errors using Cascade P/PI, NPID and N-cascade at 1000rpm spindle
speed rotations. Results show an improved performance using Nonlinear cascade compared to both
NPID and cascade P/PI controllers for all three cases which are 1000 rpm, 2000rpm and 3000 rpm
spindle speed rotations. For instance, for the case of 3000 rpm, the amplitude tracking error drops
from 0.2349 µm at 2.0 Hz of NPID controller to 0.07913 µm of cascade P/PI controller. This result
demonstrates an improvement of about 66.31 percent. The amplitude tracking error reduced further to
0.02098 µm when nonlinear cascade controller is applied. As a whole, the average percentage error
reduction between N-cascade controller and Cascade P/PI controller is about 65 % whereas the
average percentage error reduction between N-cascade controller and NPID controller is about 82 % at
spindle speed of 3000 rpm. In addition, it is detected that there are cases in which the percentage of
error reduction for N-cascade showing negative percentage. It simply means that at that particular
frequency, the error is increasing instead of decreasing. In control system theory, this phenomenon is
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called water bed effect. It means when at certain point the error is being push to reduce, the other point
will be likely to increase. Results also show that nonlinear cascade controller is able to compensate
and reduce tracking error components generated from various different cutting force disturbances.

Figure. 10. FFT Error via NPID Figure 11. FFT Error via Cascade P/PI
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Figure 12. FFT Error via Nonlinear cascade

5. Conclusion
It can be concluded that the performance of Nonlinear Cascade controller outweigh both NPID and
cascade P/PI controller. The maximum FFT tracking errors of Nonlinear Cascade is approximately
about 0.07471 micrometer, while for the case of NPID and cascade P/PI controllers, the maximum
FFT tracking errors are 0.7743 and 0.28960 micrometer respectively. Analyses on the harmonics
content of the position tracking errors have shown the supremacy of Nonlinear cascade (N-cascade)
controller. The advantages of the implementation of N-cascade in machine tools applications are
obvious in which it will increase the quality of the end product and the productivity in industry by
saving the machining time.
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