UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN STATUS TESIS

JUDUL: CONTROL OF A CART-BALL SYSTEM: COMPARISON BETWEEN MODEL BASED AND FUZZY LOGIC CONTROLLER

SESUATU PENGAJIAN: 2005/2006

Saya MOHD SHAKIR BIN MD SAAT

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor-Falsafah)* ini disimpan di Perpustakaan Universiti Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Teknologi Malaysia.
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sabagai pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)
 - SULIT (Mengandungi maklumat yang berdarma keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam (AKTA RAHSIA RASMI 1972)
 - TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - TIDAK TERHAD

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat tetap: Nama Penyelia:

DT 2954 JALAN KENARI JAYA UTAMA P.M. DR. MOHAMAD NOH
Taman Kenari Jaya, AHMAD
76100 Durian Tunggal, Melaka.

TARIKH: 1 DESEMBER 2006 TARIKH: 1 DESEMBER 2006

CATATAN:
* Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
"I hereby, declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of degree of Master of Engineering (Electrical-Mechatronics and Automatic Control)

Signature

Name of Supervisor : ASSOC PROF DR. MOHAMAD NOH AHMAD

Date : 1 DECEMBER 2006
CONTROL OF A CART-BALL SYSTEM: COMPARISON BETWEEN MODEL BASED AND FUZZY LOGIC CONTROLLERS

MOHD SHAKIR BIN MD SAAT

A project report submitted in partial fulfilment of the requirements for an award of the degree of Master of Engineering (Electrical-Mechatronics and Automatic Control)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

DECEMBER 2006
CONTROL OF A CART-BALL SYSTEM: COMPARISON BETWEEN MODEL BASED AND FUZZY LOGIC CONTROLLERS

MOHD SHAKIR BIN MD SAAT

A project report submitted in partial fulfilment of the requirements for a award of the degree of Master of Engineering (Electrical-Mechatronics and Automatic Control)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

DECEMBER 2006
I declare that this thesis "Control of A Cart-Ball System: Comparison Between Model Based And Fuzzy Logic Controllers" is the result of my own research except for works that have been cited in the reference. The thesis has not been accepted any degree and not concurrently submitted in candidature of any other degree.

Signature: ____________________________

Name: MOHD SHAKIR BIN MD SAAT

Date: 1 DECEMBER 2006
To my dearest father, mother, family and Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) for their encouragement and blessing
To my lovely wife and son for their support and caring
ACKNOWLEDGEMENT

First of all, I am greatly indebted to Allah SWT on His blessing to make this project successful.

I would like to express my gratitude to honorable Associate Professor Dr Mohamad Noh Bin Ahmad, my supervisor of Master’s project. During the research, he helped me a lot especially in guiding me to understand the State-Feedback Controller theory. Then during the discussion session, he tried to give me encouragement and assistance which finally leads me to the completion of this project.

Finally, I like to dedicate my gratitude to my parents, my family, my lovely wife, my son and my best friends who helped me directly or indirectly in the completion of this project. Their encouragement and guidance mean a lot to me. Their sharing and experience foster my belief in overcoming every obstacle encountered in this project.

Guidance and co-operation and encouragement from all people above are appreciated by me in sincere. Although I cannot repay the kindness from them, I would like to wish them to be well and happy always.

I am grateful to Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM), my employer for supporting me in term of a salary and study leave an also to the Higher Education Ministry for giving me a scholaraship.
A cart-ball system is a challenging system from the control engineering point of view. This is due to the nonlinearities, multivariable and non-minimum phase behavior presented in the system. This thesis is concerned with the problem of modeling and control of a cart-ball system such that to balance the ball on the top of the arc and at the same time to place the cart at a desired position. Two types of the controllers will be synthesized in order to control the system. One is the model based controller i.e. State-Feedback Controller and second is a Fuzzy Logic Controller. The first stage is to develop the mathematical model of a cart-ball system based on the state-space theory. Then, the linearization technique will be applied to the nonlinear model so that the design of the State-Feedback Controller can be accomplished. The second stage is to design the Fuzzy Logic Controller to be applied to the system. The final stage is to carry out the simulation work of both controllers for comparison purpose. The simulation work is done using a MATLAB/SIMULINK platform.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xiv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope of Works</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Methodology</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis Layout</td>
<td>8</td>
</tr>
</tbody>
</table>
2 MATHEMATICAL MODELING AND STATE-FEEDBACK CONTROLLER

2.1 Introduction 10
2.2 Mathematical Modeling 11
2.2.1 Mathematical Modeling Without Disturbance 12
2.2.2 Mathematical Modeling With Disturbance 14
2.2.3 Linearization of The Nonlinear Model 17
2.3 State-Feedback Controller 18
2.3.1 Topology of Pole Placement 19
2.3.2 Controller Design 20
2.3.2.1 Without Integral Control 21
2.3.2.2 With Integral Control 26

3 FUZZY LOGIC CONTROLLER

3.1 Introduction 30
3.2 Theory of Fuzzy Sets 30
3.3 Definition of Fuzzy Set 31
3.4 Operation of Fuzzy Set 31
3.5 Fuzzy Logic 35
3.6 Fuzzy Controller 36
3.6.1 The Forms of Fuzzy Control Rules 37
3.6.2 Inference Method 40
3.7 Planning of The Fuzzy Controller 43
3.8 Stabilization of A Cart-Ball System 43
3.8.1 Rule Derivation 44
3.8.2 Working Phases of Control Action 46
3.8.3 Membership Function 49
4 SIMULATION RESULTS
4.1 Results for The Unstable System 52
4.2 Controllability 53
4.3 SFC Without Integral Control 54
4.4 Comparison of The SFC And FLC Without Disturbance 56
4.5 Difference Input Amplitude 64
4.6 Disturbance Rejection Analysis 65

5 CONCLUSION AND FUTURE WORKS 75
5.1 Conclusion 75
5.2 Future Works 76

REFERENCES 78
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical Data Of The Cart-Ball System</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Discrete Type Of Fuzzy Variables</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Control Rule Map</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Possible Rules Which Make System Stabile</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>SFC Without Integral Control</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison Between SFC And FLC</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison Between SFC And FLC For Disturbance Rejection Analysis</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of A Laboratory Cart-Ball System</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Chart of The Methodology of A Research</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Free Body Diagram of A Cart-Ball System</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Block Diagram of Equation [2.23]</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Block Diagram of A Plant With A State-Feedback</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Simulink Block of A system With SFC</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Subsystem of A Plant</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Subsystem of A Plant</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Subsystem Block of The SFC</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Block Diagram of A System With Integral Control</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Intersection And Union Fuzzy Sets</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Example of A Membership Function</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic Representation of A Linguistic Modifiers</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>A Triangular Membership Function</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>A Combination of Triangular And Trapezoid MF</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Block Diagram of FLC</td>
<td>40</td>
</tr>
</tbody>
</table>
3.7 Schematic Representation of Inference Method
3.8 Membership Function of Theta
3.9 Membership Function of Theta-dot
3.10 Membership Function of Distance (x)
3.11 Membership Function of x-dot
3.12 Membership Function of Output
4.1 Unstable System
4.2(a) Ball angle output with no Integral Action and initial value of theta is 0.1rad
4.2(b) Cart Position (m) output with no integral action (ref=step(1m))
4.3(a) Ball angle output with initial value theta=0.1rad; step=1m,d=0
4.3(b) Cart Position output with initial value theta=0.1rad; step=1m,d=0
4.4(a) Ball angle and cart position output with initial value theta=0.1rad; step=1m,d=0
4.4(b) Output of states with initial value theta=0.1rad; step=1m,d=0
4.5(a) Ball angle output with initial value theta=-0.1rad; step=1m,d=0
4.5(b) Cart position output with initial value theta=-0.1rad; step=1m,d=0
4.6(a) Ball angle output with initial value theta=0.5rad; step=1m,d=0
4.6(b) Cart position output with initial value theta=0.5rad; step=1m,d=0
4.7 Ball angle output with initial value theta=0.6rad; step=1m,d=0
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SISO</td>
<td>Single Input Single Output</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input Multiple Output</td>
</tr>
<tr>
<td>SFC</td>
<td>State Feedback Controller</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy Logic Controller</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

.1 Overview

A cart-ball system is basically an inverted pendulum problem, which is a much
sed as a benchmark problem. The control objectives are to balance the ball on the top
f the arc and at the same time place the cart at the desired position. So, an extremely
ood control strategy is needed in order to achieve the objective target. Example of a
boratory cart-ball system is as shown in Figure 1.1 below.

Figure 1.1 Example of a laboratory cart-ball system [Jantzen, 1999]
By pushing the cart left and right manually, it is possible to get the ball on the top of the arc, but it is impossible to position the cart at the particular position at the same time. An automatic control system can do that with a good control strategy. In order to control the cart-ball system the cart position and the ball angle from vertical are measured variables, and manipulated variable is the horizontal force acting on the cart.

A cart-ball system can demonstrates some basic concepts in control being nonlinear, non-minimum phase and multivariable. So it can teach electrical engineers about automatic control. The laboratory equipment of a cart-ball system already built by he Janzen (1999) and the mathematical modeling is published by Jorgensen (1974). However, both of the papers does not consider any disturbances in their modeling..

This project will study the cart-ball system with the disturbance (horizontal force applied to the ball). The effect of the disturbance to the system will be studied in order to design a good controller. A good controller must be designed such that it can compensate the existence of the disturbance to the system and can control the system well. Thus, with the existence of the disturbance will make the controller design is tougher.
1.2 Objectives

The objectives of this research are as follows:

a. To determine the state-space representation of a cart-ball system with the disturbance.

b. To synthesis the model based controller i.e state feedback controller to control the system.

c. To synthesis the fuzzy logic controller to control the system.

d. To carry out the simulation works of both controllers when applied to the system for comparison purpose.

3 Scope of Works

The scopes of work for this project are

a. A cart-ball system as described in Jantzen (1999).

b. Application of the model based controllers (state feedback controller) and fuzzy logic controller in order to balance the ball on the top of the arc and at the same time place the cart at a desired position.

c. The comparison between all of these controllers when applied to a cart-ball system will be studied i.e transient response and steady-state error.

d. Simulation work will be performed under the MATLAB/SIMULINK platform.
1.4 Research Methodology

Figure 1.2 shows the block diagram of the methodology taken in order to accomplish the task. It can be seen that firstly the mathematical model of a cart ball system must be derived. The mathematical model is based on the state space theory. Mathematical modeling is needed in order to design the controller and to get the equation for the plant (cart-ball). The plant equation must be as close as the actual plant (nonlinear).

After mathematical model of the system is established then the equations must be linearised around the origin as to design the controller because the State-Feedback Controller only deals with the linear equations.

The performance of the model based controller and fuzzy logic controller will be studied and comparison between these controllers will be performed.
Figure 1.2 Chart shows the methodology of the research.
Establish a mathematical model for a cart ball system with disturbance

Linearise the model in order to design the controller

Design the controllers

- State feedback
- Fuzzy logic

Perform the comparisons of these controllers when applied to a cart-ball system under the matlab-simulink platform

Figure 1.2 Chart shows the methodology of the research
Establish a mathematical model for a cart ball system with disturbance

Linearise the model in order to design the controller

Design the controllers

State feedback

Fuzzy logic

Perform the comparisons of these controllers when applied to a cart-ball system under the matlab-simulink platform

Figure 1.2 Chart shows the methodology of the research
1.5 Literature Review

The cart-ball system is a challenging problem in term of controlling a system. This is due to the nonlinearities, multivariable and non-minimum phase characteristic presented by a cart-ball system. The control objectives of a cart-ball system are to balance the ball on the top of the arc and at the same time place the cart at a desired position. The cart ball system was built for teaching electrical engineers about automatic control, originally with a focus on state-space control theory.

The laboratory rig for a cart-ball system is done for the educational purpose because the laboratory rig is sufficiently slow for visual inspection of different control strategies and mathematical model is sufficiently complex to be challenging. The approach is to develop the mathematical model from first principles, i.e., the basic laws of physics. After that the linearization was applied to the model in order to make it easier to discuss possible controller configurations [Jantzen, 1999].

Many researches were carried out to control an inverted pendulum system. Various control strategies have been proposed by numerous researchers for controlling the inverted pendulum such that the system is stable as well as the cart is move to the desired position. The approaches varied from the classical control to the advanced control. PID controller was design to control the inverted pendulum problem [Jantzen, 1999]. The drawback of the PID controller is it only can control for a Single-Input-Single-Output (SISO) system. It means that the PID controller only can control either for the position of the cart or angle of the ball at a one time [Jantzen, 1999].