

Faculty of Mechanical Engineering

THE EFFECTIVENESS OF ACTIVE FRONT BUMPER SYSTEM FOR FRONTAL IMPACT PROTECTION USING MAGNETORHEOLOGICAL DAMPER

Alif Zulfakar bin Pokaad

MSc

2010

THE EFFECTIVENESS OF ACTIVE FRONT BUMPER SYSTEM FOR FRONTAL IMPACT PROTECTION USING MAGNETORHEOLOGICAL DAMPER

ALIF ZULFAKAR BIN POKAAD

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2010

ABSTRACT

This research introduces a non-parametric modeling of a magnetorheological (MR) damper under impact its uses as a frontal impact protection device in active front bumper system. The research is started with the development of vehicle crash model for the impact testing. The concept of vehicle crash model including with the equation of motion such as impulse and momentum equation is derived. This study is aimed to model the behavior of a magnetorheological (MR) damper under impact loading through polynomial approach. The polynomial model is developed based on curve fitting from experimental results which consists of three regions namely fluid locking, positive and negative acceleration regions. The experimental results obtained from the impact test apparatus are evaluated in the form of transmitted force in time, velocity and displacement domains. The simulation results of the proposed polynomial model are then validated with the experimental results. The validated model is used to develop an inner loop controller by implementing a close-loop PI control to track the desired damping force through simulation. The governing equations of motions of vehicle collision and MR damper model are then integrated with the well known control strategy namely skyhook control. The performance of skyhook control is then compared with the vehicle with passive damper and common vehicle by using computer simulation in order to reduce the acceleration and the jerk of the vehicle during collision. As the result the skyhook control is significant to reduce the vehicle acceleration more than 20% and the jerking up to 40% compared with common vehicle.

ABSTRAK

Kajian ini adalah mengenai permodelan peredam magnetorheological (MR) dan kegunaannya sebagai peranti pelindung impak hadapan di dalam sistem bamper aktif hadapan. Kajian dimulakan dengan permodelan kenderaan bagi ujian pelanggaran. Penerangan mengenai permodelan tersebut berlandaskan konsep pergerakan kenderaan tersebut dengan menggunakan persamaan impulse dan momentum yang berlaku pada pelanggaran tersebut. Kajian ini mensasarkan pada permodelan karakteristik peredam magnetorheological (MR) terhadap impak yang diberi dengan menggunakan kaedah polinomial. Permodelan polinomial dihasilkan melalui lengkung keputusan eksperimen vang mengandungi tiga kawasan iaitu bendalir terkunci, positif dan negatif pecutan bendalir. Keputusan eksperimen vang diperoleh adalah dava sebaran oleh peredam MR dalam masa domain, daya sebaran dalam halaju domain dan daya sebaran dalam sasaran domain. Prestasi permodelan polinomial akan dibandingkan dengan keputusan eksperimen berkenaan. Kawalan daya sejajar bagi simulasi dilakukan dengan menggunakan kawalan PI dan ianya menunjukkan peredam MR dapat menghasilkan daya yang sejajar dengan daya yang dimahukan. Persamaan pergerakkan dihasilkan melalui kawalan skyhook. Prestasi kawalan skyhook akan dibandingkan dengan peredam pasif dan sistem biasa bamper kenderaan dalam mengurangi pecutan dan kejutan kenderaan semasa pelanggaran melalui simulasi berkomputer. Keputusannya kawalan skyhook berupaya mengurangkan pecutan kenderaan selepas kemalangan lebih 20% dan kejutan kenderaan lebih dari 44% berbanding dengan sistem biasa bamper kenderaan.

APPROVAL

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "the Effectiveness of Active Front Bumper System as Frontal Impact Protection Using Magnetorheological Damper" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	······································
Name	: Alif Zulfakar bin Pokaad
Date	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved father, mother, sister and brother

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGMENTS

In the name of Allah the Most Gracious.

Alhamdulillah, I thank to Allah the Almighty for his blessings. My sincere thanks and gratitude to my supervisor, Dr. Khisbullah Hudha for his guidance, words of encouragement, suggestions and expertise during my research periods.

My sincere thanks also to my second supervisor, Mr. Zakaria bin Mohammad Nasir for his support and opinions. I am grateful to Mr. Nur Rashid bin Mat Nuri for his opinions, support and provided me with the facilities during my research.

1 express my appreciation to Ubaidillah, Fitrian Imaduddin, Firdaus Zakaria, Kamal Ruzuan and all of junior members of Smart Material and Automotive Control (SMAC) research group for their invaluable help and comradeship during graduate school. In addition, I thank Nasir and Habib and all Autotronics Lab for their helps in providing laboratory equipments and several technical advices.

My sincere gratitude to the Ministry of Higher Education which provided me with the grant to pursue this research. Last but not least, my deepest appreciation and love to my parents and sister and brother for their love and support.

TABLE OF CONTENTS

		PAGE
ABSTI	RACT	-ii
ABSTI	RAK	ш
APPR	OVAL	iv
DECL	ARATION	v
DEDIC	CATION	vi
ACKN	OWLEDGEMENTS	vii
TABL	E OF CONTENTS	viii
LIST (OF FIGURES	xii
LIST (OF TABLES	xvii
LIST (OF SYMBOLS	xx
СНАР	TER	
1. INT	RODUCTION	
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective	4
1.4	Scopes of the Study	4
1.5	Methodology	5
1.6	Research Contributions	6
1.7	Thesis Outlines	6

2. LITERATURE REVIEW

2.1 Introduction	9
2.2 Crash Test Method	9
2.2.1 Euro NCAP	10
2.2.2 Federal Motor Vehicle Safety Standard (FMVSS	5) - 12
2.3 Intelligent Vehicle Systems (IVS)	13
2.4 Active Bumper System	14
2.5 MR Fluid and MR Damper	17
2.5.1 MR Fluid	18
2.5.2 MR Damper	19
2.6 MR Damper Modeling Approaches	23
2.6.1 Parametric Approach	23
2.6.2 Non-Parametric Approach	25
2.7 Control Schemes for Semi-Active Damping	26
2.7.1 Skyhook Control Algorithm	26
2.7.2 Skyhook Based Control Literature	28
2.8 Conclusion	30

3. MODELING OF VEHICLE CRASH TEST AND DEVELOPMENT OF AN IMPACT LOADING TEST RIG

Vehicle Collision Model	31
Structural Design of Impact Loading Test Rig Apparatus	38
.1 Sensory Information Needed for MR Damper Characterization	
under Impact Loading	40
.2 Sensory Information Needed for the Common Vehicle System	44
	Structural Design of Impact Loading Test Rig Apparatus .1 Sensory Information Needed for MR Damper Characterization under Impact Loading

3.2.3 Data Acquisition System		46
3.3	Simulation of Common Vehicle System Using Impact Load	47
3.4	Result and Analysis	50
3,5	Conclusion	53

4. SIMULATION AND EXPERIMENTAL STUDIES ON THE BEHAVIOUR OF A MAGNETORHOLOGICAL DAMPER UNDER IMPACT LOADING

4.1	Introduction	54
4.2	Overview	54
4.3	MR Damper Force Behaviors	56
4.4	MR Damper Modeling	57
4.5	Experimental Result and Model Validation	75
4.6	Conclusion	84

5. CONTROLLER DESIGN AND PERFORMANCE EVALUATION FOR ACTIVE

FRONT BUMPER

5.1	Introduction	86
5.2	Inner Loop (Force Tracking) Control	88
5.2	2.1 Simulation Studies	89
5.3	Outer loop controller	94
5.3	3.1 Skyhook Control	95
5.4	Sensitivity Study	97
5.5	Simulation Results and Analysis	99
5.6	Conclusion	106

6. CONCLUSION AND RECOMMENDATION

6.1	Conclusion	107
6.2	Recommendation	110
REFE	RENCES	111
APPEN	NDIX A	117
APPEN	NDIX B	119
APPEN	NDIX C	124

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIG	URE TITLE	PAGE
2.1	Frontal test crash (Adopted from Euro NCAP website)	10
2.2	Side impact test crash (Euro NCAP website)	11
2.3	Side impact pole test crash (Adopted from Euro NCAP website)	11
2.4	Different types of actions performed by IVS (Adopted from (Rekveldt, 200	3)) 13
2.5	Exemplary embodiment of a system for active control of a vehicle bun	nper
	damper regarding to the present invention. (Adopted from (Buechele	and
	Cazzel, 2004))	15
2.6	Second exemplary embodiment of a system for active control of a veh	iicle
	bumper damper regarding to the present invention. (Adopted from (Buec	hele
	and Cazzel, 2004))	16
2.7	Third exemplary embodiment of a system for active control of a veh	nicle
	bumper damper regarding to the present invention. (Adopted from (Buec	hele
	and Cazzel, 2004))	17
2.8	Fourth exemplary embodiment of a system for active control of a veh	nicle
	bumper damper regarding to the present invention. (Adopted from (Buec	hele
	and Cazzel, 2004))	17
2.9	Dipole Alignment of Ferrous Particle (Adopted from (Poynor, 2001))	18
2.10	Functional Representation of an MR Damper (Adopted from (Dominguez	z et
	al., 2004))	20
2,11	Mono Tube MR Damper Section View (Adopted from (Poynor,2001))	20

2.12	Twin Tube MR Damper (Adopted from (Poynor, 2001))	21
2.13	Double-ended MR Damper (Adopted from (Poynor, 2001))	22
2.14	RD-8040-1 Lord Corporation MR Damper	22
2.15	Modified Bouc-Wen Model (Adopted from (Spencer et al., 1997)	25
2.16	Ideal Skyhook Configuration (Adopted from (Goncalves (2001))	27
2.17	Semi-active Damping - On-off Control (Adopted from (Carter, 1998))	28
2.18	Semi-active Damping - Continuous Control (Adopted from (Carter, 1998))	28
2.19	Model Used in Karnopp, Crosby and Harwood Study (Adopted from (Karnopp	
	et al., 1974))	29
3.1	Model collision	32
3.2	The momentum force into vehicle model	34
3.3	Free body diagram of front bumper	35
3.4	Free body diagram of vehicle model	36
3.5	Arrangement apparatus for MR damper characterization	38
3.6	Configuration of the test rig for common vehicle system	38
3.7	Vehicle model structure for (a) side view and (b) upper view	39
3.8	Pendulum structure	40
3.9	Arrangement of MR damper and base plate in vehicle model	41
3.10	Celesco MT2A Wire Tranducer	42
3.11	FUTEK LCF 451 Load Sensor	43
3.12	2 Bridge Amplifier	43
3.13	Voltage Regulator	44
3.14	Model Series 3255A2 LIVM Accelerometer	45
3.15	The arrangement of force sensor in common vehicle system	45
3.16	5 IMC Devices	46

C Back-Pane	47
periment result for external force that generated during collision with the	
iation of pendulum mass	48
lidation model with experiment for: a) Acceleration of vehicle model	
Jerk of vehicle model at mass of pendulum 15 kg	50
lidation model with experiment for: a) Acceleration of vehicle model	
lerk of vehicle model at mass of pendulum 20 kg	50
lidation model with experiment for: a) Acceleration of vehicle model	
Jerk of vehicle model at mass of pendulum 25 kg	51
nematic of MR Damper Design	56
rd point damper velocity in time domain	58
rd point transmitted force versus in time domain	58
ting curve of the dimension less parameter	62
rve fitting of the dimension less parameter, β_m for velocity of the damper	63
tearization of the time contact, t_c depends on the mass of pendulum	64
earization curve that obtain the hard point in force versus time for	
id locking region	66
e linear regression of the coefficients a_i correspond to the input current	
fluid locking region	67
order polynomial curve that obtain the hard point in force versus time	
positive acceleration region.	68
order polynomial curve that obtain the hard point in damper velocity	
sus time for positive acceleration region	69
e linear regression of the coefficients d_i in force versus time polynomial	
ve correspond to the input current for positive acceleration region	70
	teriment result for external force that generated during collision with the ation of pendulum mass idation model with experiment for: a) Acceleration of vehicle model erk of vehicle model at mass of pendulum 15 kg idation model with experiment for: a) Acceleration of vehicle model erk of vehicle model at mass of pendulum 20 kg idation model with experiment for: a) Acceleration of vehicle model erk of vehicle model at mass of pendulum 25 kg ematic of MR Damper Design d point damper velocity in time domain ing curve of the dimension less parameter ve fitting of the dimension less parameter, f_m for velocity of the damper earization of the time contact, t_c depends on the mass of pendulum earization curve that obtain the hard point in force versus time for d locking region e linear regression of the coefficients a_i correspond to the input current fluid locking region order polynomial curve that obtain the hard point in force versus time positive acceleration region. order polynomial curve that obtain the hard point in damper velocity sus time for positive acceleration region e linear regression of the coefficients d_i in force versus time polynomial

4.12 The linear regression of the coefficients g_i in velocity versus time polynomial	
curve correspond to the input current for positive acceleration region	71
4.13 4 th order polynomial curve that obtain the hard point in force versus time for	
negative acceleration region.	73
4.14 3 rd order polynomial curve that obtain the hard point in force versus time for	
negative acceleration region	73
4.15 The linear regression of the coefficients j_i in force versus time polynomial	
curve correspond to the input current for negative acceleration region	74
4.16 The linear regression of the coefficients m_i in force versus time polynomial	
curve correspond to the input current for negative acceleration region	75
4.17 Measured forces for five constant current levels	76
4.18 Force versus displacement characteristic for five constant current levels	76
4.19 Force versus velocity characteristic for variable current levels	77
4.20 Comparison of the measured and predicted forces versus time for several	
applied currents: (a) 0.5Amp. (b) 1Amp. (c) 1.5Amp and (d) 2Amp.	78
4.21 Comparison of the measured and predicted forces versus displacement for	
several applied currents: (a) 0.5Amp. (b) 1Amp. (c) 1.5Amp and (d) 2Amp.	79
4.22 Comparison of the measured and predicted forces versus velocity for several	
applied currents: (a) 0.5Amp. (b) 1Amp. (c) 1.5Amp and (d) 2Amp.	80
4.23 Damping force characteristics under various input currents: (a) 0.25Amp.,	80
4.24 Experimental result for; (a) Force versus displacement and (b) force versus	
velocity at variations pendulum mass in constant current applied, 1 Ampere	81
4.25 Characteristics comparison for; (a) Force versus displacement and (b) Force	
versus velocity at pendulum mass, 15 kg	82

4.26	6 Characteristics comparison for: (a) Force versus displacement and (b) force	
	versus velocity at pendulum mass, 20 kg	82
4.27	Experimental result for maximum force transmitted of MR damper at	
	variations pendulum mass in maximum current applied, 2 Ampere	84
5.1	The controller structure of active bumper system	87
5.2	Inner-loop Control	88
5.3	Simulation results of force tracking control at the mass of pendulum 15 kg	90
5.4	Simulation results of force tracking control at the mass of pendulum 20 kg	91
5.5	Simulation results of force tracking control at the mass of pendulum 25 kg	92
5.6	The simulation results of force tracking control under several sinusoidal	
	amplitudes of the desired forces at the mass of pendulum 25 kg: (a) 500N,	
	(b) 1500N, (C) 3000N, and (d) 5000N	93
5.7	Passive and active bumper system	94
5.8	Passive damping representation of Skyhook Control	95
5.9	Graph (a) RMS vehicle acceleration and (b) RMS vehicle jerk with variations	
	of C_{sky} at each pendulum mass	99
5.10	Vehicle model responses with pendulum mass 15 kg (a) vehicle acceleration	
	and (b) vehicle jerk	101
5.11	Vehicle model response with pendulum mass 20 kg (a) vehicle acceleration	
	and (b) vehicle jerk	103
5.12	2 Vehicle model response with pendulum mass 25 kg (a) vehicle acceleration	
	and (b) vehicle jerk	105
1B	Graph RMS Force error versus Kp at each pendulum mass	123
2B	Graph RMS Force error versus K _i at each pendulum mass	123

LIST OF TABLES

TA	DI	F
1.8	DL	(L)

TITLE

PAGE

3.1	RMS values and deviation percentages of acceleration and jerk of the vehicle	
	model for modeling and experiment data	52
4.1	Impact loading region	59
4.2	Peak force each mass of pendulum at constant current 1 Ampere	62
4.3	Peak damper velocities in each mass of pendulum at constant current 1 Ampere	63
4.4	Time contact each mass of pendulum	64
4.5	Coefficients of polynomial model for transmitted force in fluid locking region	67
4.6	Coefficients of the polynomial model for transmitted force in positive	
	acceleration region	71
4.7	Coefficients of the polynomial model for velocity damper in positive	
	acceleration region	71
4.8	Coefficients of the polynomial model for transmitted force in negative	
	acceleration region	75
4.9	Coefficients of the polynomial model for velocity damper in negative	
	acceleration region	75
4.10	RMS values and deviation percentages of the transmitted force	
	by MR damper for modeling and experiment data	83
5.1	The maximum force transmitted of MR damper, $F_{maximum}$ in	
	each pendulum mass	97

5.2	Optimum value of C_{sky} at each pendulum mass	99
5.3	RMS value for vehicle model acceleration at pendulum mass 15 kg	101
5.4	RMS value for vehicle model jerk at pendulum mass 15 kg	101
5.5	RMS value for vehicle model acceleration at pendulum mass 20 kg	103
5.6	RMS value for vehicle model jerk at pendulum mass 20 kg	103
5.7	RMS value for vehicle model acceleration at pendulum mass 25 kg	105
5.8	RMS value for vehicle model jerk at pendulum mass 25 kg	105
1B	RMS values of force error for different K_p value and K_i is set to zero	
	at pendulum mass 15 kg 120	120
2B	RMS values of force error for different K_i value and K_p is set to	
	0.0515 at pendulum mass 15 kg	120
3B	RMS values of force error for different K_{p} value and K_{i} is set to zero	
	at pendulum mass 20 kg	121
4B	RMS values of force error for different K_i value and K_p is set to	
	0.0515 at pendulum mass 20 kg	121
5B	RMS values of force error for different K_p value and K_p is set to zero	
	at pendulum mass 25 kg	122
6B	RMS values of force error for different K _i value and K _p is set to	
	0.0515 at pendulum mass 25 kg	122
1C	RMS values of acceleration and jerk of the vehicle model for different	
	C_{sky} value with increment 500 Ns/m at pendulum mass 15 kg	125
2C	Table 2C RMS values of acceleration and jerk of the vehicle model for	
	different C_{sky} value with increment 50 Ns/m at pendulum mass 15 kg	125
3C	RMS values of acceleration and jerk of the vehicle model for different C_{sky}	
	value with increment 10 Ns/m at pendulum mass 15 kg	126

4C RMS values of acceleration and jerk of the vehicle model for different	
Csky value with increment 1 Ns/m at pendulum mass 15 kg	126
5C RMS values of acceleration and jerk of the vehicle model for different	
Csky value with increment 500 Ns/m at pendulum mass 20 kg	127
6C RMS values of acceleration and jerk of the vehicle model for different	
Csky value with increment 50 Ns/m at pendulum mass 20 kg	127
7C RMS values of acceleration and jerk of the vehicle model for different	
C_{sky} value with increment 10 Ns/m at pendulum mass 20 kg	128
8C RMS values of acceleration and jerk of the vehicle model for different	
Csky value with increment 1 Ns/m at pendulum mass 20 kg	128
9C RMS values of acceleration and jerk of the vehicle model for different	
C_{sky} value with increment 500 Ns/m at pendulum mass 25 kg	129
10C RMS values of acceleration and jerk of the vehicle model for different	
C_{sky} value with increment 50 Ns/m at pendulum mass 25 kg	129
11C RMS values of acceleration and jerk of the vehicle model for different	
C_{sky} value with increment 10 Ns/m at pendulum mass 25 kg	130
12C RMS values of acceleration and jerk of the vehicle model for different	
Csky value with increment 1 Ns/m at pendulum mass 25 kg	130

LIST OF SYMBOLS

M_p	Pendulum mass
M_{ν}	Vehicle mass
M_b	Bumper mass
fr	Friction force of tire
dt	Time interval over which the force is applied
Fdm	Damper force
C_d	Damping constant for passive damper
g	Gravity acceleration
h	Height of pendulum
Żb	Velocity of the bumper after collision
ΪŻ _b	Acceleration of the bumper after collision
\dot{Z}_{ν}	Velocity of the vehicle model after collision
Ζ _ν	Acceleration of the vehicle model after collision
μ	Coefficient of friction
е	Coefficient of restitution
F(t)	Transmitted force by MR damper
α,γ	Parameters to control the shape of hysteresis
\dot{x}_h	Parameters to controls width
f_s	The offset force due to the accumulator
α_m	Dimension less parameter for transmitted force at each mass of pendulum
fd	Damping force at mass of pendulum 25 kg

Ι	Current input
v(t)	Velocity of the damper
β_m	Dimension less parameter for velocity of the damper
v _d	Velocity of the damper at mass of pendulum 25 kg
Fpeak	Maximum transmitted force at each of pendulum mass
Vpeak	The peak velocity of the damper at each pendulum mass
te	Time contact between bumper and pendulum
a	Experimental coefficient of force transmitted in fluid locking region
b_i, c_i	Obtained from the slope and the intercept in fluid locking region
d_i, g_i	Experimental coefficient of positive acceleration region
e_i, f_i, h_i, p_i	Obtained from the slope and the intercept in positive acceleration region
j_i, m_i	Experimental coefficient of negative acceleration region
k_i, q_i, n_i, r_i	Obtained from the slope and the intercept in negative acceleration region
F_d	Desired damping force
Fa	Actual damping force
K_{μ}	Proportional constant
K _i	Integral constant
F_s	Semi-active damper force
Fmaximum	Maximum force in each pendulum mass
C_{sky}	Damping coefficient for skyhook

CHAPTER 1 INTRODUCTION

1.1 Introduction

Vehicle bumper is usually designed to withstand an impact of collision at relative velocity of 5 to 15 km/h without having a major damage to the bumper (Buechele *et al.*, 2004). Many conventional bumpers use a stationary impact absorbing structure that is designed to deform permanently in order to prevent collateral damage toward vehicle frame as well as others vehicle components.

In this study active bumper system using magnetorheological (MR) dampers is attached between the chassis and front bumper and is used to reduce the crash impact. The main part in MR damper is a controllable fluid that has an ability to reversibly change from a freeflowing, linear viscous fluid to a semi-solid in milliseconds through controllable yield strength when exposed to a magnetic field (Spencer *et al.*, 1996).

During collision, the data acquisition device will send rapid signals to the MR dampers controller. The central processor in the vehicle analyzes the data prior sending appropriate control signal to the active bumper system. The input of the MR damper is in the form electrical current that sent through the coils in the MR damper. This will generate an electromagnetic field and yet affect the MR fluid viscosity which therefore changes the damping coefficient accordingly. All of this happened instantaneously of which reduce the impact force produced during collision. The intention of this study is to investigate the effectiveness of active front bumper system with an intention to reduce an acceleration and jerk of the vehicle during collision. The active front bumper system is designed to reduce the collision impact through the MR damper that has the ability to change its damping coefficient based on the command input from the MR damper controller. The damping coefficients of MR damper have to be adjustable in real time to better achieve energy absorption of collision impact. Therefore, the semi-active control law can be explored through simulation that includes the development of an impact loading test rig, MR damper modeling and its validation under impact loading as well as inner-loop and outer-loop control design for the active bumper system.

The present study begins from modeling of vehicle crash test on computer simulation. MR damper test rig and vehicle crash test rig are then developed for MR damper testing and vehicle collision evaluation. Then, both validated models will be used to implement the controller structure for active front bumper system by using the computer simulation. Finally, potential benefits of implementing the active front bumper system using MR damper are evaluated in terms of reducing the acceleration and jerk of the vehicle during collision. The jerk can be defined as the derivation of the vehicle acceleration to the time of the collision.

1.2 Problem Statement

Current bumper design is not effective in absorbing the total amount of energy during front collision since it is fixed directly to the chassis. Thus, energy of collision will be fully transferred from the front bumper to the vehicle chassis. The collision energy transferred to the chassis can cause the driver and the front passenger to get serious injury resulting to