ICPER 2008
International Conference on Plant Equipment and Reliability

Engaging Research and Technology to Enhance Plant Performance

Plant Equipment

Plant Reliability

Maintenance Engineering

Materials and Manufacturing

Energy

Others

27–28 March 2008
Sunway Pyramid Convention Centre,
Selangor, MALAYSIA

Program and Abstract Book

Organised by: Mechanical Engineering Department

Main Sponsor: PETRONAS

Supported by: I MEC E
ICPER 2008

Patron
Yang Berbahagia Datuk Dr Zainal Abidin Haji Kasim
Rector of Universiti Teknologi PETRONAS

Advisors
Associate Professor Dr Mohd Ibrahim Abdul Mutalib
Director of Research Enterprise Office

Associate Professor Dr Hilmi Mukhtar
Director of Undergraduate Studies

Mohd Noor Rosli Baharum
Director of Student Support Services

Chairman
Associate Professor Dr Othman Mamat

Co-Chairman
Associate Professor Dr Faiz Ahmad

COMMITTEE

Event Management
Rahmat Iskandar Shazi
Dr Puteri Sri Melor Megat Yusoff

Publication and Editorial
Associate Professor Dr Patthi Hussain
Associate Professor Dr Hussain H. Al-Kayiem
Ahmad Zamdi Ab. Hamid

Secretariat
Mohd Syaifudin Mohd
Hafizah Hamzah

Treasurer
Kee Kok Eng
Chin Yee Sing

Sponsorship
Dr Zainal Ambri Abdul Karim
Kamal Ariff Zainal Abidin
Azman Zainuddin
Ir Idris Ibrahim
Mior Azman Meor Said

Registration
Norlaili Amir
Rosmawati Mat Zain

Industrial Relations
Associate Professor Ir Dr Mohd Amin Abd Majid
Paper: PE-23-O

A Decision Making Model to Identify Maintenance Strategies for Small and Medium Industries

M.A. Burhanuddin1, A.R. Ahmad2, M.I. Desa3, and Anton Satria Prabuwan4
1,4 Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM),
Locked Bag 1200, Ayer Keroh, 75450 Melaka, Malaysia
2,5 Fakulti Sistem Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia (UTM),
81130 UTM Skudai, Johor, Malaysia
{burhanuddin, antonsatria}@utm.edu.my

Abstract - Rapid developments in computer science have significantly contributed to the improvement of maintenance practice and organization’s competitiveness. Many available computerized maintenance management systems (CMMS) have currently incorporated to a certain extend with a model based decision support capabilities. Among the promising maintenance decision model used, is the Decision Making Grid (DMG) model. However, DMG consider only downtime and frequency of failures of machines as the maintenance strategy deciding factors. In this paper, we propose an improved technique on DMG through incorporating maintenance cost analysis to first identify machines or candidates to be fitted into the DMG. Next, fuzzy logic rules can be formed by combining the rudimentary case study, the improved model is capable of generating more sensible maintenance strategies. For continuous maintenance improvement, we are also proposing the decision making model to embed with CMMS.

Paper: PE-25-O

A Mobile Application Architecture for Measuring Shaft Misalignment

Muhammad Suhaizan Sulong, Azlanor Abdul Aziz, Mohd Shahir Kasim, Muhammad Hafizd Fazli Md Fauali
Universiti Teknikal Malaysia Melaka,
Locked Bag 1200, 75450 Ayer Keroh, Melaka, Malaysia
suhaizan@utem.edu.my and +606-233 2508

Abstract - Shaft alignment task is one of the important issues in manufacturing maintenance particularly to personnel who daily facing misalignment problem. The importance increase as shaft alignment needs high accuracy and precise measurement will reduces bearing and seal damage, minimizes energy loss, and reduces production downtime. Thus, in this paper we present an architecture in developing mobile application for shaft alignment that could saves the user the arduous task of using dial gauges. The aim is to solve engineering maintenance problem that runs on a Personal Digital Assistant (PDA) and brings the solution straight to the user’s fingertips. This would shorten processing time, provide reliable and better accuracy analysis and as a medium for data sharing thus increase communication level within a manufacturing plant.

Keywords: Shaft Alignment, Mobile Architecture, Mobile Application, Maintenance

Paper: PE-26-P

Thermodynamic Approach to Determine a Gas Turbine Components Design Data and Scaling Method for Performance Map Generation

Syed Ihsham-ul-Haq Gilani, Akilku Tesfamichael Baheta,
Mohd. Amin A. Majid
Department of Mechanical Engineering,
Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
E-mail: syedihsham@petronas.com.my
Fax: 006053656461

Abstract - A major impediment to the development of component-based engine models is the lack of available component data. These data are usually proprietary of the engine manufacturers and the normally available information is scanty. The estimation of the suitable component performance map remains, at best, a difficult task. Where component performance is not available the nearest method, of estimating compressor performance such as the scaling technique, has been used successfully to model the turbine and compressor. In using the scaling technique, the difficulty of simulating an existing gas turbine is lack of design data available to the researcher, as the manufacturer gives only the bare minimum data required for safe operation of the plant. Without design data it is very difficult to mathematically model the plant. Therefore, this study illustrates how to find the design data with the minimum available information using the basic thermodynamic laws and use of scaling method to produce a new detailed performance map from an existing map with their design data.

Keywords: Gas turbine, Performance map, Thermodynamic laws, Scaling method
PETRONAS is Malaysia’s integrated oil and gas corporation founded a little more than 30 years ago. Through partnerships with established players, we have enabled companies to explore and develop our oil and gas resources, and we have, in turn, benefitted by learning from these experts. This symbiosis allows us to grow and prosper together.

Today we are a multinational oil and gas corporation with a strong ranking on the FORTUNE Global 500® and operations in more than 30 countries worldwide. We have developed our own strengths and competencies to be able to venture out and offer more value to our own businesses and those of our partners.

Nature has a lot to teach us. Let’s learn from each other.

*FORTUNE Global 500® is a registered trademark of the FORTUNE magazine division of Time Inc.

www.petronas.com