This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honors.

by

NOR AFFENDY BIN NORIZAN
B050910243
880514045483

FACULTY OF MANUFACTURING ENGINEERING
2013
TAJUK: A STUDY AND ANALYSIS OF PRODUCT DESIGN AND DEVELOPMENT USING KANSEI ENGINEERING FEATURES FACTORS AFFECTED PRODUCT IDENTITY AND AFFECTIVE RESPONSE TO PRODUCT SHAPES

SESJI PENGAJIAN: 2012/13 Semester 2

Saya NOR AFFENDY BIN NORIZAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia bagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh:

Alamat Tetap:

MT 2635/ 5 TAMAN BANDAR BARU

78300 MASJID TANAH

MELAKA

Tarikh: _________________________

Cop Rasmi:

Tarikh: _________________________

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The members of the supervisory committee are as follow:

..
(Principal Supervisor)

..
(Co-Supervisor)
DECLARATION

I hereby, declared this report entitled “A STUDY AND ANALYSIS OF PRODUCT DESIGN AND DEVELOPMENT USING KANSEI ENGINEERING FEATURES FACTORS AFFECTED PRODUCT IDENTITY AND AFFECTIVE RESPONSE TO PRODUCT SHAPES” is the results of my own research except as cited in references.

Signature :
Author’s name : NOR AFFENDY BIN NORIZAN
Date :
ABSTRACT

Creating a product that highly fulfils the demand of the customer satisfaction is often complicated and confusing. The customer satisfactions came from their feelings toward the product. Also, this feeling of satisfaction is different between each person. This is because each person has their own demand in order to feel satisfied. Currently those feeling of demand aren’t possible to be recognizing through scientific approach. This paper is about designing and developing product that can fulfill customer demand by using Kansei Engineering approach. Kansei Engineering is a method that uses statistical approach to analyze the customer feeling satisfaction and to transfer the analyzed data to the design domain. Kansei Engineering has been developed by Mitsuo Nagamachi in Hiroshima in around 1970’s by Jiao et al, (2006). This method allows customer's emotional responses to be linked to a product or service with their properties and characteristics. In consequence, products can be designed to bring forward the intended feeling. Since Kansei engineering used semantic differential to translate consumers feelings, Kano Models were used in order to determine the priority attribute needed by the customers. Kano models are quantitative methods that use pair wise to increase the effectiveness of the questionnaire. By combining these two methods, all feature of the product can be prioritizing their importance in fulfilling the customer demands.
DEDICATION

This report is dedicated to my parents, Norizan Johari and Norziah Husin, my brothers, sisters and other family members who provide a loving, caring, encouraging, and supportive atmosphere. These are characteristic that contribute to the environment that is always needed to achieve the goals a heads.
ACKNOWLEDGEMENT

Alhamdulillah and Thank to Allah S.W.T. with all gracious and merciful for giving me strength and ability to accomplish this project research successfully. I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I am deeply indebted to my supervisor Mr Halim Hakim Abd Aziz and my co-supervisor Mr. Hasolan Haery Ian Pieter whose help, stimulating suggestions, encouragement and guidance helped me in all the time of research for and writing of this thesis.

I also would like to thanks to Dr Mohd Rizal B. Salleh, Dean, Faculty of Manufacturing Engineering, and Dr Hambali b. Arep @ Ariff, Head of Manufacturing Design Department, Faculty of Manufacturing Engineering as well as to all lectures of Faculty of Manufacturing Engineering for all their assistances.

Finally, I would like to thanks to all my colleagues. I want to thank them for all their help, support, interest and valuable hints in completing this report. Especially, I would like to give my special thanks to my family whose patient love enabled me to complete this work.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abstrak</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Abbreviation</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Project Background 1
1.2 Problem Statement 5
1.3 Objectives 6
1.4 Scope of project 6

CHAPTER 2: LITERATURES REVIEW

2.1 Kansei Engineering 9

- 2.1.1 History of Kansei Engineering 10
- 2.1.2 Basic of Kansei engineering 11
- 2.1.3 The principal of Kansei Engineering 14
- 2.1.4 Design domain 15
- 2.1.5 Kansei Dimension 15
- 2.1.6 Product Design Dimension 18
2.1.7 Synthesis
2.1.8 Application of Kansei Engineering
2.1.9 Advantages of Kansei Engineering

2.2 Voice of Customer

2.3 Analytical Hierarchy Process (AHP)
2.3.1 Decomposition
2.3.2 Comparative Judgment
2.3.3 Logical consistency
2.3.4 Process
 2.3.4.1 Structuring a decision problem and selection of criteria
 2.3.4.2 Priority setting of the criteria by pair wise comparison (Weighing)
 2.3.4.3 Pair wise comparison of options on each criterion (scoring)
 2.3.4.4 Obtaining an overall relative score for each option

2.3.5 Approaches
2.3.6 Advantages
2.3.7 Disadvantages

2.4 Summary

2.5 Literature Review
3. METHODOLOGY 55

3.1 Introduction 55

3.2 Planning of the Study 56

3.3 Methodology 56

3.4 Identify the Product Design 59
 3.4.1 Identify the problem 59
 3.4.2 Literature Study 59

3.5 Identification of Kansei words 60

3.6 Data Collection 60
 3.6.1 Questionnaire 60

3.7 Data Processing 61
 3.7.1 Analysis of semantic differential 61
 3.7.2 Analysis by using AHP 61

3.8 Expected result 62

3.9 Gantt chart 63

3.10 Summary 65

4. Result and Discussion 66

4.1 Introduction 66

4.2 Sample Size of Population 66

4.3 Analysis of Questionnaire 67
4.4. Final Design

4.4.1 Cap bottle design

4.4.2 Bottle design body

4.4.3 Summary of design bottle shampoo

4.4.4 Final design bottle shampoo drawing

4.5 Chapter Summary

5. CONCLUSION & FUTURE WORK

5.1. Conclusion and Recommendation

5.2 Recommendation and Future Work

REFERENCES
LIST OF TABLES

Chapter 2

Table 2.1: Summary Kansei Engineering
Table 2.2: Summary of Analytical Hierarchy Process (AHP)

Chapter 3

Table 3.1: Gantt chart

Chapter 4

Table 4.1: Respondent count
Table 4.2: Statistic Frequency of Gender
Table 4.3: Statistic nationality of respondents
Table 4.4: Statistic used shampoo in week
Table 4.5: Statistic of quantity volume shampoo of respondents
Table 4.6: Statistic of Thickness shampoo of respondents
Table 4.7: Statistic of Height volume of height bottle shampoo prefer of respondents
Table 4.8: Statistic of Frequency of Width bottle shampoo prefer of respondents
Table 4.9: Statistic of Frequency of type of cap shampoo bottle
Table 4.10: 48 words of Kansei Word
Table 4.11: Kansei Word from respondent
Table 4.12: Results of word grouping
Table 4.12(a): Reliability Statistic for cap bottle Part Design
Table 4.12(b): Reliability Statistic for bottle body Part Design
Table 4.13(a): Cap Design 1
Table 4.13(b): The tendency of Kansei Words towards cap design 1
Table 4.14(a): Cap Design 2
Table 4.14(b): The tendency of Kansei Words towards cap design 2
Table 4.15(a): Cap Design 3
Table 4.15(b): The tendency value of Kansei Words towards cap design 3
Table 4.16(a): Cap Design 4
Table 4.16(b): The tendency value of Kansei Words towards cap design 4
Table 4.17(a): Bottle body design 1
Table 4.17(b): Bottle body design 1
Table 4.18(a): Bottle body design 2
Table 4.18(b): Bottle body design 2
Table 4.19(a): Bottle body design 3
Table 4.19(b): bottle body design 3
Table 4.20(a): Bottle body design 4
Table 4.20(b): Bottle body design 4
Table 4.21(a): Bottle body design 5
Table 4.21(b): Bottle body design 5
Table 4.22(a): Bottle body design 6
Table 4.22(b): Bottle body design 6
Table 4.23(a): Bottle body design 7
Table 4.23(b): Bottle body design 7
Table 4.24 (a): Bottle body design 8
Table 4.24 (b): Bottle body design 8
Table 4.25: Cap bottle design
Table 4.26: Body bottle design
LIST OF FIGURES

CHAPTER 2

Figure 2.1: The Process of Kansei Lokman & Nagamachi (2009)
Figure 2.2: Kansei Gateways Lokman& Nagamichi (2009)
Figure 2.3: The Principal of Kansei Engineering

CHAPTER 3

Figure 3.1: Frame work of project
Figure 3.2: Flow chart of project’s methodology

CHAPTER 4

Figure 4.1: Sample size on Sample Size Calculator
Figure 4.2: Frequency of Gender (500 Respondents)
Figure 4.3: Frequency of nationality of respondents
Figure 4.4: Frequency of used shampoo in week
Figure 4.5: Frequency of shampoo volume of respondents
Figure 4.6: Frequency of thickness bottle shampoo prefer of respondents
Figure 4.7: Frequency of height volume of height bottle shampoo prefer of respondent
Figure 4.8: Frequency of Width bottle shampoo prefer of respondents
Figure 4.9: Frequency of type of cap shampoo bottle
Figure 4.10: The Flow of Finding Reliable Kansei Words

Figure: 4.11: Picture of pen for interview

Figure 4.12: Radar Graph of Cap Design 1

Figure 4.13: Radar Graph of Cap Design 1

Figure 4.14: Radar Graph of Cap Design 2

Figure 4.15: Radar Graph of Cap Design 3

Figure 4.16: Radar Graph of Cap Design 4

Figure 4.17: Radar Graph of body type 1

Figure 4.18: Radar Graph of body type 2

Figure 4.19: Radar Graph of body type 3

Figure 4.20: Radar Graph of body type 4

Figure 4.21: Radar Graph of body type 5

Figure 4.22: Radar Graph of body type 6

Figure 4.23: Radar Graph of body type 7

Figure 4.24: Radar Graph of body type 8

Figure 4.25 (a): Final Design for cap bottle shampoo using Expert Choice

Figure 4.25(b): Final Design for cap design 1 using Expert Choice

Figure 4.25(c): Final Design for cap design 2 using Expert Choice

Figure 4.25(d): Final Design for cap design 2 using Expert Choice

Figure 4.25(e): Final Design for cap design 3 using Expert Choice

Figure 4.25(f): Final Design for cap design 4 using Expert Choice
Figure 4.25(g): Final Design for body bottle design using Expert Choice

Figure 4.25(h): Final Design for body design 1 using Expert Choice

Figure 4.25(i): Final Design for body design 2 using Expert Choice

Figure 4.25(j): Final Design for body design 3 using Expert Choice

Figure 4.25(k): Final Design for body design 4 using Expert Choice

Figure 4.25(l): Final Design for body design 5 using Expert Choice

Figure 4.25(m): Final Design for body design 6 using Expert Choice

Figure 4.25(n): Final Design for body design 7 using Expert Choice

Figure 4.25(o): Final Design for body design 8 using Expert Choice

Figure 4.26: Final design chosen by respondents

Figure 4.27: Design of bottle shampoo chosen by respondents

Chapter 5:

Figure 5.1: Kansei word in questionnaire

Figure 5.2: Final design bottle shampoo selected of respondents
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Semantic Differential</td>
</tr>
<tr>
<td>VOC</td>
<td>Voice of Customer</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Science</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>PMM</td>
<td>Polytechnic Merlimau Melaka</td>
</tr>
<tr>
<td>MMU</td>
<td>Multimedia University</td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
</tr>
<tr>
<td>KE</td>
<td>Kansei Engineering</td>
</tr>
<tr>
<td>KW</td>
<td>Kansei Word</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>FA</td>
<td>Factor Analysis</td>
</tr>
<tr>
<td>QT 1</td>
<td>Quantification Theory type I</td>
</tr>
<tr>
<td>KES</td>
<td>Kansei Engineering System</td>
</tr>
<tr>
<td>SVR</td>
<td>Support Vector Regression</td>
</tr>
<tr>
<td>(GST)</td>
<td>The Grey System Theory</td>
</tr>
<tr>
<td>AGO</td>
<td>Accumulated Generating Operation</td>
</tr>
</tbody>
</table>
SRM - Structural risk minimization
ERM - Empirical risk minimization
SQC - Statistical quality control
ISQFD - International Symposium on Quality Function Deployment
CR - Customer requirements
PDPC - Process Decision Program Chart
CHAPTER 1
INTRODUCTION

1.1 Project Background

Customers worldwide nowadays are happy to use or comfortable to use of products that there is in market. Various products with same functions produced for customers used. Customer interesting to buy the product because impressed by product appearance like product form, color that produced and also additional features that produced to product that.

Nowadays consumers are strict in choosing products in terms of their demands and preferences Jiao, J et al (2006). Obviously, the key factor that influences the success of a new product is how to capture the “voice of the customer” by Griffin, A. and Hauser, J.R. (1993). In order to help designers develop a suitable product form for a given product image, some models, such as design support models Chung et al, (2001) and consumer-oriented technologies Hsu, C.H et al (1999), have been proposed to capture the relationship between the product form and the product image perceived by consumers.
It notices difficult, otherwise impossible, find some relationship between design features and emotion reactions. The relationship straight fight this may not exist due to emotion in most cases not elicited by product but usage impact that derived from product. The trend of product innovation is now concerned with the customer satisfaction, affordability, production rate, technical ability, value chain and competition Browning et al. (2006). Especially, the level of importance on customer satisfaction is becoming higher. For successfully launching and sustaining the product in the market, the voice of customer on their requirements must be responded. Customer requirements are subject to a variety of factors like technology, and their age, income, profession, education and preference Lee et al. (2012). Customers’ affective needs must be considered, Jordan (2000). Affect is said to be a customer’s psychological response to the perceptual design details styling of the product, Demirbilek & Sener (2003).

Affect is a basis for the formation of human values and human judgment. For this reason it might be argued that models of product design that do not consider affect are essentially weakened Helander & Tham, (2003). Until recently, the affective aspects of designing and design cognition have been substantially absent from formal theories of design Helander et al. (2001). Affective design is the inclusion or representation of affect emotions, subjective impressions, visual perceptions and so on in design processes Khalid (2004). Many research issues are implied, including, for example, how to measure and analyze human reactions to affective design; and how to assess the corresponding affective design features. In the end, it is necessary to develop theories and predictive models for affective design Jiao et al. (2006).

A designer could not be just depend on own creation result because there was nothing guarantee that they similar to what desired by consumers by Khalid, H. M. (2004). Therefore, so that resemble what desired by consumer, create emotional designer adaptation by discussing emotion reactions with consumers because they difficult to give birth what they feel and why they want it. Language use that suitable to be used between both designer and consumers do not make a mistake. Research
could be preparing designer with insights of specific user product context for which he is designing. Product design with emotional fit requires an integrated approach in which the research does not lead but was part of design activity. If designers strive to create form products that satisfy her emotional need should know to what desired by consumers that focused specially by Helander, M. G., & Tham, M. P. (2003). Therefore inventor and customer should communicate. It also can be done by doing research towards most case which occurred around. When a designer start to create form a new product, he has to integrate lot of demand and desire consumers product that may have prospective and not only claims technical already important objective but also aesthetic, emotional and different experience factors, and partly difficult to be stated objectively by Ebru Ayas, Jorgen Eklund, Shigekazu Ishihara. (2008), in design practice, inventor have to consider between objective and subjective features between function technology and emotional between information and inspiration.

Kansei Engineering is a systematic method through the usage principles on a product and translated this perceptions into design parameter Nagamichi (1995), Schutte & Eklund (2003), it have been used in development of cars, construction machinery, home appliance, office machine, and cosmetic Jindo & Hirasago (1997), Nakada (1997), Nagamachi (2002), Mondragon et al. (2005), Demirtas et al. (2009). Kansei word is feeling immediately from emotion. It also undergone when interacts with product already have in market. Most important in Kansei word was to observe customers identify priority and their will or Kansei is product development process. Category classification was a method where category Kansei word is a product loosened in tree structure to get detailed information in design Huang et al. (2011). In our level realize on what we want, we decide use information sense. Conscious mind then solve a “logic” story justify decision. Feeling on the certain products variables and uncertain sometimes whether it correct or wrong on product. Kansei occur naturally in all things such as product and service. It raises all kinds of feeling whether those feelings strong, weak, good or unpleasant. Kansei Engineering is a method to ensure products or services can raise an emotion reaction that is good by Ichitsubo et al (1998). Process allows going to feeling models simultaneously and customer emotions and then translated into design parameters. Kansei Engineering was a method to translate feelings from customers and deep impact product