A Study on Assessment of material handling activities in manufacturing factory for occupational health improvement: Case Study in Green Food Industries

Report submitted in accordance with the requirements of Universiti Teknikal Malaysia Melaka for Bachelor’s Degree in Manufacturing Engineering (Manufacturing Management) with Honours

By

WONG WEI LIANG

Faculty of Manufacturing Engineering

MARCH 2008
JUDUL:
A Study on Assessment of material handling activities in manufacturing factory
for occupational health improvement: Case Study in Green Food Industries

SESU PENGAJIAN: Semester 2 2007/2008

Saya Wong Wei Liang mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (√) (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 □ SULIT
 ✔ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 □ TIDAK TERHAD

(WONG WEI LIANG)
Alamat Tetap:
54, Jalan Emas 2, Taman Bukit Beruang, 75450 Melaka.

(EN. ABDUL RAHMAN MAMOOD)
Cop Rasmi:
AB. RAHMAN BIN MAHMOOD
Penyelidik
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
Kajang, Selangor 1200, Hang Tuah Jaya, Ayer Keroh, 75450 Melaka.

Tariikh: 20/05/2008

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
FAKULTI KEJURUTERAAN PEMBUATAN

04 Mei 2008

Rujukan Kami (Our Ref):
Rujukan Tuan (Your Ref):

Pustakawan
Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM)
Taman Tasik Utama, Hang Tuah Jaya,
Ayer Keroh, 75450, Melaka

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD
- LAPORAN PSM SARJANA MUDA KEJURUTERAAN PEMBUATAN
(MANAGEMENT): Wong Wei Liang
TAJUK: A Study on Assessment of material handling activities in manufacturing factory for occupational health improvement: Case Study in Green Food Industries

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk “A Study on Assessment of material handling activities in manufacturing factory for occupational health improvement: Case Study in Green Food Industries” mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

..
EN. ABDUL RAHMAN MAMOOD
Pensyarah,
Fakulti Kejuruteraan Pembuatan

..
AB. RAHMAN BIN MAHMOOD
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
Karung Berkunci 1200, Hang Tuah Jaya,
Ayer Keroh, 75450 Melaka.
DECLARATION

I hereby declare that this report entitled "A Study on Assessment of material handling activities in manufacturing factory for occupational health improvement: Case Study in Green Food Industries" is the result of my own research except as cited in the references.

Signature : [Signature]
Author's Name : Wong Wei Liang
Date : 29 April 2008
ABSTRACT

Occupational health problems happened on work such as material handling activities and the most common injuries that a worker usually have is low-back pain, disability and Musculoskeletal Disorders (MSDs). More employees are injured in industry while moving materials than performing any other single function. These injuries have been estimated to account for 20 percent to 25 percent of all occupational injuries, as stated by Reese (2000). The first objective of this study is to determine the workers’ responses on experiencing discomfort and pain during work through questionnaire. The second objective is to analyze the workers’ posture and lifting limits on material handling activities through NIOSH and RULA tool. The third objective is to propose solutions and improvement using engineering control for workers’ posture and lifting limits on material handling activities after revising the effectiveness of the proposed solutions. Ten workers are selected to participate in the questionnaire survey where five workers from the production station and another five from packaging station. Six case studies on the workers’ material handling activities are selected for risk assessments using analytical tools such as RULA tool to analyze the workers’ posture and NIOSH tool to analyze the lifting limits for that job. Two phases are conducted in each case studies where the first phase consist of current material handling method used and the second phase consist the improved material handling method. From the questionnaire, the results shows that most of the workers have the possibility of being affected with occupational health injuries where most of them are in production station. The results from the case studies Phase 1 also shows that workers are highly risk of injuries and the Phase 2 results show that it reduces the risk of workers having injuries.
ABSTRAK

Masalah kesihatan pekerjaan berlaku pada kerja seperti aktiviti pemindahan barang dan penyakit selalu dikenak oleh pekerja ialah sakit belakang, cacat dan Musculoskeletal Disorders (MSDs). Kebanyakan pekerja industri cedera kerana memindah barang dan kecederaan ini dianggar merangkumi 20 peratus hingga 25 peratus daripada masalah kesihatan pekerjaan sperti dikata oleh Reese (2000). Objektif pertama untuk projek ini ialah menentukan gerak balas para pekerja yang mengalami ketidak selesaan dan kesakitan semasa berkerja melalui Persoalanan. Objektif kedua ialah mengkaji postur pekerja dan had mengangkat melalui RULA dan NIOSH. Objektif ketiga ialah mencadang solusi dan pembaikian dengan menggunakan kawalan kejuruteraan untuk postur pekerja dan had pegangkatan bagi aktiviti pemindahan barang selepas menganalisiskan kecekapan solusi cadangan. Sepuluh pekerja telah mengambil persoalan penilaian dimana lima pekerja dari produksi stesyen dan lima lagi di bungkusan stesyen. Enam case studies diambil untuk menganalisis postur dan had angak untuk pekerja kilang tersebut dengan menggunakan RULA dan NIOSH. Setiap case study mengandunggi dua fasa dimana fasa pertama ialah cara pemindahan barang oleh pekerja dan fasa dua ialah pengubahahan dibuat untuk membetulkan cara pekerja membuat kerja. Dari ujian persolahan, didapati bahawa kebanyakan pekerja mengalami masalah kesihatan pekerjaan dan kebanyakan mereka dari produksi stesyen. Selain itu, analisis fasa satu menunjukkan bahawa para pekerja mempunyai risiko tinggi untuk mendapat masalah kesihatan pekerjaan dan fasa dua menunjukkan cadangan pembaikian itu telah menurunkan risiko pekerja mengalami kecederaan dan masalah kesihatan pekerjaan.
DEDICATION

For my beloved parent, aunts, siblings’ and cousins.
ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my university, UTeM for giving me the chance to have in this project involvement. Besides that, I would like to express my warmest gratitude and thankful to my supervisor, En. Abdul Rahman Mamood for his supervision, guidance, trust, advice and support, encouragement, and assistance towards me throughout this project. Besides that, I also like to express my gratitude to P. M. Dr. Adi Saptari, and En. Isa Halim for helping in my project by giving advices and guidance. I also like to thanks the staff in UTeM for helping in my project.

I would like to express my deepest appreciation to Mr. Max the owner of the Green Food Industries factory for providing me the place, time and information to complete this project. Not forgetting the supervisor of the factory, Mr. Low Kiat Seng and the workers from the factory who share the experiences and information of the factory to me.

Last but not least, I would like to thank my family who giving me the encouragement and support, strength and inspiration to perform this project to the end. At the same time, I would like to thank my course mates for providing ideas, advices, support and comments in order to accomplish my project.
TABLE OF CONTENTS

Abstract..i
Abstrak..ii
Dedication..iii
Acknowledgements...iv
Table of Contents..v
List of Tables...x
List of Figures..xiii
List of Abbreviations, Symbols, Specialized Nomenclature...xvi

1. INTRODUCTION...1
 1.1 Background of Study...1
 1.1.1 Factory Background Information...1
 1.2 Problem Statement...2
 1.3 Objectives ...3
 1.4 Scope and Limitation of Project...3
 1.5 Potential Benefits of Study..4
 1.6 Structure of the Report ...4

2. LITERATURE REVIEW ...7
 2.1 Introduction to Ergonomics ...7
 2.2 Evolution of ergonomics science ..10
 2.3 Relationship between material handling activities and occupational health............................16
 2.4 Safe working posture ..17
2.4.1 Safe working posture in standing and sitting position for work surface
 ..19
2.4.2 Safe working posture in standing position...20
2.4.3 Safe working posture in sitting position..22
2.4.4 Safe working posture for lifting and carrying......................................24
2.5 Tools for safe working evaluation ...26
 2.5.1 Rapid Upper Limb Assessment (RULA)...26
 2.5.2 National Institute for Occupational Safety and Health (NIOSH) Tool....27
2.6 Musculoskeletal Disorders (MSDs) ..28
 2.6 Assessment research on material handling ..30

3. METHODOLOGY..36
 3.1 Determination of workers’ responses regarding the discomfort in the
 manufacturing factory ..36
 3.2 Analyze the current material handling method of the workers37
 3.2.1 RULA Analyze Procedures ...38
 3.3.2 NIOSH (National Institute for Occupational Safety and Health) Revised
 Lifting Equation Procedures ...41
 3.3 Propose recommendation and solutions for bad material handling method
 improvement ..42

4. CASE STUDY...43
 4.1 Workers that participated in the questionnaire.................................43
 4.2 Case Study 1: Lifting the bag of flour from the pallet with an awkward
 posture ..34
 4.3 Case Study 2: Lifting the bag of flour with an awkward posture after opening
 the bag’s seal ..35
 4.4 Case Study 3: Lifting the rolled flatten dough with an awkward posture40
 4.5 Case Study 4: Extend arm to collect the ‘mee-suah’ with sitting posture.....42
4.6 Case Study 5: Lifting a bag of flour from the pallet..............................42
4.7 Case Study 6: Transferring a bag of flour to the mixing machine after open the bag seal ...50

5. RESULTS..52
5.1 Results from the workers’ responses through questionnaire52
5.2 Results of first phase risk assessment ..54
 5.2.1 Results of first phase risk assessment Case Study 1: Lifting the bag of flour from the pallet with an awkward posture using RULA......54
 5.2.2 Results of first phase risk assessment Case Study 2: Lifting the bag of flour with an awkward posture after opening the bag’s seal using RULA ...57
 5.2.3 Results of first phase risk assessment Case Study 3: Lifting the rolled flatten dough with an awkward posture using RULA59
 5.2.4 Results of first phase risk assessment Case Study 4: Extend arm to collect the ‘mee-suah’ with sitting posture using RULA62
 5.2.5 Results of first phase risk assessment Case Study 5: Lifting a bag of flour from the pallet using NIOSH ..64
 5.2.6 Results of first phase risk assessment Case Study 6: Transferring a bag of flour to the mixing machine after open the bag seal using NIOSH.65
5.3 Results of second phase on propose improvement67
 5.3.1 Results of second phase on propose improvement Case Study 1: Lifting the bag of flour from the pallet with an awkward posture using RULA..67
 5.3.2 Results of second phase on propose improvement Case Study 2: Lifting the bag of flour with an awkward posture after opening the bag’s seal using RULA ...70
 5.3.3 Results of second phase on propose improvement Case Study 3: Lifting the rolled flatten dough with an awkward posture using RULA72
 5.3.4 Results of second phase on propose improvement Case Study 4: Extend arm to collect the ‘mee-suah’ with sitting posture using RULA74
5.3.5 Results of second phase on propose improvement Case Study 5: Lifting a bag of flour from the pallet using NIOSH ..74
5.3.6 Results of second phase on propose improvement Case Study 6: Transferring a bag of flour to the mixing machine after open the bag seal using NIOSH..78

5.4 Results of comparison between phase 1 and phase 2 results effectiveness...79

6. DISCUSSION..81
6.1 Questionnaire investigation ...81
6.2 Phase 1 results study ...83
 6.2.1 First phase risk assessment Case Study 1: Lifting the bag of flour from the pallet with an awkward posture using RULA..83
 6.2.2 First phase risk assessment Case Study 2: Lifting the bag of flour with an awkward posture after opening the bag’s seal using RULA84
 6.2.3 First phase risk assessment Case Study 3: Lifting the rolled flatten dough with an awkward posture using RULA ...84
 6.2.4 First phase risk assessment Case Study 4: Extend arm to collect the ‘mee-suah’ with sitting posture using RULA ..85
 6.2.5 First phase risk assessment Case Study 5: Lifting a bag of flour from the pallet using NIOSH ...86
 6.2.6 First phase risk assessment Case Study 6: Transferring a bag of flour to the mixing machine after open the bag seal using NIOSH..............87
6.3 Phase 2 results study ..87
 6.3.1 Second phase study for Case Study 1: Lifting the bag of flour from the pallet with an awkward posture using RULA.................................88
 6.3.2 Second phase study for Case Study 2: Lifting the bag of flour with an awkward posture after opening the bag’s seal using RULA90
 6.3.3 Second phase study for Case Study 3: Lifting the rolled flatten dough with an awkward posture using RULA ...92
6.3.4 Second phase study for Case Study 4: Extend arm to collect the ‘mee-suah’ with sitting posture using RULA93
6.3.5 Second phase study for Case Study 5: Lifting a bag of flour from the pallet using NIOSH ...94
6.3.6 Second phase study for Case Study 6: Transferring a bag of flour to the mixing machine after open the bag seal using NIOSH.................97
6.4 Discussion between phase 1 and phase 2 results effectiveness99

7. CONCLUSION..102

7.1 Objective 1: To determine the workers’ responses on experiencing discomfort and pain during work through questionnaire102
7.2 Objective 2: To analyze the workers’ posture and lifting limits on material handling activities through NIOSH and RULA tool103
7.3 Objective 3: To propose solutions and improvement using engineering control for workers’ posture and lifting limits on material handling activities after revising the effectiveness of it ...105
7.4 Suggestion on future work ...105

REFERENCES ...106

APPENDICES...108

Appendix A ...109
Appendix B ...110
LIST OF TABLES

2.1 The RULA scoring sheet 26
4.1 Information of workers participated questionnaire survey 44
4.2 Angle of body part deviate from neutral position 45
4.3 Angle of body part deviate from neutral position 46
4.4 Angle of body part deviate from neutral position 47
4.5 Angle of body part deviate from neutral position 48-49
4.6 Job analysis 50
4.7 Job analysis 51
Percentage response of workers voted ‘YES’ in questionnaire survey 53-54
5.1 Posture risk assessment for Group A 55
5.2 Posture risk assessment for Group B 55-56
5.3 Scoring for Group A body part 56
5.4 Scoring for Group B body part 56
5.5 Grand Score 56
5.6 Posture risk assessment for Group A 57-58
5.7 Posture risk assessment for Group B 58
5.8 Scoring for Group A body part 58
5.9 Scoring for Group B body part 58-59
5.10 Grand Score 59
5.11 Posture risk assessment for Group A 59-60
5.12 Posture risk assessment for Group B 60-61
5.13 Scoring for Group A body part 61
5.14 Scoring for Group B body part 61
5.15 Grand Score 61
5.16 Posture risk assessment for Group A 62
5.17 Posture risk assessment for Group B 63
5.18 Scoring for Group A body part 63
5.19 Scoring for Group B body part 63
5.20 Grand Score 64
5.22 Data input 64
5.23 Task multipliers and recommended weight limit(s) 65
5.24 Lifting index 65
5.25 Data input 66
5.26 Task multipliers and recommended weight limit(s) 66
5.27 Lifting index 69
5.28 Posture risk assessment for Group A 67-69
5.29 Posture risk assessment for Group B 68
5.30 Scoring for Group A body part 69
5.31 Scoring for Group B body part 69
5.32 Grand Score 69
5.33 Posture risk assessment for Group A 70
5.34 Posture risk assessment for Group B 71
5.35 Scoring for Group A body part 71
5.36 Scoring for Group B body part 71
5.37 Grand Score 71
5.38 Posture risk assessment for Group A 72-73
5.39 Posture risk assessment for Group B 73
5.40 Scoring for Group A body part 73
5.41 Scoring for Group B body part 74
5.42 Grand Score 74
5.43 Posture risk assessment for Group A 75
5.44 Posture risk assessment for Group B 75-76
5.45 Scoring for Group A body part 76
5.46 Scoring for Group B body part 77
5.47 Grand Score 77
5.48 Data input 77
5.49 Task multipliers and recommended weight limit(s) 77
5.50 Lifting index 77
5.51 Data input 78
5.52 Task multipliers and recommended weight limit(s) 78
5.53 Lifting index 79
5.54 Comparison between phase 1 and phase 2 results 80
6.1 Job analysis 95
6.2 Job analysis 97
LIST OF FIGURES

2.1 Ergonomics Job Consideration 18
2.2 A workstation designed for a standing and sitting worker 19
2.3 Workplace which has enough space to change working position 21
2.4 A worker's leg on a foot rail or portable foot-rest. 21
2.5 Safe working sitting posture 23
2.6 Lifting and carrying the box with safe working posture - Keep the load close to the body and lift by pushing up with the legs (for loads that are small, light weight, and can easily fit between the knees) 25
2.7 Lifting and carrying the stone with safe working posture (for
loads that are big and heavy weight), (a) Lean the sack onto your
kneeling leg, (b) Slide the sack up onto your kneeling leg, (c)
Slide the sack onto the other leg while keeping the sack close to
your body, (d & e) as you stand up, keep the sack close to your
body.

2.8 A sample of input the characteristics/data of the lift into the
NIOSH program

2.9 Outputs results from NIOSH evaluation tools

3.1 An example of biomechanical model

3.2 Selection of RULA in the job evaluator toolbox 4.0

3.3 Posture Risk Factor Assessment for Group A (upper arm, lower
arm, and wrist)

3.4 Posture Risk Factor Assessment for Group B (neck, trunk, and
legs)

3.5 The data are input on the Ergoweb software NIOSH Lifting
Equation

4.1 Worker tries to lift the bag of flour from the pallet with an
awkward posture

4.2 Worker tries to lift the bag of flour with an awkward posture after
opening the bag’s seal

4.3 Worker try to lift the rolled flatten dough from the table with an
awkward posture

4.4 Worker sitting and collecting the ‘mee-suah’ according to the
product quantity and weight requirement for packing

4.5 (a) worker origin stands before lifting and (b) worker destination
stands after lifting

4.6 (a) worker origin stands before lifting and (b) worker destination
stands after lifting

6.1 Response of pain and discomfort occurred on workers at each
station

6.2 (a) Pneumatic lifter and (b) Scissors lifts

6.3 Side view for the proposed improve posture for case study 1

6.4 Top view for the proposed improve posture for case study 1

6.5 Side view for the proposed improve posture for case study 2
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Top view for the proposed improve posture for case study 2</td>
<td>91</td>
</tr>
<tr>
<td>6.7</td>
<td>Side view for the proposed improve posture for case study 3</td>
<td>92</td>
</tr>
<tr>
<td>6.8</td>
<td>Side view for the proposed improve posture for case study 4.</td>
<td>94</td>
</tr>
<tr>
<td>6.9</td>
<td>Side view for the proposed improve lifting task for case study 5</td>
<td>96</td>
</tr>
<tr>
<td>6.1</td>
<td>Top view for the proposed improve lifting task for case study 5</td>
<td>96</td>
</tr>
<tr>
<td>6.11</td>
<td>Side view for the proposed improve lifting task for case study 6</td>
<td>98</td>
</tr>
<tr>
<td>6.12</td>
<td>Top view for the proposed improve lifting task for case study 6</td>
<td>98</td>
</tr>
<tr>
<td>6.13</td>
<td>Comparison between the effectiveness action level before and after improvement for case study 1 to 4.</td>
<td>99</td>
</tr>
<tr>
<td>6.14</td>
<td>Comparison between the effectiveness lifting index before and after improvement for case study 5</td>
<td>100</td>
</tr>
<tr>
<td>6.15</td>
<td>Comparison between the effectiveness lifting index before and after improvement for case study 6</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBD</td>
<td>Low-Back Disorder</td>
</tr>
<tr>
<td>RULA</td>
<td>Rapid Upper Limb Assessment</td>
</tr>
<tr>
<td>OWAS</td>
<td>Ovako Working Posture Analysis System</td>
</tr>
<tr>
<td>MSDs</td>
<td>Musculoskeletal Disorders</td>
</tr>
<tr>
<td>MMH</td>
<td>Manual Materials Handling</td>
</tr>
<tr>
<td>IEA</td>
<td>International Ergonomic Association</td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>BLS</td>
<td>Bureau of Labor Statistics</td>
</tr>
<tr>
<td>RSI</td>
<td>Repetitive Strain Injuries</td>
</tr>
<tr>
<td>CTD</td>
<td>Cumulative Trauma Disorders</td>
</tr>
<tr>
<td>OS</td>
<td>Overuse Strain</td>
</tr>
<tr>
<td>OOS</td>
<td>Occupational Overuse Syndrome</td>
</tr>
<tr>
<td>RMD</td>
<td>Repetitive Motion Disorders</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>L</td>
<td>Load Weight</td>
</tr>
<tr>
<td>H</td>
<td>Horizontal Location</td>
</tr>
<tr>
<td>V</td>
<td>Vertical Location</td>
</tr>
<tr>
<td>A</td>
<td>Angle of Asymmetry</td>
</tr>
<tr>
<td>F</td>
<td>Frequency of Lifting</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>C</td>
<td>Coupling</td>
</tr>
<tr>
<td>D</td>
<td>Vertical Travel Distance</td>
</tr>
<tr>
<td>LC</td>
<td>Load Constant</td>
</tr>
<tr>
<td>HM</td>
<td>Horizontal Multiplier</td>
</tr>
<tr>
<td>VM</td>
<td>Vertical Multiplier</td>
</tr>
<tr>
<td>DM</td>
<td>Distance Multiplier</td>
</tr>
<tr>
<td>AM</td>
<td>Asymmetry Multiplier</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Multiplier</td>
</tr>
<tr>
<td>CM</td>
<td>Coupling Multiplier</td>
</tr>
<tr>
<td>RWL</td>
<td>Recommended weight limit</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This chapter explains the background of the study which consist the study background, problem statements, objectives, scope and limitation of project, and report structure.

1.1 Background of Study

The study is about occupational health improvement of material handling activities in Green Food Industries factory. The study is conduct to identify the possibility of the factory workers having occupational health problems through questionnaire and analyze of workers’ postures and lifting limits on material handling activities. Improvement and modification postures and lifting limits are proposed using engineering control and evaluated for its effectiveness to reduce the risk of having occupational health problems by workers.

1.1.1 Factory Background Information

Green Food Industries was established on August, 2007 and situated in Malacca. The factory produces product which related to ‘mee-suah’ or vermicelli. Besides that, the factory has around 10 workers where some are permanent and part-time workers and consist of 5 machines. The factory consists of two station which is production and packaging station. Most of the material handling activities performed by the workers is by manually such as lifting bag of flour and transferring the dough to another machine.
1.2 Problem Statements

Below shows some of the problem statements that had been found which related to this study:

(a) More employees are injured in industry while moving materials than performing any other single function. These injuries have been estimated to account for 20 percent to 25 percent of all occupational injuries, as stated by Reese (2000).

(b) We have found that many of the lifting tasks contain trunk motions that are associated with high LBD risk as revealed by Lavender, Oleske, Andersson, and Kwasny (2006).

(c) In industrialized countries, upper limb work-related musculoskeletal disorders (UL-WMSDs) are the most common form of occupational diseases as stated by Colombini and Occhipinti (2006).

(d) A low fixed workstation height resulted in taller operators adopting a stooped posture, likely to contribute to shoulder, neck and back complaints as stated by Trevelyan and Haslam (2000).

(e) Musculoskeletal symptoms were also associated with individual factors including age, sex, marital status and job tenure as revealed by Choobineh, Hosseini, Lahmi, Jazani, and Shahnaz, (2007).
1.3 Objectives

The objectives of study are:

(a) To determine the workers’ responses on experiencing discomfort and pain during work through questionnaire.

(b) To analyze the workers’ posture and lifting limits on material handling activities through NIOSH and RULA tool.

(c) To propose solutions and improvement using engineering control for workers’ posture and lifting limits on material handling activities after revising the effectiveness of the proposed solutions.

1.4 Scope and Limitation of Project

The project is mainly focus on the manual material handling activities of the workers’ posture in the manufacturing factory. Introduction of the selected manufacturing factory, relationships between material handling activities and occupational health, evolution of ergonomic, various tools that can be use, proper posture, MSDs and the tools used are stated briefly. The tools use to evaluate the material handling activities are by using NIOSH and RULA tools.

However, this project only revise, recommend solutions and improvement for the bad manual material handling method, this solutions and recommendation of the new material handling method is up to the factory to implement or not. No attempt was made to measure the effects of the improved material handling method on workers’ performance.
1.5 Potential Benefits of Study

The potential benefits from this study can be given to the following parties:

(a) Factory employer
This study may help the factory employer to improve the working environment for the workers which also decrease the possibility of workers absent due to occupational health problems and improve its productivity.

(b) Factory workers
This study may help workers become aware the risk of having occupational health problems. Besides that, workers’ discomfort will be reduce if the propose work design are implemented.

(c) Author
The study helps the author gain knowledge on ergonomic which based on real situation. The author also had learned to use the analytical tools such as NIOSH and RULA tools to implement in real life. Through the study, author can improve his knowledge on ergonomic and knowledge on improve and redesign the work. From the knowledge gained, it is very useful for the author be able to use it on working after graduated.

1.6 Structure of the Report

This thesis consist of introduction, theory, activities performed, recommendation and modification of material handling method, and reanalyze the results after doing improvements. The thesis consists of seven chapters and each chapter is described as below: