DESIGN OF A COMFORTABLE BUS PASSENGER SEAT

LIEW KEAN FEI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
SUPERVISOR DECLARATION

“I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)

Signature:
Supervisor:
Date:
DESIGN OF A COMFORTABLE BUS PASSENGER SEAT

LIEW KEAN FEI

This report is submitted in partial fulfillment of the requirements for the award of a Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering
Universiti Teknikal Malaysia Melaka

JUNE 2013
DECLARATION

“I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged.”

Signature: ..
Author: ..
Date: ..
Special thanks
My Parents
My Family
My FYP Supervisor
My Seminar Panels
My Course Mates
ACKNOWLEDGEMENT

First of all, I would like to special thanks to my final year project supervisor, Ir. Dr. Tan Chee Fai. In the progress of this final year project, Ir. Dr. Tan had given me a lot of ideas and comments to help me to improve in my project. Besides, I really appreciate him to spend a lot of time to discuss and guide me in these 2 semesters until the final year project completed.

Besides, I would like to thank my parents and my family for giving me spirit support and financial support while I completing my final year project. I also want to wish my appreciation to all my course mates who discuss and recommend some solutions during I faced problems and brainstorming session.

Next, I want to thank to my final year project panels Dr. Siti Nurhaida Binti Khalil and En. Syahibudil Ikhwan Bin Hj. Abdul Kudus for giving me some comments during seminar presentation which help me to improve in my project. Last but not least, I would like to appreciate all of my UTeM lecturers and staffs who spend their time for helping me to complete this final year project.
ABSTRAK

ABSTRACT

In this project is to design a comfortable bus passenger seat by integrating air-based and gel-based material. This is due to most of the express coaches are using polyurethane foam based cushion in the seat padding. This type of the seat padding will cause a bus passenger who sit for long journey will feel uncomfortable and fatigue. There are two main causes which lead to uncomfortable and fatigue which is vibration of drive vehicle and pressure distribution on the seat. There was a bus passenger seat survey conducted to identify the most uncomfortable body part during the bus travelling. In this research will emphasize the integrated design of a bus passenger seat to ensure maximum comfort to the bus passenger. The new design a bus passenger seat is using air-based and gel-based cushion to increase the comfortable parameters in the bus. After the brainstorm session, it contributed new ideas and come out with the best concept from the weighted objective evaluation. The selected concept was validated by using MatLab SimuLINK software. In the model validation had determine some of the parameters gave effect on the pressure change rate of air cushion model. The comfortable level of the air cushion could be improvement by reduce the pressure change rate. All the changing parameters were compared and discussed in this discussion section to show the improvement brought by this new design of bus passenger seat. In the final results shown that the height of air cell and the stiffness of air cell gave an impact of the comfortable bus passenger seat.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview 1
1.2 Problem Statement 2
1.3 Objective 2
1.4 Scope 3

CHAPTER 2 LITERATURE REVIEW

2.1 Defining the Comfortable 4
2.2 History of Seat 6
2.3 Current Seat Design 8
2.4 Current Bus Seat Issue 11
2.5 Air Seat Cushion 13
CHAPTER 3 METHODOLOGY
3.1 Introduction 17
3.2 Market Study 19
3.3 Brainstorming 19
3.4 Model Development 20
3.5 Documentation 21

CHAPTER 4 SUBJECTIVE ASSESSMENT
4.1 Subjective Evaluation On Bus Passenger Seat Comfort 22
4.2 Objectives 24
4.3 Methodology 24
 4.3.1 Method 25
 4.3.2 Survey Area 25
 4.3.3 Survey Questions Structure 25
 4.3.4 Method of Analyze Survey Results 26
 4.3.5 Procedures of Survey Session 26
4.4 Results 28
 4.4.1 Demographic Results 29
 4.4.2 General Questions Results 30
 4.4.3 Evaluation on Comfortable Level 31
4.5 Summary 35

CHAPTER 5 CONCEPTUAL DESIGN
5.1 Introduction 37
5.2 Design Methodology 38
5.3 Conceptual Design 39
5.4 Final Concept And Design 41
 5.4.1 Conceptual Design 1 41
 5.4.2 Conceptual Design 2 42
 5.4.3 Conceptual Design 3 43
Table of Contents

5.4.4 Conceptual Design 44
5.5 Concepts Evaluation 45
5.6 Summary 46

CHAPTER 6
MATHEMATICAL AND NUMERICAL MODEL 47
6.1 Mathematical Model 47
 6.1.1 Air Cushion 47
 6.1.2 Volume Flow Rate 52
6.2 Numerical Model 54
 6.2.1 Main Program 54
 6.2.2 Sub-Program 55
6.3 Model Validation 56

CHAPTER 7
RESULT AND DISCUSSION 64
7.1 Results 64
 7.1.1 Weight 64
 7.1.2 Air Cell Height 66
 7.1.3 Air Cell Stiffness 67
 7.1.4 Length of Orifice 68
 7.1.5 Diameter of Orifice 69
 7.1.6 Weight versus Air Cell Height 70
 7.1.7 Weight versus Air Cell Stiffness 71
7.2 Discussion 72

CHAPTER 8
CONCLUSION AND RECOMMENDATION 74
8.1 Conclusion 74
8.2 Recommendation 75

REFERENCES 76
APPENDICES 82
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The 5 points smiley scales</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>The summary of the demographic data</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Comfortable level evaluation after 1 hour bus travelling</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Comfortable level evaluation after 3 hours bus travelling</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of mean value after 1 and 3 hours bus travelling</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>The description of the product requirements for bus passenger seat</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>The morphology chart for bus passenger seat prototype</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>The weighted objective evaluation of prototype concepts</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>List of description for schematically model</td>
<td>49</td>
</tr>
<tr>
<td>6.2</td>
<td>List of constants value applied in model validation</td>
<td>56</td>
</tr>
<tr>
<td>6.3</td>
<td>Variables parameters used to validate model</td>
<td>56</td>
</tr>
<tr>
<td>6.4</td>
<td>Variables parameters changed in orifice</td>
<td>61</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary of percentage pressure change rate with different weights</td>
<td>70</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary of percentage pressure change rate with different weights</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Air cushion seat</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Source: Roho, 2012)</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Gel cushion seat</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Source: Geltec, 2012)</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Pressure distribution of a seated person</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(Source: Seigler, 2002)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Basic of seating unit</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(Source: Peterson, 2007)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Karl benz car</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(Source: Blair, 2008)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>The V-shaped depression</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(Source: Johnson, 1970)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>The bus seat frame</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(Source: Chardon, 1998)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>The seat cushion structure</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(Source: Michalak, 2012)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>The BMW new car seat concept</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(Source: Kamp, 2011)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Short distance bus seating</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(Source: MYrapid, 2012)</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Long distance bus seating</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(Source: Sri Maju, 2012)</td>
<td></td>
</tr>
</tbody>
</table>
2.10 Express coach bus schedule.
(Source: KKKL Sdn. Bhd., 2012) 12

2.11 The vehicle seat with inflatable air cushion
(Source: Awotwi et al., 1996) 14

2.12 Inflatable aircraft seat cushion
(Source: Duncan, 2003) 14

2.13 Contoured seat cushion
(Source: Graebe, 1991) 14

2.14 Example of the word map
(Source: Armstrong, 2006) 16

3.1 Flow chart of research activities 18

3.2 Brainstorming session 19

3.3 The solution for selected problem 20

3.4 The prototype of bus passenger seat 21

4.1 The smiley rating scales 26

4.2 Melaka Sentral Sdn. Bhd. 27

4.3 The interview-based method to approach bus passenger 28

4.4 Explanation terms and questions before answer survey questions 28

4.5 Pie chart showing percentage of types of bus seat take by bus passengers 30

4.6 Pie chart showing estimated travelling duration take by bus passengers 31

4.7 Comparison body discomfort for selected body parts 36

5.1 The total design process of bus passenger seat 39

5.2 The conceptual design 1 41

5.3 The exploded view for conceptual design 1 42

5.4 The conceptual design 2 42

5.5 The exploded view for conceptual design 2 43

5.6 The conceptual design 3 43

5.7 The exploded view for conceptual design 3 44

5.8 The conceptual design 4 44

5.9 The exploded view for conceptual design 4 45

6.1 The model of the air cells 48
6.2 The ROHO MOSAIC air cushion
6.3 The schematically model and free body diagram of two air cells
6.4 The flow in the orifice between 2 air cells with the average velocity
6.5 The main program in MatLab SimuLINK
6.6 The sub-program to calculate the final conditions
6.7 (a) Pressure change for seated air cell in baseline case (b) Pressure change rate for seated air cell in baseline case
6.8 (a) Pressure change for seated air cell in case 1 (b) Pressure change rate for seated air cell in case 1
6.9 (a) Pressure change for seated air cell in case 2 (b) Pressure change rate for seated air cell in case 2
6.10 (a) Pressure change for seated air cell in case 3 (b) Pressure change rate for seated air cell in case 3
6.11 Volume flow rate for seated air cell in baseline case
6.12 Volume flow rate for seated air cell in case A
6.13 Volume flow rate for seated air cell in case B
7.1 Pressure change rate on the different bus passenger weight
7.2 Pressure change rate on the different air cell height
7.3 Pressure change rate on the different air cell stiffness
7.4 Volume flow rate on the different length of orifice
7.5 Volume flow rate on the different diameter of orifice
7.6 Comparison of different weight with increasing of air cell height
7.7 Comparison of different weight with increasing of air cell stiffness
7.8 A comparison of weights on the Pcrms value by varying the cell height
(Source: Boateng, 2003)
LIST OF SYMBOLS

\[A_1 = \text{Seated area of air cell, } m^2\]
\[A_2 = \text{Connected area of air cell, } m^2\]
\[D = \text{Diameter of orifice, } m\]
\[g = \text{Acceleration due to gravity, } ms^{-2}\]
\[h = \text{Air cell height, } m\]
\[K = \text{Air cell stiffness, } N/m\]
\[L = \text{Length of orifice, } m\]
\[P_1 = \text{Pressure in seated air cell, } Pa\]
\[P_2 = \text{Pressure in connected air cell, } Pa\]
\[P_{\text{initial}} = \text{Initial pressure for air cushion model, } KPa\]
\[\rho_{\text{air}} = \text{Density of air, } kg/m^3\]
\[\mu = \text{Dynamic viscosity, } kg/ms\]
\[t = \text{Time, } s\]
\[V_1 = \text{Volume of seated air cell, } m^3\]
\[V_2 = \text{Volume of connected air cell, } m^3\]
\[x_1 = \text{Vertical displacement of seated air cell, } m\]
\[x_2 = \text{Vertical displacement of connected air cell, } m\]
\[W = \text{Weight of the seated person, } kg\]
\[\Delta P = \text{Pressure change, } Pa\]
\[\frac{dP}{dt} = \text{Pressure change rate, } Pa/s\]
\[\dot{V} = \text{Volume flow rate, } m^3/s\]
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gantt chart of PSM I</td>
<td>82</td>
</tr>
<tr>
<td>B</td>
<td>Gantt chart of PSM II</td>
<td>83</td>
</tr>
<tr>
<td>C</td>
<td>Conceptual Design Drawing</td>
<td>84</td>
</tr>
<tr>
<td>D</td>
<td>Survey Approved Letter from UTeM</td>
<td>85</td>
</tr>
<tr>
<td>E</td>
<td>Survey Approved Letter from Melaka Sentral Sdn. Bhd.</td>
<td>86</td>
</tr>
<tr>
<td>F</td>
<td>Bus Passenger Seat Survey</td>
<td>88</td>
</tr>
<tr>
<td>G</td>
<td>MatLab Coding</td>
<td>93</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In this research is design a comfortable bus passenger seat by integrating air based cushion and gel based cushion. The air cushion as shown in Figure 1.1 is designed with a recessed area to take the pressure off the tailbone and help eliminate back pain to provide hours of soft comfortable seating.

![Air cushion seat](Source: Roho, 2012)

On the other hand, gel seat is contains layer of viscos elastic gel and conforms to the shape of the body. It also provides support while allowing body to take a natural sitting shape as shown in the Figure 1.2. Besides, the new design of the
seat will consider about the ergonomically shape to improve the Fit parameter levels of a bus passenger seat.

Figure 1.2: Gel cushion seat
(Source: Geltec, 2012)

1.2 PROBLEM STATEMENT

Nowadays, most of the express coaches are using polyurethane foam based cushion in the seat padding. This type of the seat padding will cause a bus passenger who sit for long journey will feel uncomfortable and fatigue. There are two main causes which lead to uncomfortable and fatigue which is vibration of drive vehicle and pressure distribution on the seat. In this research will emphasize the integrated design of a bus passenger seat to ensure maximum comfort to the passenger.

1.3 OBJECTIVE

To design a comfortable bus passenger seat by integrating air-based and gel-based material.
1.4 SCOPE

1. Study the current bus passenger seat and identify the product requirement on new design of bus passenger seat.
2. Design a bus passenger seat by using air-based and gel-based cushion to increase the comfortable level in the bus.
3. Simulate the new design of bus passenger seat by using MatLab SimuLINK.
CHAPTER 2

LITERATURE REVIEW

2.1 DEFINING THE COMFORTABLE

The term of “seat comfort” is mean that the short-term effect of feeling of a seat on a human body. This will be the sensation usually appear during sitting on a seat for a short interval of time. The feel of “Comfort” is a vague or ambiguous concept and generally defined as lack of discomfort (Shen et. al., 1997).

In contrast, “driver fatigue” defines the physical impairments due to experience the seat dynamics for a long time. These uncomfortable condition are known in nature and include reducing in attention during driving, decision-making not correctly, reaction time slow down and vigilance (Seigler, 2002). For example, a tractor driver may exposure a lot of tension in physical and mental. The operator work performance will be very poor if the seat is not comfortable and there is also a possibility of accidents (Mehta et. al., 2007).

From this case shown that a comfortable seat is very important for a tractor operator but other consumer also very concern about this issue. The consumer expectations for a comfortable automobile seat keep increasing and the evident is the current automobile seat comfort development process. The automobile seat comfort is designed and came out with an ergonomics background which is developed in the field of applied science (Fazlollahtabar, 2010).

In the automotive seating industry, seat system design teams focus on objective and measurable laboratory standards that can relate with the performance
measures. The performance measures of seat comfort for automobile based on human physiology and biomechanics. The mechanisms of the seat comfort are including pressure distribution, thermal comfort, vibration transmissibility and other (Fazlollahtabar, 2010).

Firstly, some of the researchers recommend that the pressure distribution will affects the perceptions of seat comfort. Pressure distribution at human-seat interface as shown in the Figure 2.1 is one of the important cause affecting the seating comfort and work efficiency of various worker (X. Wu, 1996). The appearance of the high pressure at the human-seat interface affect the soft tissue deformation leading to restricted blood and nutrient flows in the part of the body and bring discomfort to the human (Kumar et al., 1994). So, a seat with a good pressure distribution brings a suitable and balanced support to body areas during the contact on the seat.

![Figure 2.1: Pressure distribution of a seated person](source: Seigler, 2002)

Secondly, the thermal comfort also one of the important performance measures for seat comfort. The thermal comfort is a combination of temperature and humidity of the skin surface than can bring to discomfort. Most of reason is because of the increasing in the coefficient of friction when the skin is moist (Fazlollahtabar, 2010). There is a ready-made seats with different materials are studied by the physiological laboratory test methods skin model and seat comfort tester. In the climatic chamber shown the results that the fabric cover produces more sweat compare than leather which mean fabric cover bring more discomfort than leather seat (Bartels, 2003).
Next, the vibration transmissibility in vertical direction is one of the most investigated objective measures of seat comfort. Human will experience the vibration to some degree in any transportation or moving vehicle which is car, truck, bus, train, airplane or boat. The frequency range of 2-6 Hz will bring the hazard to the human operator because the resonance occurs within this frequency range. Then, the design parameters improvement for tractor seats is needed to increase the reductions in the level of ride vibrations exposure by tractor operators (Prasad, 1995).

From the thesis related the term of “seat comfort” had shown that to design a comfortable seat must reduce the several performance measures based on physiology and biomechanics. The performance measures are more important and need to be studied will be pressure distribution, thermal comfort and vibration transmissibility.

2.2 HISTORY OF SEAT

First of all, the seating unit is referring to a base and a seat support supported by the base. Usually, the structure for a seat is the back upright is function to support on the base for adjustment between an upright position and a reclined position (Peterson, 2007). On this seating unit, the cushion is position on the surface of the back support and the seat support. The cushions conduct a cushioning effect so that seated user’s body experienced the comfort when sit on the seating unit and the example of the seating unit as shown in the Figure 2.2 (Peterson, 2007).

![Figure 2.2: Basic of seating unit](source: Peterson, 2007)
After look into the basic of the seating unit, there is a Canadian magazine for antique and collectible cars, Old Autos was recently described the earliest reference to an automotive seating type (Ontario, 2007). One of the article with title “The Benz patent motor car, No 1” is about the world’s first petroleum-based fuel vehicle in 1885. The bench seat of this Karl Benz Car as shown in Figure 2.3 is described as “horseless carriage” and “The padded, leather bench seat sat on springs mounted directly to the frame” (Ontario, 2007). After that moment, the construction of the automotive seat and the cushioning material employed to build up a more comfortable place for operators and the improvement on automotive seat have continued to evolve (Blair, 2008).

![Figure 2.3: Karl benz car](Source: Blair, 2008)

Next, the seating cushion is very important for human who travelling because it can provide a comfortable seat in the vehicle. The ergonomic seating cushion has a central cavity and the interior boundaries form an oscillating waveform can provide a comfortable seat. It is because the feature had reduced the pressure gradient on skin pressing again the cushion, promoting blood flow to the region (Loomos, 2003).

In additionally, the cushioning material in seating unit plays a main role to support operator posture, reduce the vibration and improve the ride quality. By using the different characteristic of the seat cushion will affect the damping characterization and select the proper seat cushion will improve operator’s comfort. There is one of the results showing that the high density polyurethane foam based