BORANG PENGESAHAN STATUS TESIS

JUDUL: THE SEGMENTATION OF SATELLITE IMAGE USING REGION-BASED AND WATERSHED TRANSFORM TECHNIQUES.

SESII PENGAJIAN: SESI 2012/2013

Saya CHAI SIAO LING mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/)

___________ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

___________ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

_____/_______ TIDAK TERHAD

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat tetap : 60A, Lorong 2, 17th miles Kampung Siburan, 94200 Kuching, Sarawak, Malaysia

En.Othman bin Mohd
Nama Penyelia

Tarikh : ________________________ Tarikh: ________________________
THE SEGMENTATION OF SATELLITE IMAGE USING REGION-BASED AND WATERSHED TRANSFORM TECHNIQUES.

CHAI SIAO LING

This report is submitted in partial fulfillment of the requirement for the Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2013
DECLARATION

I hereby declare that this project entitled

THE SEGMENTATION OF SATELLITE IMAGE USING REGION-BASED AND WATERSHED TRANSFORM TECHNIQUES

is written by me and is my own effort and that no part has been plagiarized without citations

STUDENT: ___________________________ DATE: __________________________
(CHAI SIAO LING)

SUPERVISOR: ___________________________ DATE: __________________________
(DR. OTHMAN BIN MOHD)
DEDICATION

Dear Parent
Thank you for your incessant support and encouragement. Your sacrifices and loves have helped me to achieve this accomplishment.

Dear Teachers and Supervisors
Thank you for your continuous support, knowledge and guidance.

Dear Friends
Thank you for all the information, guidance, and encouragement.
I would like to convey my thanksgiving and appreciation to my supervisor, En.Othman bin Mohd for your guidance by providing me the opinions and suggestions as well as advices throughout the project.

I would also like to thank my parents for giving me varieties of moral supports and all kind of material supports throughout my years pursuing in this university.

Last but not least, I would like to give a big thanks to all my friends and course mates for their grace and kindness in sharing information and resources.

Thanks a lot.
ABSTRACT

The image segmentation is a main part of image processing by segmenting the image into partition according to the objects identity. The goal of applying this segmentation is to make an unrecognized image into more meaningful and easier to recognize by human observers. In this project, the image segmentation is extracted to analyse the region-based and watershed transform techniques. These techniques are further analyzed to identify the best technique to be used in image segmentation. At the end of this project, the results and the comparison of the advantages and disadvantages of region-based and watershed transform techniques will be carried out. Thus, the best segmentation technique can be identified and used for various purposes.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Research Questions 3
1.4 Objectives 4
1.5 Scopes 5
1.6 Project Significance 5
1.7 Expected Result 6
1.8 Conclusion 6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Fact and Finding 9
2.2.1 Image Processing Definition
2.2.2 Image Segmentation Definition
2.2.3 Image Segmentation based on Region-based
 2.2.3.1 Region Growing
 2.2.3.2 Region Splitting and Merging
2.2.4 Image Segmentation based on Watershed Transform
 2.2.4.1 Gradient Transform
 2.2.4.2 Marker-Controlled
2.3 Summary

CHAPTER 3 METHODOLOGY
3.1 Introduction
3.2 Problem Methodology
3.3 Project Schedule and Milestones
 3.3.1 PSM 1 Milestone
 3.3.2 PSM 2 Milestone
 3.3.3 Activities Milestone in PSM 1
 3.3.4 Activities Milestone in PSM 2
3.4 Summary

CHAPTER 4 PROJECT IMPLEMENTATION
4.1 Introduction
4.2 Project Requirement
 4.2.1 Software Requirement
 4.2.2 Hardware Requirement
4.3 Segmentation Techniques Algorithm
 4.3.1 Watershed Transform Segmentation
 4.3.1.1 Gradient Transform Algorithm
 4.3.1.2 Marker-Controlled Algorithm
 4.3.2 Region-Based Segmentation
 4.3.2.1 Region Growing Algorithm
 4.3.2.2 Region Splitting and Merging
4.4 Summary
CHAPTER 5 TESTING

5.1 Introduction 54
5.2 Test Preprocess 57
5.3 Test Process 58
 5.3.1 Watershed Transform Segmentation Testing 59
 5.3.1.1 Gradient Transform Testing 60
 5.3.1.2 Marker-Controlled Testing 62
 5.3.2 Region-Based Segmentation Testing 66
 5.3.2.1 Region Growing Testing 67
 5.3.2.2 Region Splitting and Merging Testing 71
5.4 Test Decision 72
 5.4.1 Comparison of Methods 73
5.5 Test Accuracy 77
 5.5.1 Further Testing for Marker-Controlled Watershed 79
 5.5.2 Further Testing for Region Growing 82
5.6 Test Final Output 87
 5.6.1 Comparison of Segmentation techniques 88
 5.6.1.1 Analysis of Segmentation Results 88
 5.6.1.2 Advantages of Watershed Transform and Region Growing 91
 5.6.1.3 Disadvantages of Watershed Transform and Region Growing 92
 5.6.1.4 Summary of Comparison 93
5.7 Summary 94

CHAPTER 6 PROJECT CONCLUSION

6.1 Introduction 95
6.2 Observation on Weaknesses and Strengths 95
6.2 Future Work 96
6.3 Contribution 96
6.4 Objectives Summarization 96
6.5 Summary 97
<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of Research Problems</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Summary of Research Questions</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary of Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of objects to be segmented (TALREJA, UDHWANI, & SINKAR, 2010)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Categories of Image Processing</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Segmentation Techniques</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary Milestones of PSM 1</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary Milestones of PSM 2</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Activities Milestones of PSM 1</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Activities Milestones of PSM 2</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Software Requirement</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Hardware Requirement</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>The Summarization of the Advantages of Methods</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>The Summarization of the Disadvantages of Methods</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>The Summary of Effectiveness of Segmentation Methods</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Classification of Segmented Objects by Watershed Transform</td>
<td>89</td>
</tr>
<tr>
<td>5.5</td>
<td>Classification of Segmented Objects by Region-Based</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>The Summarization of Advantages of Segmentation Techniques</td>
<td>93</td>
</tr>
<tr>
<td>5.7</td>
<td>The Summarization Disadvantages of Segmentation Techniques</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Organization of image processing</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of Region Growing</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Whole Image</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>First Split of Image</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Second Split of Image</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Merge of Image</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Example of splitting and merging tree</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Example of original image (Reddy & Ratnam, 1956)</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Example of watershed transform image. (Reddy & Ratnam, 1956)</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Example image of watershed transform using distance transform. (Reddy & Ratnam, 1956)</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>Example image of watershed transform using gradient transform. (Reddy & Ratnam, 1956)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Image processing chart</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary Chart</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Project Methodology</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Project Methodology Flows</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>The Flow of Segmentation Techniques Implementation</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>The Flow of Watershed Transform Segmentation</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>The Flow of Gradient Transform</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Codes to get grayscale input image</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Codes to get gradient magnitude image</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>Codes to get Ridge Lines image</td>
<td>42</td>
</tr>
</tbody>
</table>
4.7 Codes to Smooth the Gradient Image. 43
4.8 The Flow of Marker-Controlled Watershed 44
4.9 Codes for The Grayscale Input Image 45
4.10 Codes to get the watershed ridge lines image 45
4.11 Code for Regional Minima of Gradient Magnitude Image 45
4.12 Code for Internal Markers 46
4.13 Code for External Markers 46
4.14 Code for Modified Gradient Image 46
4.15 Code for Improved Segmentation Results 47
4.16 The Flow of Region-Based Segmentation 47
4.17 The Flow of Region Growing 48
4.18 Codes to change the gray-scale image, f to double precision 49
4.19 Codes to obtain seed point image, SI 49
4.20 Codes for Binary Image that passed the threshold test, TI 50
4.21 Codes to get regions homologous to each seed in S 50
4.22 Codes to show Grayscale Input Image, f 50
4.23 Codes to show seed point image, SI 51
4.24 Codes to show binary image with threshold test, TI 51
4.25 Codes to show region growing result images, g 51
4.26 The Flow Chart of Region Splitting and Merging 52
5.1 Image Segmentation Testing Process 54
5.2 The Flow of Image Segmentation Testing 56
5.3 The Flow of Preprocess Testing 57
5.4 Preprocessing (a) The Original Image. (b) The Grayscale Image. 58
5.5 The Flow of Watershed Transform Processing Testing 59
5.6 The Grayscale input image, f 60
5.7 Gradient Magnitude Image 60
5.8 Ridge Lines image 61
5.9 The Segmentation with Some Smoothing Operation 61
5.10 The Input Image 62
5.11 Gradient Magnitude Image 63
5.12 Oversegmentation Result 63
5.13 Regional Minima of Gradient Magnitude Image 64
5.14 Internal Markers 64
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>ALPHABET</th>
<th>WORD</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>C</td>
<td>CNN</td>
<td>Cellular Neural Network</td>
</tr>
<tr>
<td>F</td>
<td>FL</td>
<td>Fuzzy Logic</td>
</tr>
<tr>
<td>G</td>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>R</td>
<td>RP</td>
<td>Research Problem</td>
</tr>
<tr>
<td>R</td>
<td>RQ</td>
<td>Research Question</td>
</tr>
<tr>
<td>R</td>
<td>RO</td>
<td>Research Objective</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Image processing is computer imaging where application involves a human being in the visual loop. In other words the image are to be examined and a acted upon by people (Khalaf and Sagheer 2008). The main topics within the field of image processing include image segmentation, image classification and image compression. In this project will only cover on image segmentation. Image segmentation is an essential step in the image processing. Image segmentation is a process in which regions or features sharing similar characteristics are identified and grouped together. The purpose of image segmentation is to simplify change the representation of an image into something that is more meaningful and easier to analyze. Several techniques have been developed for image segmentation. This project is to compare the two basic image segmentation techniques, there are region-based and watershed transform.

1.1 Project Background

Image processing plays an important role in the development of technologies for dealing with security issues. It is divided into a few categories such as segmentation and classification. However, this project is covered only the image segmentation. Segmentation is one of the steps in image processing. It refers to the process of partitioning a digital image into multiple regions (sets of pixels) (Amol C
and Pravin L 2007). Each of the pixels in a region is similar with respect to some characteristic or computed property, such as color, intensity, or texture (Singh and Singh 2010).

Nowadays, image segmentation has become an important technology for image processing. The applications of segmentation range from filtering of noisy images, location of tumours and other pathologies, measure tissue volumes, computer-guided surgery and diagnosis of anatomical structure medical imaging, locate objects in satellite images (roads, forests etc.), face recognition, iris recognition, fingerprint recognition, traffic control systems, brake light detection, machine vision, crop disease detection in agricultural images etc (Saritha 2013).

There are many techniques under the image segmentation. These techniques include thesholding, edge-detection, clustering, histogram-based, region-based, and watershed transform. This project will only focus on two of the segmentation techniques; there are region-based and watershed transform.

On the one hand, the comparison between region-based and watershed techniques will carry out in this project in order to identify the best technique to use in image segmentation.

1.2 Problem Statements

Image is essential in many workplaces especially in the field of security. Sometime we are hardly to recognize the elements or objects inside the image that we needed and lead to annoy to be happened. In order to make the unclear image easy to be recognized, the method of image segmentation is applied. However, there are lots of techniques under image segmentation that can be used. We do not understand more about the benefits of each of the image segmentation techniques. Therefore, we are getting confuse about which technique is the most suitable. The Research Problem (RP) is summarized into Table 1.1.
Table 1.1 Summary of Research Problem

<table>
<thead>
<tr>
<th>No</th>
<th>Research Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 1</td>
<td>Lack of image understanding and recognition of an object in the image.</td>
</tr>
<tr>
<td>RP 2</td>
<td>Lack of understanding about the benefits for each of the techniques.</td>
</tr>
<tr>
<td>RP 3</td>
<td>Too many techniques can be applied to image segmentation.</td>
</tr>
</tbody>
</table>

1.3 Research Questions

Three RQ are constructed to identify the research problem as discussed in previous section. These RQ is the guides to formulate the RO of this project.

RQ 1: How to distinguish or recognize the objects in an image?

This research question is formulated by considering the image understanding and recognition of an object in the image.

RQ 2: What are the advantages and disadvantages for each of the segmentation techniques?

This research question is formulated by considering the understanding about the benefits and drawbacks for each of the techniques selected.

RQ 3: Which segmentation techniques can produce the best result in image segmentation?

This research question is formulated by considering the best techniques that can be applied to image segmentation.
The research questions were summarized as shown in Table 1.2.

Table 1.2 Summary of Research Question

<table>
<thead>
<tr>
<th>RP</th>
<th>RQ</th>
<th>Research Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 1</td>
<td>RQ 1</td>
<td>How to distinguish or recognize the objects in an image?</td>
</tr>
<tr>
<td>RP 2</td>
<td>RQ 2</td>
<td>What are the advantages and disadvantages for each of the segmentation techniques?</td>
</tr>
<tr>
<td>RP 3</td>
<td>RQ 3</td>
<td>Which segmentation techniques can produce the best result in image segmentation?</td>
</tr>
</tbody>
</table>

1.4 **Objective**

Based on the research questions formulated in previous section, appropriate RO are developed as follows:

RO 1: To analyse the region-based and watershed transform techniques.

In order to distinguish or recognize the objects in an image, first need to identify the image segmentation techniques and analyse the selected techniques.

RO 2: To compare the advantages and disadvantages of region-based and watershed transform techniques.

Based on the analysis and results of the techniques, the comparison of the techniques will be carrying out.

RO 3: To identify the best technique to be used in image segmentation.

The best techniques to use in image segmentation can be defined from the comparison that had done in previous.
The research objectives were summarized as shown in Table 1.3.

<table>
<thead>
<tr>
<th>RP</th>
<th>RQ</th>
<th>RO</th>
<th>Research Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 1</td>
<td>RQ 1</td>
<td>RO 1</td>
<td>To analyse the region-based and watershed transform techniques.</td>
</tr>
<tr>
<td>RP 2</td>
<td>RQ 2</td>
<td>RO 2</td>
<td>To compare the advantages and disadvantages of region-based and watershed transform techniques.</td>
</tr>
<tr>
<td>RP 3</td>
<td>RQ 3</td>
<td>RO 3</td>
<td>To identify the best technique to be used in image segmentation.</td>
</tr>
</tbody>
</table>

1.5 **Scopes**

The Scope of this project is going to be conducted by using the image from Malaysia Remote Sensing Agency which taken from Quick Bird Satellite Image for June 2010 of Kuala Linggi Mangroves Forest, Alor Gajar Melaka with size of 277 x 225 pixels on 256 bits or uint 8. Besides, the segmentation techniques used were focusing only on region-based and watershed transform techniques in order to identify the best techniques which produce the better output. The software used to do the segmentation was Matlab R2009a.

1.6 **Project Significant**

This study will be a significant endeavor in recognizing pattern of an image. This study will also beneficial to professionals in many workplaces for security issues. By understanding the advantages and disadvantages of each of the image segmentation techniques, the best technique will be defined.
1.7 Expected Result

At the end of this project, the results must achieve the goals of this project such as:

i. The objects in an image can be distinguished or recognized easily.
ii. The best image segmentation technique is identified.
iii. The advantages and disadvantages for each of the segmentation techniques should be discovered after the carry out the comparison.

1.8 Conclusion

In conclusion, this project will identify the techniques used for the image segmentation and analyse the region-based and watershed transform techniques. Besides, the suitable or the best technique for image segmentation will be defined. The operations of the techniques will be controlled by using the MatlabR2009a software. Furthermore, the problem statement, research questions, research objectives, project scope, project significant and expected result were clearly stated in this chapter. In the next chapter will cover on the literature review and project methodology.
CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Image segmentation is very essential image analysis task in image engineering and computer vision. The pixels identified in an image of segments share a homogeneous spectral similarity within a segment. The goal of segmentation is to change the representation of an image into more simple form that is easier to process and analyze. Image segmentation is normally used to locate objects especially in satellite image by applying segmentation algorithm.

Image segmentation algorithms are classified into several types according to the segmentation techniques such as thresholding, edge-detection, region-based and watershed transform. These techniques have their own advantages and disadvantages in terms of performances and basically the techniques were used based on the suitability to the problems.

Segmentation algorithm is divided into two categories. In the first category, the approach is to partition an image based on abrupt changes in intensity values which called discontinuity. The other category, the approach is to partition an image into regions that are similar according to some predefined criteria (Zhongliang, Ling et al. 2008). When dealing with the satellite imagery, the image can be divided into various landscapes according to the object to be segmented. The table 2.1 shows the classification of the segmented objects.
Table 2.1 Classification of objects to be segmented (TALREJA, UDHWANI et al. 2010)

<table>
<thead>
<tr>
<th>No.</th>
<th>Landscape</th>
<th>Segmentation required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Urban Landscape</td>
<td>Roads, Buildings, Gardens, Lakes, Rivers</td>
</tr>
<tr>
<td>2.</td>
<td>Rural Landscape</td>
<td>Farms of different crops and patterns Human establishments Roads, Rivers, Canals</td>
</tr>
<tr>
<td>3.</td>
<td>Uninhabited Landscape</td>
<td>Forests of different kinds, Oasis in a desert, Roads, Rivers, Lakes, Swamps, Glaciers</td>
</tr>
<tr>
<td>4.</td>
<td>Sea and Oceans</td>
<td>Oil spills, Broken ice shelves or icebergs, Large masses of floating algae, Individual vessels, floating in the ocean, Ocean currents if possible.</td>
</tr>
</tbody>
</table>

In this research, the two techniques to be selected for segmenting the image were region-based and watershed transform. The organization of image processing can be broadly classified as the Figure 2.1 shown below.

Figure 2.1 Organization of image processing