UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MAASPALIZA BINT AZRI  (I.C/Passport No: 770618-04-5114)
Registration/Matric No: KHA 090044
Name of Degree: DOCTOR OF PHILOSOPHY

COMPARISON OF SINGLE-PHASE TRANSFORMERLESS PHOTOVOLTAIC GRID-CONNECTED INVERTER TOPOLOGIES WITH HIGH EFFICIENCY AND LOW GROUND LEAKAGE CURRENT

Field of Study: POWER ELECTRONICS

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature

Date 6/1/2015

Subscribed and solemnly declared before,

Witness’s Signature

Date 6/1/2015

Name: Dr. Che Hang Seng
Designation: Pensyarah Kanan
UMPEDAC, Universiti Malaya
Abstract

When a transformer is taken out of a photovoltaic (PV) inverter system, the efficiency of the whole system can be improved. Unfortunately, the additional ground leakage current appears and needs to be considered. The problem of ground leakage current is that it poses an electrical hazard to anyone touching the photovoltaic (PV) array’s surface. For safety issues, the ground leakage current should be less than 300 mA, which follows the VDE-0126-1-1 German standard. To minimize the ground leakage current in the transformerless PV grid connected inverter system, the proposed inverter topologies (SC-HB inverter, bipolar H-Bridge inverter with CD-Boost converter, modified unipolar H-Bridge inverter with CD-Boost converter and modified unipolar H-Bridge inverter with modified boost converter) are analyzed, verified and compared in this thesis. In order to analyze the effect of unbalanced filter inductance on the transformerless bipolar H-Bridge inverter topology, the matching ratio of inductance ($L_r = L_{fl}/L_{fln}$ and $L_{p}/L_{p,n}$) is investigated. In addition, the effect of parasitic capacitance value on the transformerless bipolar H-Bridge inverter topology is studied. The effect of modulation techniques using bipolar SPWM and unipolar SPWM on the transformerless H-Bridge inverter topology is compared and analyzed in terms of common-mode voltage and ground leakage current. TMS320F2812 is used as a controller to generate the PWM control signal, maximum power point tracking (MPPT) based on power balance and Proportional-Integral (PI) controller. PSIM 9.0 simulation software is used to design the proposed transformerless inverter topologies. Simulation and experimental results verified the proposed inverter’s feasibility in addressing issues of transformerless DC/AC converters in grid-connected PV systems.
Abstrak

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Compassionate.

I would like to thank Allah The Almighty for blessing and giving me strength to accomplish this thesis. Special thanks to my supervisor, Prof. Dr. Nasrudin Abd. Rahim for his invaluable support, encouragement, supervision and useful suggestions throughout this project. His moral support and continuous guidance enabled me to go through the tough route to complete this project successfully.

I acknowledge my sincere indebtedness and gratitude to my beloved husband, Nazarul Abidin Ismail, my sons, Aizuddin Nasru!Haq, Ahmad Naqiuddin and Aaqil Najmuddin for his love, support and sacrifice throughout my toughest time in my life. My deepest gratitude for my friends for consistently encouraged me and keep my heart strong in accomplish this PhD study. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals.

Finally, I acknowledge my greatest thanks to University of Malaya and Universiti Teknikal Malaysia Melaka (UTeM) for all support given to complete this project.
## TABLE OF CONTENTS

### ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS
LIST OF ABBREVIATIONS

### CHAPTER 1: INTRODUCTION

1.1 Background 1
1.2 Objectives 6
1.3 Methodology and Scope of Study 7
1.4 Thesis Organization 8

### CHAPTER 2: SOLAR PV SYSTEMS

2.1 Introduction 10
2.2 Photovoltaic Module 10
   2.2.1 Types of PV Cell 11
   2.2.2 Operation of PV Cell 12
   2.2.3 PV Modules Behaviour 12
      2.2.3.1 Series PV Modules 14
      2.2.3.2 Parallel PV Modules 15
CHAPTER 3: OVERVIEW OF POWER CONVERTER PHOTOVOLTAIC SYSTEM

3.1 Introduction

3.2 Power Converter

3.3 Types of Non-Isolated DC-DC Converters Commonly Used

3.3.1 Non Isolated DC-DC Converters

3.3.1.1 Conventional DC-DC Boost Converter

3.3.1.2 Cuk-Derived Boost (CD-boost) Converter

3.3.1.3 Three-level DC-DC Boost Converter

3.3.1.4 Cascaded DC-DC Boost Converter

3.3.1.5 Inverting Zeta Derived DC-DC Converter

3.4 Pulse Width Modulation (PWM) Scheme

3.4.1 PWM based Voltage Forced Strategy

3.5 PV Inverter Topologies

3.6 Parasitic capacitance of PV System

3.7 Ground Leakage Current in Transformerless PV Grid-Connected System

3.8 Transformerless Single-Phase H-Bridge Inverter Topology

3.9 Common-Mode Voltage model in Transformerless PV H-Bridge Inverter System

3.10 Fourier Analysis of the Common-Mode Voltage
4.6 Proposed Bipolar H-Bridge inverter with CD-Boost Converter  
4.6.1 Power Decoupling Calculation  
4.6.2 Cuk-Derived Boost (CD-Boost) Converter  
4.6.3 Proposed Modified Unipolar H-Bridge Inverter with CD-Boost Converter  
  4.6.3.1 Switching Strategy of Modified Unipolar H-Bridge Inverter with CD-Boost Converter  
  4.6.3.2 Mode of Operation for Modified Unipolar H-Bridge Inverter with CD-Boost Converter  
4.7 Proposed Modified DC-DC Converter with Low Input Current Ripple  
4.8 Proposed Modified Unipolar H-Bridge Inverter with Modified Boost Converter  
  4.8.1 Mode of Operation of Proposed Unipolar H-Bridge Inverter with Modified Boost Converter  
4.9 Power Balancing Controller  
4.10 Anti-islanding Protection  
4.11 Summary  

**CHAPTER 5: SIMULATION RESULTS**  
5.1 Introduction  
5.2 Simulation of Single-Phase H-Bridge Inverter  
5.3 Proposed SC-HB Configuration  
5.4 Conventional Boost converter and CD-Boost Converter  
5.5 Proposed Bipolar H-Bridge inverter with CD-Boost Converter  
5.6 Proposed Modified unipolar H-Bridge inverter with DC-Boost Converter  
5.7 Proposed Modified Unipolar H-Bridge Inverter with Modified Boost Converter  
5.8 Summary
CHAPTER 6: EXPERIMENTAL RESULTS

6.1 Introduction 140
6.2 Hardware Configuration 140
6.3 Experimental Results 143
   6.3.1 Non-Isolated DC-DC Boost Converter 143
   6.3.2 Ripple of Input DC Current 148
   6.3.3 Comparison for Various Non-Isolated DC-DC Boost Converter 151
6.4 Experimental Results of Single-Stage H-Bridge Inverter Topologies 154
   6.4.1 Conventional Unipolar and Bipolar H-Bridge Inverter Topology 154
   6.4.2 Effect of Filter Impedance Matching and Parasitic Capacitance to Ground Leakage Current in Bipolar H-Bridge Inverter 159
   6.4.3 HB-ZVR Inverter Topology 162
   6.4.4 Proposed SC-HB Inverter Topology 164
6.5 Experiment Results of Proposed Two-Stage Inverter System 167
   6.5.1 Proposed Bipolar H-Bridge Inverter with CD-Boost Converter 167
   6.5.2 Proposed Modified Unipolar H-Bridge Inverter with CD-Boost Converter 170
   6.5.3 Proposed Modified Unipolar H-Bridge Inverter with Modified Boost Converter 173
6.6 Performance Comparisons for Various Inverters 174
6.7 Controlling Algorithm for MPPT 178
6.8 Anti-islanding 179
6.9 Summary 180
CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Concluding Remarks 181
7.2 Author's Contribution 183
7.3 Future Works 184

REFERENCES 185

APPENDICES

APPENDIX A Hardware Experimental Set-up A.1
APPENDIX B Code Generation in TMS32F2812 DSP B.1
APPENDIX C Summary of Relevant Published work by the Author C.1
LIST OF FIGURES

Figure 1.1 Growth of Worldwide Energy Production Since 1970 to 2025 (Wikipedia.org) 1
Figure 1.2 World Total Electricity Production from Renewable Sources in 2011 (IEA International Energy Agency, 2010) 2
Figure 1.3 Solar PV Global Capacity 1995-2012 (REN21, 2013) 3
Figure 1.4 The world major inverter manufacturer in 2005 (Report Milestone, 2005) 4
Figure 1.5 The effect of isolating transformers to European inverter efficiency (Schlumberger, 2007) 6
Figure 2.1 Photovoltaic cells, modules, panels and arrays 11
Figure 2.2 Types of Silicon PV Cells 11
Figure 2.3 Representation of PV modules in circuit diagram 13
Figure 2.4 Single PV module characteristic curve 13
Figure 2.5 Series connection of PV modules 14
Figure 2.6 Series PV module connection IV curve 14
Figure 2.7 Parallel connection of PV modules 15
Figure 2.8 I-V Parallel PV Modules curve 15
Figure 2.9 Series-parallel connection of PV module 16
Figure 2.10 I-V curve for series-parallel configuration (Chetan, 2011) 16
Figure 2.11 Stand-alone PV system (Chetan, 2011) 17
Figure 2.12 PV direct conversion 18
Figure 2.13 PV interactive conversion 18
Figure 2.14 PV on-line conversion 18
Figure 2.15 PV parallel coordinated conversion 19
Figure 2.16 Grid-connected PV system (Chetan, 2011) 20
<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>Hybrid PV system (Electricity Resources Branch, 2011)</td>
</tr>
<tr>
<td>2.18</td>
<td>Central inverter connection</td>
</tr>
<tr>
<td>2.19</td>
<td>String inverter connection</td>
</tr>
<tr>
<td>2.20</td>
<td>Module integrated inverter configuration</td>
</tr>
<tr>
<td>2.21</td>
<td>Multistring inverter configuration</td>
</tr>
<tr>
<td>2.22</td>
<td>Single-phase multistring five-level inverter topology</td>
</tr>
<tr>
<td>2.23</td>
<td>PV inverter with DC-DC converter and HF transformer</td>
</tr>
<tr>
<td>2.24</td>
<td>PV transformerless H-Bridge inverter system</td>
</tr>
<tr>
<td>2.25</td>
<td>Perturbation and observation MPPT technique</td>
</tr>
<tr>
<td>2.26</td>
<td>Incremental Conductance MPPT flowchart method</td>
</tr>
<tr>
<td>2.27</td>
<td>Islanding detection methods</td>
</tr>
<tr>
<td>3.1</td>
<td>Types of DC to AC converter</td>
</tr>
<tr>
<td>3.2</td>
<td>DC-DC converter block diagram</td>
</tr>
<tr>
<td>3.3</td>
<td>General block diagram of AC to DC converter</td>
</tr>
<tr>
<td>3.4</td>
<td>General block diagram of AC to AC converter</td>
</tr>
<tr>
<td>3.5</td>
<td>The DC-DC boost converter</td>
</tr>
<tr>
<td>3.6</td>
<td>Boost converter waveform (a) Inductor voltage, (b) Inductor current</td>
</tr>
<tr>
<td>3.7</td>
<td>The CD- Boost converter circuit</td>
</tr>
<tr>
<td>3.8</td>
<td>Three level DC-DC boost converter</td>
</tr>
<tr>
<td>3.9</td>
<td>Switching pattern and inductor voltage waveform of three-level converter; (a) ( V_i &lt; V_o/2 ), (b) ( V_i &gt; V_o/2 ).</td>
</tr>
<tr>
<td>3.10</td>
<td>Cascaded DC-DC boost converter</td>
</tr>
<tr>
<td>3.11</td>
<td>Inverting zeta derived boost converter</td>
</tr>
<tr>
<td>3.12</td>
<td>Principle of sinusoidal PWM technique</td>
</tr>
<tr>
<td>3.13</td>
<td>The top and cross-section view of PV module with mounting frame</td>
</tr>
</tbody>
</table>
Figure 3.14 Detail cross-section of PV module.

Figure 3.16 Single-phase transformerless inverter with parasitic capacitance

Figure 3.17 Output inverter voltage ($V_{ab}$) using unipolar PWM technique

Figure 3.18 Output inverter voltage ($V_{ab}$) using bipolar PWM technique

Figure 3.19 The common-mode model for the PWM voltage source inverter system

Figure 3.20 Simplified equivalent model of common-mode resonant circuit

Figure 3.21 Equivalent circuit for the common-mode leakage current path

Figure 3.22 HERIC topology

Figure 3.23 HB-ZVR topology

Figure 3.24 H6 topology (German Patent, 2003)

Figure 3.25 H5 topology

Figure 3.26 oH5 topology (Huafeng et al., 2011)

Figure 3.27 Half bridge inverter topology

Figure 3.28 NPC inverter topology

Figure 3.29 (a) LCL filter configuration case (1), (b) LCL filter configuration case (2)

Figure 3.30 (a) Common-mode voltage and (b) ground leakage when unipolar PWM technique is used

Figure 3.31 (a) Common-mode voltage and (b) leakage when bipolar PWM technique is used

Figure 3.32 Common-mode voltage and leakage ground current in case of HERIC topology

Figure 3.33 Common-mode voltage and leakage ground current in case of HB-ZVR topology

Figure 3.34 Common-mode voltage and leakage ground current in case of H6 topology
Figure 3.35 Common-mode voltage and leakage ground current in case of H5 topology 73
Figure 3.36 Common-mode voltage and leakage ground current in case of oH5 topology 73
Figure 3.37 Transformerless multilevel cascade inverter (F. Peng et al., 1996) 75
Figure 3.38 Single phase five level diode clamped inverter topology (Manjrekar M.D & Lipo T.A, 1998) 76
Figure 3.39 Flying capacitor topology (Hung and Corzine, 2006) 76
Figure 3.40 Multistring five-level single phase inverter (Rahim et al. 2010) 77
Figure 3.41 MIC arrangement 77
Figure 3.42 Grid-Connected PV System using two energy processing stages (Martin & Demonti, 2002) 78
Figure 3.43 Modified inverter configuration (Saha et al., 1998) 78
Figure 3.44 Two-stage photovoltaic grid-connected inverter (Chomsuvans et al. 2002) 78
Figure 3.45 Buck-boost-operation-based sinusoidal inverter circuit (Funabiki et al, 2002) 79
Figure 3.46 Transformerless PV inverter with DC-DC boost converter 79
Figure 3.47 DC-AC boost inverter (Caceres and Barbi, 1999) 80
Figure 4.1 Block diagram of the proposed transformerless PV grid-connected system 82
Figure 4.2 Conventional transformerless H-Bridge inverter 83
Figure 4.3 Half-positive cycle state for H-Bridge circuit (state I) 84
Figure 4.4 Zero state for half-positive cycle (state II) 85
Figure 4.5 Zero state for half-positive cycle (state III) 85
Figure 4.6 Positive cycle state for bipolar H-Bridge inverter circuit 87
Figure 4.7 Negative cycle state for bipolar H-Bridge inverter circuit 87
Figure 4.8 LCL configuration for the proposed transformerless PV system 89
Figure 5.3   H-Bridge inverter output voltage for (a) hybrid & unipolar modulation technique  

Figure 5.3   H-Bridge inverter output voltage for (b) unipolar modulation technique  

Figure 5.4   Common-mode voltage of H-Bridge inverter for (a) hybrid & unipolar modulation technique  

Figure 5.4   Common-mode voltage of H-Bridge inverter for (a) bipolar modulation technique  

Figure 5.5   Ground leakage current of H-Bridge inverter for (a) bipolar modulation technique  

Figure 5.5   Ground leakage current of H-Bridge inverter for (b) unipolar modulation technique  

Figure 5.6   Simulated harmonic spectra of the common-mode voltage of the (a) unipolar and (b) bipolar SPWM techniques  

Figure 5.7   (a) Schematic diagram of SC-HB configuration  

Figure 5.7   (b) balancing circuit  

Figure 5.8   (a) Capacitor voltage ($V_{CB1}$ & $V_{CB2}$) without balancing circuit, (b) Capacitor voltage ($V_{CB1}$ & $V_{CB2}$) with balancing circuit  

Figure 5.9   Simulation results of proposed SC-HB inverter topology; (a) common-mode voltage ($V_{cmm}$), (b) ground leakage current ($I_g$)  

Figure 5.10   $S_1$ & $S_2$ switching, imbalance dc link series capacitor voltages ($V_{CB1}$ & $V_{CB2}$) and Common-mode voltage ($V_{cmm}$)  

Figure 5.11   (a) Conventional boost converter  

Figure 5.11   (b) CD-Boost converter circuit  

Figure 5.12   Input voltage ($V_i$), Output converter voltage ($V_{dc}$) and switch stress voltage ($V_s$) for (a) conventional converter  

Figure 5.12   Input voltage ($V_i$), Output converter voltage ($V_{dc}$) and switch stress voltage ($V_s$) for (b) DC-Boost converter  

Figure 5.13   Schematic diagram of proposed bipolar H-Bridge inverter with DC-Boost converter system
Figure 5.14  
(a) Inverter voltage, (b) AC signal waveform of proposed bipolar H-Bridge inverter with CD-Boost converter

Figure 5.15  
(a) Common-mode voltage, (b) ground leakage current of proposed H-Bridge inverter with CD-Boost converter system

Figure 5.16  
Modified unipolar H-Bridge inverter with CD-Boost converter circuit

Figure 5.17  
(a) Positive zero state mode for S1,S3 & Sc; (b) Negative zero state mode for S2,S4 & Sb of modified unipolar H-Bridge inverter with CD-Boost converter

Figure 5.18  
Modified unipolar H-Bridge inverter with CD-Boost converter of (a) switching for Sb,Sc and Sa, (b) common-mode voltage and ground leakage current

Figure 5.19  
PSIM simulation results for the input currents of a proposed boost converter

Figure 5.20  
(a) $A_{IL}$ conventional boost converter

Figure 5.20  
(b) $A_{IL}$ proposed modified boost converter

Figure 5.21  
Schematic diagram of modified unipolar H-Bridge inverter with modified boost converter

Figure 5.22  
(a) AC voltage, (b) common-mode voltage, (c) ground leakage current of modified unipolar H-Bridge inverter with modified boost converter

Figure 6.1  
Experimental setup

Figure 6.2  
eZdsp™ F2812 board kit

Figure 6.3  
Functional block diagram of of eZdsp™ F2812 board kit

Figure 6.4  
Block diagram of eZdsp™ F2812 board kit (Texas Instrument)

Figure 6.5  
PWM for conventional boost converter, cascade boost converter, inverting zeta derived boost converter, CD-Boost converter and modified boost converter

Figure 6.6  
Three-level boost converter PWM pattern

Figure 6.7  
Voltage input, ($V_i$) voltage output ($V_{dc}$) and switch voltage stress ($V_s$) for conventional boost and modified boost converter

xviii
Figure 6.8 Voltage input ($V_i$), voltage output ($V_{dc}$) and switched voltage ($V_{sa}$ & $V_{sb}$) of cascade boost converter 146

Figure 6.9 Voltage input ($V_i$), voltage output ($V_{dc}$) and switch voltage stress ($V_s$) of three-level converter 146

Figure 6.10 Voltage input ($V_i$), voltage output ($V_{dc}$) and switch voltage stress ($V_s$) of inverting zeta derived boost converter 147

Figure 6.11 Voltage input ($V_i$), voltage output ($V_{dc}$) and switch voltage stress ($V_s$) of CD-Boost converter 148

Figure 6.12 Input current ($I_i$) waveform of conventional boost converter 149

Figure 6.13 Input current ($I_i$) waveform of three-level boost converter 149

Figure 6.14 Input current ($I_i$) waveform of CD-Boost converter 149

Figure 6.15 Input current ($I_i$) waveform of zeta derived boost converter 150

Figure 6.16 Input current ($I_i$) waveform of cascade boost converter 150

Figure 6.17 Input current ($I_i$) waveform of modified boost converter 150

Figure 6.18 Conversion ratio gains of the various DC-DC converters 151

Figure 6.19 Normalized switch stresses of the various DC-DC converters 152

Figure 6.20 Efficiency of various converters. 153

Figure 6.21 PWM pattern of conventional unipolar technique (a) $S1$&$S2$ 154

Figure 6.21 PWM pattern of conventional unipolar technique (b) $S3$&$S4$ 155

Figure 6.22 Output inverter voltage ($V_{ab}$) (Channel 1, 250 V/div, t: 5 ms/div) 155

Figure 6.23 Common-mode voltage ($V_{cm}$, channel 1) and ground leakage current ($I_g$, channel 2) for conventional unipolar PWM technique (measured by Fluke 434 Power Quality Analyzer) 155

Figure 6.24 FFT of Common-mode voltage for conventional unipolar H-Bridge inverter 156

Figure 6.25 AC waveform of conventional unipolar H-Bridge inverter 156

Figure 6.26 THD ac current for conventional unipolar H-Bridge inverter 156

Figure 6.27 Bipolar H-Bridge inverter switching pattern, (a) $S1$&$S4$, (b) $S2$&$S3$ 157
Figure 6.28  Output inverter \(V_{ab}\) for bipolar H-Bridge inverter

Figure 6.29  AC waveforms for bipolar H-Bridge inverter

Figure 6.30  Common-mode voltage \(V_{comm}\) (channel 1) and ground leakage current \(I_g\) (channel 2) for bipolar H-Bridge inverter (measured by Fluke 434 Power Quality Analyzer)

Figure 6.31  FFT of Common-mode voltage for conventional bipolar H-bridge inverter

Figure 6.32  THD current for bipolar H-Bridge inverter (measured by Fluke 434 Power Quality Analyzer)

Figure 6.33  The effect of filter impedance mismatch on ground leakage current levels and ac waveforms

Figure 6.34  The ground-leakage current spectrum when the impedances mismatched

Figure 6.35  Ground leakage current levels against filter ratio values \(L_r\) (\(L_{fln}/L_{fln}\) & \(L_{fl}>L_{fln}\))

Figure 6.36  Parasitic capacitance vs. ground leakage current

Figure 6.37  Switching pattern for HB-ZVR topology

Figure 6.38  AC waveform for HB-ZVR topology

Figure 6.39  THD ac current for HB-ZVR topology

Figure 6.40  Common-mode voltage and ground leakage current for HB-ZVR topology (Measured by Fluke 434 power Quality Analyzer)

Figure 6.41  FFT of common-mode voltage for HB-ZVR topology

Figure 6.42  Series dc-link capacitor voltages \(V_{C_{dc1}} \& V_{C_{dc2}}\) of HB-ZVR Topology

Figure 6.43  Switching pattern for balancing circuit

Figure 6.44  Series dc-link capacitors, (a) without balancing circuit, (b) with balancing circuit (vertical scale: 50 V/div; horizontal scale: 2.5 ms/div)

Figure 6.45  Common-mode voltage and ground leakage current of SC-HB topology (measured by Fluke 434 Power Quality Analyzer)
Figure 6.46 FFT of common-mode voltage for SC-HB topology

Figure 6.47 Grid waveforms, ac voltage (100V/div) and ac current (5A/div) for unipolar proposed SC-HB inverter topology

Figure 6.48 THD current for SC-HB topology converter (measured by Fluke 435 series II Power Quality and Energy)

Figure 6.49 Common-mode voltage ($V_{cmn}$) obtained for bipolar H-Bridge inverter with CD-Boost converter

Figure 6.50 Harmonic spectrum of the common-mode voltage of bipolar H-Bridge inverter with CD-Boost converter

Figure 6.51 The ground leakage current, ac voltage, and ac current, of the bipolar H-Bridge inverter with CD-Boost converter

Figure 6.52 The ground leakage current spectrum of the bipolar H-Bridge inverter with CD-Boost converter

Figure 6.53 THD current for the bipolar H-Bridge inverter with CD-Boost converter (measured by Fluke 435 series II Power Quality and Energy)

Figure 6.54 Switching pattern for modified unipolar H-Bridge inverter with CD-Boost converter

Figure 6.55 Output inverter $V_{ab}$ (channel 1), common-mode voltage ($V_{cmn}$), channel 2) and ground leakage current $I_g$ (channel 3) for modified unipolar H-Bridge inverter with CD-Boost converter

Figure 6.56 FFT of ground leakage current for modified unipolar H-Bridge inverter with CD-Boost converter

Figure 6.57 AC voltage and ac current waveforms for modified unipolar H-Bridge inverter with CD-Boost converter

Figure 6.58 THD grid current for modified unipolar H-Bridge inverter with CD-Boost converter

Figure 6.59 Inverter voltage, common-mode voltage and ground leakage current for proposed modified unipolar H-Bridge inverter with modified boost converter

Figure 6.60 AC waveforms of proposed modified unipolar H-Bridge inverter with modified boost converter
Figure 6.61  THD current for the proposed modified unipolar H-Bridge inverter with modified boost converter (measured by Fluke 435 series II Power Quality and Energy)  174

Figure 6.62  Conversion efficiency of different inverter topologies  175

Figure 6.63  Conversion efficiency of different two-stage inverter topologies  177

Figure 6.64  Time responses of $V_{pr}$, $I_{pr}$, $V_{mp}$, and $I_{mp}$, at open-circuit mode ($V_{pr}$) and MPP mode ($V_{mp}$)  178

Figure 6.65  Duty cycle and modulation index control  178

Figure 6.66  DC output current and voltage when the output power changes from 115W to 63W  179

Figure 6.67  Anti-islanding of over-frequency test (51 Hz)  179

Figure 6.68  Anti-islanding of under-frequency test (49 Hz)  180

Figure 6.69  Anti-islanding of under-voltage test (200 V)  180
LIST OF TABLES

Table 2.1  FiT Rates for Solar PV (Individual) (21 years from FiT Commencement Date 1st January 2014)  
Table 3.1  Advantages and disadvantages of selected topologies  
Table 4.1  Half-positive cycle operation mode of conventional unipolar H-Bridge topology  
Table 4.2  Operation mode of SC-HB topology  
Table 4.3  Four states of SC-HB inverter  
Table 4.4  Switching combination of proposed inverter (for positive grid voltage)  
Table 5.1  Simulation and experiment parameters of proposed SC-HB inverter  
Table 5.2  Simulation and experiment parameter values of proposed bipolar H-Bridge inverter with CD-Boost converter and modified unipolar H-Bridge inverter with CD-Boost converter  
Table 6.1  Experiment parameter values of various DC-DC converters  
Table 6.2  Experimental data results of various DC-DC converters  
Table 6.3  The matching value of impedances ($L_r$)  
Table 6.4  Performance comparisons of various single-stage inverter topologies  
Table 6.5  Performance comparisons of various two-stage inverter topologies
# LIST OF SYMBOLS

- $V_{ab}$: Inverter output voltage
- $V_{grid}$: Grid voltage
- $C_{pv}$: Parasitic capacitance
- $\eta_{mpt}$: Efficiency of MPP tracker
- $\eta_{conv}$: Efficiency of conversion
- $V_A$: Array voltage
- $I_A$: Array current
- $N_1, N_2$: Primary winding turn ratio, Secondary winding turn ratio
- $I_g$: Ground-leakage current
- $I_{grid}$: Grid current
- $V_{cm}$: Common-mode voltage
- $C_b, C_{dc}$: DC-link capacitors
- $P_{pv}$: Rated power of PV module
- $\omega_{grid}$: Grid frequency in (rad/sec)
- $V_c$: Rated input DC-link capacitor voltage
- $\Delta u_c$: Ripple voltage of DC-link capacitor
- $\Delta I_{Ripple, max}$: Maximum Ripple Current
- $V_{pv}$: Photovoltaic voltage
- $V_i$: Input voltage
- $V_{dc}$: Output DC-DC converter and input inverter voltage
- $V_{inv}$: Output inverter voltage
- $V_{rms}$: Root mean square voltage
- $P_{ac}$: AC output power
- $P_{dc}$: DC output power