QUALITY OPTIMIZATION IN THE MANUFACTURING INDUSTRY: AN APPLICATION CASE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

LEE WENG SUM

FACULTY OF MANUFACTURING ENGINEERING
2010
TAJUK: Quality Optimization in the Manufacturing Industry: An Application Case

SESU PENGAJIAN: 2009/10 Semester 2

Saya LEE WENG SUM (B050610013)

mengaku membenarkan tesis Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan ini adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ ✓ TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYELIA)

Alamat Tetap:
No. 63, Prsn Jelapang 13,
Tmn Silibin,
30100, Ipoh, Perak

Cop Rasm:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled “Quality Optimization in the Manufacturing Industry: An Application Case” is the results of my own research except as cited in references.

Signature :
Author’s Name : LEE WENG SUM
Date : 09 April 2010
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) with Honours. The member of the supervisory committee is as follow:

..

(Ms. Muzalna bt. Mohd Jusoh)
(Main Supervisor)
ABSTRACT

This report presents a research on quality optimization in the manufacturing industry. Nowadays, quality plays an important role in controlling the properties of a product. By providing optimal quality, the cost for rework or defect could be reduced. This research mainly focuses on the defects problem in one of the company in the manufacturing industry, namely ACME Ferrite Products Sdn. Bhd. The objectives of this research were to identify, analyze and recommend a solution for the defects problem in the manufacturing industry. The Six Sigma methodology was used in conducting this research. It is a step-by-step methodology that is consists of 5 important stages, such as define, measure, analyze, improve and control. As for the data analysis, some of the quality control tools such as cause and effect diagram, pareto chart, flow chart, histogram, and control chart were used. The main type of defect, which is dimension defect, was identified and proper tools will be used to analyze the quality problem. Next, the major defect was highlighted and analyzed. The root causes of the defects were investigated in this research and recommendations for improvement were proposed, such as job rotation, investigation of the significant response in sintering and barrelling process by using Taguchi Method and etc. After improvement is done, some control steps, such as x bar chart were suggested in order to maintain the outcome of this research.
ABSTRAK

DEDICATION

This research is dedicated to my family members and my friends, who express their love, care, encourage and support to me.
ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor Ms. Muzalna bt. Mohd Jusoh for her grateful guidance during the course of the final year’s project. Her valuable advice and guidance help me a lot and play a very important role in completing this report successfully.

Next, I would also like to express my appreciation to my fellow friends for their support and help in this report; especially my roommates Lee Chee Yoong from Robotic and Automation Course, Soo Sze Wei, and Kwong Soon Yuen from Manufacturing Management course.

Meanwhile, a special thanks to my lovely family for their understanding and caring delivered throughout the duration of this project.

Also, I would like to extend my gratitude to Mr Teng Khoon Wai (Senior Process Engineering Assistant in ACME) for giving me the valuable guidance while doing my research.

Last but not least, I also want to express my gratitude to UTeM for giving a chance to me to take part in this final year project and providing some awesome facilities and services, such as library and online journal database.
TABLE OF CONTENT

Abstract ... i
Abstrak ... ii
Dedication .. iii
Acknowledgement ... iv
Table of Content .. v
List of Tables .. xi
List of Figures .. xii
List Abbreviations .. xiii

1. INTRODUCTION ... 1
 1.1 Project Background .. 1
 1.2 Problem Statement .. 3
 1.3 Objective .. 4
 1.4 Scope of Study ... 4

2. LITERATURE REVIEW .. 5
 2.1 Definition of Quality ... 5
 2.2 Defects .. 5
 2.2.1 Defect Life Cycle ... 6
 2.2.2 Critical Factors of Defects ... 7
 2.3 Quality Management Philosophy ... 8
 2.3.1 Deming Philosophy ... 8
 2.3.1.1 Deming’s 14 Points ... 9
 2.3.1.2 Deming Cycle .. 9
 2.3.2 Juran Trilogy .. 10
 2.3.3 Crosby Philosophy .. 11
 2.4 Tools and Techniques of Quality Improvement 11
 2.4.1 Total Quality Management (TQM) ... 11
4.4 Summary ... 39

5. RESULT AND DISCUSSION ... 40
5.1 DMAIC Methodology ... 40
 5.1.1 Define Phase ... 40
 5.1.2 Measure Phase ... 42
 5.1.2.1 Types of Defects and Yield Percentage .. 42
 5.1.2.2 Sigma Level .. 43
 5.1.2.3 Evaluation Run for Dimension Defect ... 44
 5.1.3 Analyze Phase .. 49
 5.1.3.1 Types of Defects .. 49
 5.1.3.2 Yield Percentage ... 50
 5.1.3.3 Sigma Level .. 51
 5.1.3.4 Potential Causes that Contribute the Defects Problem 52
 5.1.3.5 Process Capability of the Evaluation Run for Dimension Defect 53
 5.1.3.6 Summary of Process Capability ... 60
 5.1.4 Improve Phase .. 61
 5.1.4.1 Suggestion for Improvement ... 61
 5.1.5 Control Phase ... 71
 5.1.5.1 Control Chart ... 71

6. CONCLUSION AND SUGGESTION ... 72
6.1 Conclusion ... 72
6.2 Suggestion for Future Study .. 73

REFERENCES .. 74
APPENDICES

A Defect Analysis Matrix (DAM)
B Green Cores
C Sintered Cores
D Sigma Conversion Table
LIST OF TABLES

2.1 Six-Sigma Tools and Deliverables Matrix 17
2.2 Rating of Process Improvement Techniques 18
2.3 Six Sigma Industrial Applications 19
2.4 Commonly Used Tools and Techniques 22
2.5 Summary of Previous Researches 25

3.1 Gantt Chart for PSM 1 & 2 ... 34

4.1 Types of Product in ACME ... 36
4.2 Types of Defects and the Description 38
4.3 Types of Defects .. 39

5.1 Types of Defects and Yield Percentage for RID from July to December 2009 42
5.2 Weekly sigma level for Baluns Cores (RID) from July to December 2009 43
5.3 Specification of Different Parameter 44
5.4a Dimension ‘A’ (First Run) 44
5.4b Dimension ‘A’ (Second Run) 45
5.4c Dimension ‘A’ (Third Run) 45
5.5a Dimension ‘B’ (First Run) 46
5.5b Dimension ‘B’ (Second Run) 46
5.5c Dimension ‘B’ (Third Run) 47
5.6a Dimension ‘D’ (First Run) 47
5.6b Dimension ‘D’ (Second Run) 48
5.6c Dimension ‘D’ (Third Run) 48
5.7 Summary of the Process Capability 60
5.8 Types of Sagger Surfaces ... 64
5.9 $L_9 (3^4)$ Orthogonal Array used in Taguchi Method for conducting the experiment 66
5.10 Template for ANOVA method example data 67
5.11 $L_9 (3^4)$ Orthogonal Array used in Taguchi Method for conducting the experiment 70
LIST OF FIGURES

2.1 Defect Cycle 7
2.2 Framework for Quality Improvement of Defective Production 24

3.1 Flow Chart of the Methodology 30
3.2 The Manufacturing Process of the Product in the Company 33

4.1 Baluns Cores (RID) 37
4.2 The product code for Baluns Cores (RID) 37
4.3 Parameter of the dimension for Baluns Cores 37

5.1 Yearly output rate of all products in year 2009 41
5.2 Types of defects 49
5.3 Yield Percentage from July to December of Year 2009 50
5.4 Sigma Level from July to December of Year 2009 51
5.5 Cause-and-Effect Diagram 52
5.6a Process Capability for dimension ‘A’ (First Run) 54
5.6b Process Capability for dimension ‘A’ (Second Run) 55
5.6c Process Capability for dimension ‘A’ (Third Run) 55
5.7a Process Capability for dimension ‘B’ (First Run) 56
5.7b Process Capability for dimension ‘B’ (Second Run) 57
5.7c Process Capability for dimension ‘B’ (Third Run) 57
5.8a Process Capability for dimension ‘D’ (First Run) 58
5.8b Process Capability for dimension ‘D’ (Second Run) 59
5.8c Process Capability for dimension ‘D’ (Third Run) 59
5.9 Overall Process of Baluns Cores (RID) 61
5.10 Process Flow Chart for the Utilization of eSPC 62
5.11 Change in volume from green to sintered core 63
5.12 Sagger with different surfaces 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Step No. of the Sagger</td>
<td>65</td>
</tr>
<tr>
<td>5.14</td>
<td>Flowchart of the Taguchi Method</td>
<td>65</td>
</tr>
<tr>
<td>5.15</td>
<td>Front View of Press machine</td>
<td>68</td>
</tr>
<tr>
<td>5.16</td>
<td>Preventive Maintenance Checklist for Press Machine</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>AIAG</td>
<td>Automotive Industry Action Group</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CTQ</td>
<td>Critical to Quality</td>
</tr>
<tr>
<td>DAM</td>
<td>Defect Analysis Matrix</td>
</tr>
<tr>
<td>DPMO</td>
<td>Defect per Million Opportunities</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effect Analysis</td>
</tr>
<tr>
<td>HPAC</td>
<td>Process Attribute Chart</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
<tr>
<td>ODC</td>
<td>Orthogonal Defect Classification</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PDPC</td>
<td>Process Decision Program Chart</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per Million</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>SPC</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This report described a project on optimizing the quality in a manufacturing industry. This chapter explained about the background of project, problem statement, objectives, and scope of study.

1.1 Project Background

Generally, quality is defined as the measure of excellence or state of being free from defects, deficiencies, and significant variations. ISO 8402-1986 standard defines quality as "the totality of features and characteristics of a product or service that bears its ability to satisfy stated or implied needs." Schneider (2009) said that quality is one of the most important properties of a product. By providing the optimal quality, the costs for rework, scrap, recall or even legal actions could be reduced while satisfying customers demand for reliability. Nowadays, most of the industrial process and products are evaluated by more than one quality characteristics, such as effectiveness, productivity, safety and satisfaction.

Quality is actually a system, which, when implemented, yields increased market share and reduced scrap and rework. Quality is the umbrella if a plethora of process improvement techniques and theories that starts with a company’s vendors and extends beyond the sales of that company’s products and services to the customer. It is a system that is built on these provable process improvement techniques, which serve as components under the umbrella. (Fryman, 2002)
Meanwhile, quality is a critical success factor to achieve competitiveness in today’s markets. Quality system is designed to set clear view to organization to follow enabling understanding and involvement of employees proceeding toward common goals. As the competition increases and consumer demand of high quality of product or services at reasonable price. A better understanding of the quality is the needs to every company in order to maintain their competitiveness. There is a increasing of focus on quality throughout the world. With increased of the competition, companies have recognize about the important of the quality system to effectively maintain their business. Effective quality management decreases production costs because the sooner an error is found and corrected, the less costly it will be.

According to Melissa (2002), quality improvement is necessary for providing a systematic approach to continuous quality improvement. Continuous improvement requires the use of cost of quality as a management tool to help gauge the effectiveness of the quality improvement process. Next, the use of statistical method is vital in identifying, understanding and continually improves process capability.

Today’s global business environment calls for organization to develop, implement and maintain effective quality management system. In recent years, statistical method have also been explored by banks, insurance companies, government agencies and health care organizations interested in improving the quality of their services to customers. More organizations have adopted the use of quality control tools as a mean for obtaining higher product quality. Although quality control tools are only an element of total quality management (TQM), it is nevertheless a major one. Quality control is the use of statistical-based methods to evaluate and monitor process or its input in order to achieve or maintain a state of control.

In the meanwhile, quality improvement tools are numeric and graphic devices used to help individuals and teams work with, understand, and improve processes. These tools were further expanded to become the following seven (old) basic quality control tools.
such as cause-and-effect diagram, run chart, scatter diagram, flow chart, pareto chart, histogram and control chart. In 1976, the Japanese Society for Quality Control Technique Development proposed the seven new tools for quality improvement, for example, relations diagram, affinity diagram, systematic diagram, matrix diagram, matrix data analysis, process decision program chart (PDPC) and arrow diagram. These are the useful tools in conducting this research towards the goals for quality optimization in the manufacturing industries. (Bauer, 2002)

To achieve product quality improvement, a system which having at least the following functions such as to predict product quality from operating conditions; to derive better operating conditions that can improve the product quality; and to detect faults or malfunctions for preventing undesirable operation has to be developed. (Kano et al., 2007).

This paper will give an overview of quality improvement by using Six Sigma Methodology. It will concern about the problem of defects produced in the manufacturing industry.

1.2 Problem statement

Currently, the ACME Company receives lots of complaint from the customer that they found that there were large amount of defects detected, especially the dimension of the cores, lots of cores were out of range of the specification. As a consequence, large batches of the cores were return back to the company. This may affect the profit of the company and could receive negative perspective in the point of view of customer. In this study, the author will practice the six sigma methodology in the company to optimize the defects problem encountered.
1.3 Objective

The main objectives of this research are:

a) to identify the defects problem in the manufacturing industry.

b) to analyze the factors that contributing to defects problem.

c) to recommend a solution for the defects problem of the company

1.4 Scope of Study

The scope of the study focuses on one particular product, namely Baluns Cores (RID). This study includes identification of the defects problem of the product, quality analysis for the product, root cause of the defect problem, process capability of the product and suggestion for improvement will be made. Minitab 14 software was used to conduct the analysis.
CHAPTER 2
LITERATURE REVIEW

This chapter will focus on the study and research of the published materials such as case study, thesis, journal and some online database. Some related quality topic such as Six Sigma methodology, quality improvement process, quality tools and etc.

2.1 Definition of Quality

Juran defined quality as fitness for use, Deming said that quality should be aimed at the needs of the customer, present and future, and the definition of Crosby is that quality is conformance to requirements (Kolarik, 1995). From these definitions, it is clearly shown that there is no single definition of quality exists, and it seems that, for a good definition, the customer, the manufacturer, the product, the technology as well as the processes should be considered. Whenever there is a need for improvement in the company, everybody and everything in that company should be involved.

2.2 Defects

Defect is defined as a deviation from specification or, or in other words, the performance gap between a desired result and an observed result (ISO 8402, 1986). Besides that, the defect was also defined as the nonfulfilment of intended usage requirements. From this definition, it should be noted that it covers the departure or absence of one or more
quality characteristics from intended usage requirements. The error is the source of a defect. However, the errors may or may not lead to defects. Such defects are nonconformities to stated requirements or to human expectations. Defects may or may not lead to failure when meeting the required specifications, as a defective item may pass all quality inspections and tests. This is evidence of the fact that not every error leads to a defect and not every defect results in a failure. Also, a failure may arise from a combination of defects.

2.2.1 Defect Life Cycle

A variety of defects could be generated by equipment malfunction, process variation, and an improper process operation (Koleske, 1995). Therefore, manufacturing system variables affecting product quality are related to operators’ skills, capability of machines, human actions during the production process, and workplace environment (Kolarik, 1995). A standard process for the recording and analysis of defects should be developed. However, it is crucial to produce a model of the life history of a defect. The purpose is to provide manufacturers with a standard set of states through which a defect occurs. These states are intended to help standardize defect reporting. This life history illustrates the time order of the various states of a defect, moving from when a case is first reported to when it is resolved. The consideration of defects arising from machine faults, operators’ errors and any other operational sources are included. If measures based on defect status are gathered, they may be used to learn from the defects and thus improve the performance of the production line. Figure 2.0 shows the sample of defect cycle. (Dhafr et al., 2005)
2.2.2 Critical Factors of Defects

An industrial case studies that related to the production of defects was carried out and the inspection of production items is carried out visually, through which defect types and its sources are identified (Dhafr et al., 2005). An estimation of the probability for a defect to occur was used to quantify the effect. This is achieved by the use of real data from actual operations, which can then be used to count the frequency of an individual defect or total defects on a timely basis; then the probabilities can be calculated based on the collected data. Some probabilities were lead to the defects to be occurred such as operator, machine fault and supplier error. The probability of operator error was measured based on the training matrix with different levels of skill of the operator. For the machine fault, the probability was figured out by the collection of historical data. The probability of this type of defect can be measured by the performance of the supplier, using the ‘parts per million (PPM)’ data that is generated monthly. Next, the quantity of finished products that are returned to the supplier due to faulty material will increase the probability of the error.