ANALYSIS ON THE EFFECT OF FIRST-IN FIRST-OUT QUEUE LENGTH RATIO TO THE MULTI-HOP WIRELESS NETWORK PERFORMANCE

Ho Peng Hou

Master of Science in Electronic Engineering

2014
ANALYSIS ON THE EFFECT OF FIRST-IN FIRST-OUT QUEUE LENGTH RATIO TO THE MULTI-HOP WIRELESS NETWORK PERFORMANCE

HO PENG HOU

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014
DECLARATION

I declare that this thesis entitle “Validate and analyse the effect of various queueing configurations to the multi-hop wireless network performance” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : V. SYJ
Name : HO PENG HOU
Date : 24/9/2014
APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature

Supervisor Name: LIM KIM CHUAN

Date: 24/9/2014
DEDICATION

I dedicate my thesis work to my family and friends. A special feeling of gratitude to my loving parents, they always support me and encourage me throughout the process. I also dedicate this thesis to my many friends in my university and MIMOS Berhad for helping me solve my technical problems by giving many suggestions. I will always appreciate all they have done.
ABSTRACT

A multi-hop wireless network is created by connecting multiple wireless access points as the backhaul of the network to increase the network coverage. The issue of spatial bias, unbalanced network performance of end-to-end throughput and delay occurs when the total offered load of the associated stations exceeds the wireless link capacity. Station associated to the access point more hops away from the gateway will experience significant amount of delay and lower end-to-end throughput compared to the station fewer hops to the gateway. To demonstrate the issue of spatial bias, a Linux based multi-hop wireless network testbed was constructed with six mesh access points (MAP) and a mesh portal. The MAP consists of two ingress interfaces (one to allow the association of station (local ingress interface) and one to allow other MAP to associate to it (mesh ingress interface)) and one egress interface to associate to another MAP. The wireless link capacity of the constructed testbed is determined by the amount of offered load that is about to congest the network. A non-congested access point has the sum of the arrival rate of both the mesh and local ingress interface not larger than the wireless link capacity. Every packet received by both the ingress interfaces of a non-congested access point will be almost immediately forwarded (packets will stay in the transmit queue awhile due to the processing delay) to the destination. However, packet received by a congested access point will be competing not to be dropped and subsequently enqueued into the transmit queue successfully. A transmit buffer (queue of waiting packets) is commonly allocated to the egress interface to fully utilize the wireless link capacity. The process of enqueuing packets into the transmit buffer is handled by a queueing manager (First-In First-Out is the queueing discipline used by the Linux queueing manager). The equality of local successful transmit probability \((a_n)\) and mesh successful transmit probability \((b_n)\) in congested MAPs, which is the main root cause of the spatial bias problem, is modelled and validated. The proposed solution for the spatial bias problem is to allocate individual transmit buffer with different successful transmit probability for the two ingress interfaces. The hypothesis, “the ratio between the length of local and mesh ingress interface queue can affect the successful transmit probability of the respective interface” is validated by three queueing configurations, namely L100_M500, L10_M50 and L10_M40 that have queues with different length ratios in congested MAPs. If packet arrival ratio of local over mesh ingress interface is larger than the respective queue length ratio, the mesh ingress interface successful transmit probability will be higher than the local ingress interface successful transmit probability. On the other hand, if packet arrival ratio of local over mesh ingress interface is smaller than (or equal to) the respective queue length ratio, the mesh ingress interface successful transmit probability will be lower than (or equal to) the local ingress interface successful transmit probability. The effect to the end-to-end throughput and delay introduced by the proposed solution is analysed. By controlling the ratio of queue lengths, the spatial bias problem in multi-hop wireless network can be alleviated.
ABSTRAK

Satu rangkaian wayarles pelbagai-hop dibina dengan menghubungkan titik-titik akses wayarles sebagai backhaul rangkaian untuk meningkatkan liputan rangkaian. Rangkaian ini biasanya membolehkan stesen dihubungi ke rangkaian luar atau Internet melalui gerbang atau portal. Isu berat sebelah ruang, prestasi rangkaian dalam pemprosesan akhir-ke-akhir dan kelewatan yang tidak seimbang berlaku apabila jumlah beban ditawarkan oleh stesen-stesen berhubungan melebihi kapasiti pautan wayarles. Stesen yang berhubung dengan titik akses yang lebih hop dari gerbang akan mengalami sejumlah besar kelewatan dan lebih rendah pemprosesan akhir-ke-akhir berbanding dengan stesen kurang hop ke gerbang. Oleh itu, rangkaian kajian Linux wayarles pelbagai-hop dibina dengan enam titik akses jaringan (MAP) dan portal jaringan. MAP ini terdiri daripada dua permukaan masuk (satu untuk menghubungkan stesen tempatan (permukaan masuk tempatan) dan satu untuk dihubungi oleh MAP lain (permukaan masuk jaringan)) dan satu permukaan keluar untuk menghubung kepada MAP lain. Kapasiti pautan wayarles ditentukan oleh jumlah beban ditawarkan yang hampir sesak rangkaian. Satu titik akses tanpa sesak mempunyai jumlah kadar ketibaan kedua-dua permukaan masuk jaringan dan tempatan tidak lebih besar daripada kapasiti pautan wayarles. Setiap paket yang diterima oleh kedua-dua permukaan masuk titik akses tanpa sesak akan hampir disusun ke dalam barisan penghantar. Persamaan antara kebarangkalian berjaya menghantar tempatan (a_n) dan kebarangkalian menghantar berjaya jaringan (b_n) semasa kesesakan adalah punca utama masalah berat sebelah ruang yang dimodelkan dan disahkan. Penyelesaian yang dicadangkan adalah memperuntukkan penampan menghantar individu yang berbeza dalam kebarangkalian menghantar berjaya untuk dua permukaan masuk. Hipotesis, "nisbah antara panjang gilir permukaan masukan tempatan dan jaringan boleh menjejaskan kebarangkalian berjaya menghantar antara permukaan masing-masing" disahkan oleh tiga konfigurasi pengaturan, iaitu L100_M500, L10_M50 dan L10_M40 yang mempunyai barisan gilir dengan nisbah panjang yang berbeza dalam MAP yang sesak. Jika nisbah ketibaan paket antara permukaan masukan tempatan ke jaringan adalah lebih besar daripada (lebih kecil daripada, sama dengan) nisbah panjang baris gilir masing-masing, kebarangkalian berjaya menghantar permukaan masukan jaringan akan lebih tinggi daripada (lebih rendah daripada atau sama dengan) kebarangkalian menghantar berjaya permukaan kemasukan tempatan Kesah kepada pemprosesan akhir-ke-akhir dan kelewatan diperkenalkan oleh penyelesaian dianalisis. Dengan mengawal nisbah panjang baris gilir, masalah berat sebelah ruang dalam rangkaian wayarles pelbagai-hop boleh dikurangkan.
ACKNOWLEDGEMENT

I would like to thank MIMOS Berhad and Universiti Teknikal Malaysia Melaka (UTeM) especially Associate Prof. Muhammad Syahrir Johal who was Dean of Faculty of Electronics and Computer Engineering in UTeM for the funding and devices used to build the testbed which enabled the experimental testing of different queue configuration in multi-hop wireless networks.

Besides that, I would like to thank my main supervisor, Dr. Lim Kim Chuan for his patience to lead me and teach me how to become a good researcher. My industry supervisor, Dr. Kwong Kae Hsiang should be appreciated for his effort and the knowledge to write papers and set up the testbed. Finally, I would like to thank my colleagues in Postgraduate Laboratory, Faculty of Electronics and Computer Engineering of UTeM and MIMOS for their kindness and support when I was doing my master research. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND UNIT CONVERSION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
 1.1 Network Related Knowledge
 1.2 Problem Statement
 1.3 Objectives
 1.4 Scopes
 1.5 Overview

2. LITERATURE REVIEW
 2.1 Overview of the Related Works on Improving End-to-End Throughput and End-to-End Delay in Wireless Network
 2.1.1 Elastic Rate Limiting on Wireless Mesh Network
 2.1.2 Enhanced Queue Management in Multi-Hop Networks (EQMMN)
 2.1.3 Weighted Random Early Detection (wRED)
 2.1.4 Fully Distributed Contention Window Adaptation (CWA) Scheme
 2.1.5 Improving TCP Performance over Optimal Carrier Sense Multiple Access (oCSMA) in Wireless Multi-Hop Networks
 2.2 Summary

3. METHODOLOGY
 3.1 Mathematical Modelling
 3.1.1 FIFO Queue Management System Restrictions
 3.1.2 Default FIFO Queue Management System
 3.1.3 A Case of Default FIFO Six-Hop Wireless Network Model with Equal Deterministic Offered Load (400pkt/s) from Stations
 3.2 Testbed for Multi-Hop Wireless Network Measurement
 3.2.1 Transmission Packet Process Flow

4. RESULTS AND DISCUSSIONS
4.1 Comparison between the Modelled Unfairness End-To-End Throughput and Packet Loss in Multi-Hop Wireless Network with the Actual Test Bed (the Default Setting)

4.1.1 Measuring End-To-End Throughput and Packet Lost Rate for Single Sink Single Source Node

4.1.2 Measuring Wireless Link Capacity (μ_{max}) of the Testbed

4.1.3 Measuring the Successful Transmit Probability for Both the Ingress Interfaces of a MAP

4.1.4 Comparing the End-To-End Throughput Measurement with the Model

4.2 Comparison between the Modelled Unfairness of Throughput and Packet Loss in Multi-Hop Wireless Network with the Actual Test Bed (the Proposed Settings)

4.2.1 Four Different Scenarios ($n = 1, 1 < n < C, n = C, n > C$) to be Experienced by a MAP and the Equations to Calculate the Value of a_n and b_n

4.2.2 Determine the Needed a_n and b_n Value to Equally Divide the Wireless Link Capacity among the Connected MAPs in the Testbed

4.3 The Hypothesis: "The Ratio between the Length of Local and Mesh Ingress Interface Queue Can Affect the Successful Transmit Probability of the Respective Interface"

4.3.1 Analyse the Packet Arrival Ratio of the Congested MAPs ($\lambda_s = 400\text{pkt/s}$)

4.3.2 Hypothesis: The Ratio between the Length of Local and Mesh Ingress Interface Queue Can Affect the Successful Transmit Probability of the Respective Interface

4.3.3 Hypothesis Validation

4.3.4 Result and Discussion on Validation of the Hypothesis

4.4 Implication on End-To-End Delay with Respect to the Implementation of Various Queueing Disciplines

4.4.1 RTT ($\lambda_s = 300\text{pkt/s}$)

4.4.2 RTT ($\lambda_s = 400\text{pkt/s}$)

4.4.3 Summary (RTT Delay)

4.4.4 Comparing the Percentage of RTT Success Rate with the DITG Measurement

4.5 Significance, Implications and Contributions

5. CONCLUSION AND SUMMARY

5.1 Suggestions for Future Work

REFERENCE

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>QMMN fairness table</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristics of included studies</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters values for the multi-hop wireless network testbed measurement</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>End-to-end throughput and packet loss percentage from each hop station to gateway with different offered load</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Steps to determine the maximum local offered load for each of the source nodes without congesting any of the MAP in the 6-hop wireless network</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of calculated and measured end-to-end throughput (pkt/s) and the relative error (percent)</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of calculated and measured local successful transmit probability(a_n) and the relative error (percent)</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Successful transmit probability values of multi-hop wireless network with $1 < C < N$</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Intended successful transmit probability for complete throughput fairness with conditions of $\mu_{\text{max}} = 1824\text{pkt/s}$, $N = 6$ hops, $\lambda_s = 400\text{pkt/s}$ and $C = 2$</td>
<td>73</td>
</tr>
<tr>
<td>4.7</td>
<td>End-to-end throughput of each hop station in wireless 6-hop network with $\lambda_s=3.36\text{Mbps}$ (refer to Figure 4.16)</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>End-to-end throughput of each hop station in wireless 6-hop network with $\lambda_s=4.49\text{Mbps}$ (refer to Figure 4.17)</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>The obtained successful transmit probability (a_1, b_1, a_2 and b_2) of the testbed with $1 < C < N$ ($C = 2$) under four difference queueing configurations</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>The characteristic of the delay with offered load of 300 pkt/s per station.</td>
<td>88</td>
</tr>
<tr>
<td>4.11</td>
<td>The characteristic of the delay with offered load of 400 pkt/s per station</td>
<td>89</td>
</tr>
</tbody>
</table>
4.12 Packet loss percentage from DITG measurement and from round-trip time measurement
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>User A is within coverage area while User B is out of coverage area</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Wireless 6-hop network (chain topology)</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>After backhaul of the network (Figure 1.2) is equipped with wireless LAN mesh network functions</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Relationship between congested MAP and wireless link capacity</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Example of spatial bias problem</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Flow charts of packet handling in transmit queue</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Aggregated success probability of more hops MAPs lower than aggregated success probability of fewer hops MAPs</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Fluid system mode for elastic rate limiting</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Flow chart of the elastic rate limiting method</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Packet dropping probability of wRED</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Flow chart of the CWA scheme</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Implementation of virtual queue-based oCSMA (VQ-oCSMA)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Multi-hop experiment topology</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Multi-hop wireless system</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Example of multi-hop wireless system where congestion occurs</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>((N - C)\lambda_s + \lambda_s > \mu_{max}) at node MAP_c</td>
<td></td>
</tr>
<tr>
<td>3.3(a)</td>
<td>Methodology flow chart for this project (Part 1)</td>
<td>38</td>
</tr>
<tr>
<td>3.3(b)</td>
<td>Methodology flow chart for this project (Part 2)</td>
<td>39</td>
</tr>
<tr>
<td>3.3(c)</td>
<td>Methodology flow chart for this project (Part 3)</td>
<td>40</td>
</tr>
</tbody>
</table>

viii
3.3(d) Methodology flow chart for this project (Part 4) 41
3.4 Execute command dmesg |grep phy to check the corresponding chipset model for wireless adapters where D-Link DWA-547 as phy0 and TP-LINK TL-WN722N as phy1 42
3.5(a) Forwarding data packet transmitting flow (Part 1) 46
3.5(b) Forwarding data packet transmitting flow (Part 2) 46
3.6 Forwarding data packet transmitting flow (Linux kernel source code part) 47
3.7 Relationship between parameter __QDISC__STATE_RUNNIN and other queueing related functions 48
4.1 Result of end-to-end throughput with single source single sink 52
4.2 Packet loss rate result with single source 52
4.3 End-to-end throughput with different offered loads produced by each of the stations 54
4.4 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 307\text{pkt/s} \) at MAP1 58
4.5 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 313\text{pkt/s} \) at MAP1 58
4.6 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 325\text{pkt/s} \) at MAP1 58
4.7 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 350\text{pkt/s} \) at MAP1 58
4.8 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 400\text{pkt/s} \) at MAP1 58
4.9 Histogram difference between \(a_n \) and \(b_n \) for \(\lambda = 400\text{pkt/s} \) at MAP2 58
4.10 The aggregated offered load at MAP2 \(5\lambda_s \) and MAP1 \(\mu_{max} + \lambda_s \) exceeded the wireless link capacity \(\mu_{max} \) when \(\lambda_s \) is 400pkt/s. 60
4.11 Steps (a,b,c) to determine the successful transmit probability \((a_n \) and \(b_n) \) 60
4.12 Four difference scenario where MAPC is congested 65
4.13 Complete throughput fairness model 71
4.14 Incoming packet will be dropped when the queue \((Q_{to}, Q_{Ln}, Q_{Mn}) \) is full. 74
4.15 The number of arriving packets per second(a) and arrival ratio(b) of the ingress interfaces at each congested MAP. 74
4.16 End-to-end throughput result with \(\lambda_s = 3.36\text{Mbps} \) (offer load of 300pkt/s per station) 77
4.17 End-to-end throughput result with $\lambda_s = 4.49$Mbps (offered load of 400pkt/s per station)

4.18 The aggregated offered load at MAP$_2$ ($5\lambda_s$) and MAP$_1$ ($\mu_{max} + \lambda_s$) exceeded the wireless link capacity (μ_{max}) when λ_s is 400pkt/s.

4.19(a) Traffic graph of Def(measurement)

4.19(b) Traffic graph of Def(calculation)

4.19(c) Traffic graph of L100_M500

4.19(d) Traffic graph of L10_M50

4.19(e) Traffic graph of L10_M40

4.19(f) Traffic graph of intended throughput balancing in Section 4.2.2 (see Table 4.6)

4.20 Area graph for RTT (300pkt/s) of four queueing configurations

4.21 Area graph for RTT (400pkt/s) of four queueing configurations
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Packet fragmentation</td>
<td>106</td>
</tr>
<tr>
<td>B</td>
<td>Packet loss percentage obtained by round-trip time measurement of 250 packets in four queueing configurations</td>
<td>110</td>
</tr>
<tr>
<td>C</td>
<td>Detailed End-To-End Delay Histograms</td>
<td>112</td>
</tr>
<tr>
<td>D</td>
<td>Packet Loss Percentage from DITG Result</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND UNIT CONVERSION

- μ_{max} - Wireless link capacity
- $\lambda_{M_{i}}$ - The arrival rate on mesh network ingress interface
- $\lambda_{L_{i}}$ - The arrival rate on local network ingress interface
- I_{U} - Gateway Utilization Indicator
- $T_{i}(t)$ - Throughput of Node $i \in S$
- $\lambda_{i}(t)$ - Instantaneous Offered Load of Node $i \in S$
- F_{i} - The Minimum Guaranteed rate of node i
- $R_{i}(t)$ - The Rate Limit of Node $i \in S$
- α - Additive decrease (Section 2.1.1)
 explanatory variable (Section 2.1.2)
- β - Multiplicative decrease
- x_{i} - Normalized Throughput
- p - Dropping probability
- h - Number of hops
- q - Current queue length
- CW_{min} - Minimum contention window size
- α_{i} - Traffic forwarding capability a node i
- h_{i}^{out} - Rate of outgoing traffic
- h_{i}^{in} - Rate of incoming traffic
- α^{*} - Target traffic forwarding capability
- T - CW_{min} update period
\(\gamma \) - Step size

\(\text{InPackets} \) - The number of all the incoming packets for \(T \)

\(\text{DstPackets} \) - The number of outgoing packets whose destination is itself

\(\text{OutPackets} \) - The number of all the outgoing packets for \(T \)

\(\text{SrcPackets} \) - The number of incoming packets whose source is itself

\(\max_{th} \) - Upper bound on \(\text{CW}_{\text{min}} \)

\(\min_{th} \) - Lower bound on \(\text{CW}_{\text{min}} \)

\(l \) - Transmission intensity of a link

\(p_t \) - Channel access probability

\(\mu_t \) - Holding time (or transmission duration in CSMA)

\(q_t[t] \) - Queue length in MAC layer

\(A_t[t] \) - Amount of incoming packets over each link

\(S_t[t] \) - Amount of served packets at a frame over the link

\([\cdot]^+ \) - \(\max(\cdot,0) \)

\(b \) - Positive scaling parameter

\(vq_t[t] \) - Virtual queue length in MAC layer

\(V \) - Positive control parameter

\(vq \) - Virtual queue length lower-bound

\([\cdot]_d \) - \(\max(d,\min(c,\cdot)) \)

\(\lambda_s \) - Rate of local client traffic that arrives at all MAPs in deterministic distribution

\(N \) - Number of hops

\(\lambda_{M_n} \) - Arrival rate on mesh ingress interface of MAP\(_n\)

\(n \) - Hop number

\(C \) - Largest hop number for the congested MAPs

\([x] \) - Floor function

\(\lceil x \rceil \) - Ceiling function
\(x | y \) - \(y \) is divisible by \(x \)
\(x \nmid y \) - \(y \) is not divisible by \(x \)
\(Q_n \) - Total queue length in the MAP\(_n\) transmission queue
\(Q_{Ln} \) - Individual queue length for local ingress interface accepted packets
\(Q_{Mn} \) - Individual queue length for mesh ingress interface accepted packets
\(q_{Ln} \) - The number of waiting packets in the transmission queue that were received by local ingress interface
\(q_{Mn} \) - The number of waiting packets in the transmission queue that were received by the mesh ingress interface
\(\forall x \) - Every \(x \)
\(\mu_{Mn} \) - Successful transmit rate to MAP\(_{n-1}\) for those packets received by mesh ingress interface in MAP\(_n\)
\(\mu_{Ln} \) - The successful transmit rate to the MAP\(_{n-1}\) for those packets received by local ingress interface in MAP\(_n\)
\(a_n \) - The successful transmit probability of the local ingress interface accepted packets on MAP\(_n\) to MAP\(_{n-1}\)
\(b_n \) - The successful transmit probability of the mesh ingress interface accepted packets on MAP\(_n\) to MAP\(_{n-1}\)
\(\lambda_{n0} \) - End-to-end throughput
\(p_{direct_L} \) - Number of local ingress interface received packets that are directly transmitted in one second
\(p_{--L} \) - Number of local ingress interface received packets that are dequeued from the local client queue in one second
\(p_{drop_L} \) - Number of local ingress interface received packets that are dropped from local client queue in one second
\(p_{++L} \) - Number of local ingress interface received packets that are enqueued into local client queue in one second
\(p_{direct_M} \) - Number of mesh ingress interface received packets that are directly transmitted in one second
\(p_{--M} \) - Number of mesh ingress interface received packets that are dequeued from the local client queue in one second
\(p_{drop_M} \) - Number of mesh ingress interface received packets that are dropped
from local client queue in one second

- Number of mesh ingress interface received packets that are enqueued into local client queue in one second

\[p_{++M} \]

\[
1 \text{pkt/s} = \frac{1 \times 1470 \text{byte} \times 8 \text{bit/byte}}{1024 \times 1024} = \frac{735}{65536} \text{Mbps}
\]
LIST OF ABBREVIATIONS

AC Access category
APs - Access points
APU - Accelerated Processing Unit
AQM Active queue management
BEB - Binary exponential backoff
CWA - Contention window adaptation
DCF - Distributed coordination function
DDR3 - Double Data Rate 3 (memory)
D-ITG - Distributed Internet Traffic Generator
EDCA Enhanced Distribution Channel Access
EQMMN Enhanced Queue Management in Multi-Hop Networks
FIFO - First-In First-Out
ICMP - Internet Control Message Protocol
IEEE - Institute of Electrical and Electronics Engineers
IGW Internet Gateway
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol Version 6</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>LAN</td>
<td>Local area network</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MAP</td>
<td>Mesh access point</td>
</tr>
<tr>
<td>MP</td>
<td>Mesh point</td>
</tr>
<tr>
<td>MPP</td>
<td>Mesh portal</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>ntpd</td>
<td>NTP daemon</td>
</tr>
<tr>
<td>oCSMA</td>
<td>Optimal Carrier Sense Multiple Access</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect (personal computer bus)</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical layer</td>
</tr>
<tr>
<td>QMMN</td>
<td>Queue Management in Multi-hop Networks</td>
</tr>
<tr>
<td>QoETX</td>
<td>Queue-based OLSR ETX</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RL</td>
<td>Reinforcement learning</td>
</tr>
</tbody>
</table>
RP-SMA - Reversed polarized SMA
RTT - Round-Trip Time
SDRAM - Synchronous Dynamic Random Access Memory
SMA - Subminiature Version A
STAs - Stations
TCP - Transmission Control Protocol
UDP - User Datagram Protocol
USB - Universal Serial Bus
UTeM - Universiti Teknikal Malaysia Melaka
VQ-oCSMA - Virtual queue-based oCSMA
WMN - Wireless Mesh Network
wRED - Weighted random early detection
LIST OF PUBLICATIONS

Journals:

Conference papers:
[1] Peng Hou Ho, Derek William Holtby, Kim Chuan Lim, Kae Hsiang Kwong, David Chieng, Alvin Ting and Su Fong Chien. End-to-End Throughput and Delay Analysis of Wi-Fi Multi-hop Network with Deterministic Offered Load. (Accepted) In: Proceeding of the IET International Conference on Wireless Communications and Applications, ICWCA 2012, Kuala Lumpur, Malaysia, 8 - 10 October 2012. IET.