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Abstract

Recent research studies have recognized the applicability of carry and forward based

routing in a vehicular ad hoc network (VANET), where packets are stored and carried

by a moving vehicle until another vehicle comes into its transmission range and the

packets are transmitted via wireless channel. This thesis explores several research

topics concerning the use of a carry and forward approach in a vehicular network.

In the first part of our research, we develop an end-to-end delay model in a unidi-

rectional highway using vehicle-to-vehicle connectivity parameters that include the

carry and forward approach which extends an existing catch-up time delay model

for two disconnected vehicle clusters to multiple disconnected clusters on a unidi-

rectional highway. Consequently, two distributions are newly derived to represent

the number of clusters on a highway using a vehicular traffic model. The analytical

results obtained from the end-to-end distribution model are then validated through

simulation results. In the second part of our research, we present a fuzzy logic based

beaconing system where beacon intervals are adjusted based on packet carried time,

number of single-hop neighbors, and vehicles speed. It is common for vehicles in a

VANET to exchange information by broadcasting beacon messages periodically. This

information is required not only for routing protocols when making routing decisions,

but also for safety applications. Choosing a suitable interval for broadcasting bea-

con messages has been considered a communication challenge since there will be a

trade-off between information accuracy and channel usage. Therefore, an adaptive
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beaconing approach is needed so that vehicles can regulate their beacon rate based

on traffic condition. Through simulation in a grid model and a realistic scenario, we

are able to show that the fuzzy logic based beaconing system is not only able to re-

duce routing overhead and packet collision, but also decrease the average end-to-end

delay and increase the delivery rate as well. The last issue of this thesis focuses on

developing a proactive multi-copy routing protocol with carry and forward mecha-

nism that is able to deliver packets from a source vehicle to a destination vehicle at a

small delivery delay. It has been ascertained by the majority of researches in VANET

that the carry and forward procedure can significantly affect an end-to-end delivery

delay. Our approach is to replicate data packets and distribute them to different re-

lays. The proposed protocol creates enough diversity to reach the destination vehicle

with a small end-to-end delivery delay while keeping low routing overhead by routing

multiple copies independently. The simulation results in an urban grid model show

that the proposed multi-copy forwarding protocol is able to deliver packets at small

delivery delay compared to a single-copy forwarding algorithm without having to rely

on real time traffic data or flooding mechanism.
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Chapter 1

Introduction

1.1. Background

Vehicular Ad hoc Network (VANET) is vehicle to vehicle (V2V) and vehicle to infras-

tructure (V2I) communications using wireless local area network technologies. The

main idea of VANET is to provide continuous connectivity to mobile users while on

the road, and to provide efficient vehicle-to-vehicle communications [1, 2]. In recent

years, the research and development in this area has intensified due to several factors.

One of the contributing factors is the potential advantages of VANET applications.

V2V and V2I communications have enabled the development and implementation of

a variety of applications, as well as providing a broad range of information to drivers

and travelers. By integrating a vehicle’s on-board devices with the network interface,

various types of sensors and Global Positioning System (GPS) devices, the vehicle

has the capability to aggregate, process and disseminate information about itself and

1



its environment to other vehicles in the immediate vicinity that can be used for en-

hancing road safety and providing passenger comfort [3–5].

In addition, the advancements in computing and wireless communication tech-

nologies have increased interest in “smart” vehicles, resulting in more vehicle man-

ufacturers beginning to adopt the use of information and technology to tackle the

issue of safety and the environment, as well as the comfort of their vehicles. A smart

vehicle should at least be equipped with on-board units, also known as in-vehicle

equipments, that are needed for communication. For inter-vehicle communication,

it is assumed that a vehicle should have a central processing unit (CPU) that im-

plements applications and communication protocols; a wireless transceiver for trans-

mitting and receiving data packets or wireless signals; a GPS receiver for location

and time synchronization information, and a human interface between the driver and

the system [6–8]. In [8, 9], the authors described computing platforms for vehicular

communication (VC) that are dedicated to VC functionality and independent from

car processors and controllers. Car processors and controllers are normally used for

tasks such as fuel injection, braking, transmission and car charging [8, 9]. However,

VC computing platforms are independent from these vehicle power systems and are

responsible for V2V and V2I communication protocols and applications. The VC

computing platforms usually use information provided by the vehicle processors and

controller and forward them to safety and driving efficiency applications [8].

2



Another contributing factor in the increment of VANET studies is the commit-

ment of national and regional governments to assign wireless spectrum and the wide

implementation of wireless access technologies that provide the required radio in-

terface to facilitate V2V and V2I communications between vehicles [5, 10, 11]. In

1999, the United States Federal Communications Commission (FCC) assigned the 75

MHz band of Dedicated Short Range Communications (DSRC) at the 5.850 - 5.925

GHz frequency for Intelligent Transportation Systems (ITS) application in North

America, which is used for variety of services such as safety applications, real-time

traffic management, traveler information and many more [3, 5, 11, 12]. In Europe,

ETSI (European Telecommunications Standard Institute), which is responsible for

the standardization in the telecommunication industry, has designated the frequency

band between 5.885 − 5.905 GHz for ITS applications in year 2008 [3, 5, 11]. DSRC

radio technology is built based on the IEEE 802.11p standard, which is modified from

the IEEE 802.11a standard since the latter is not sufficient enough to support inter-

vehicle communication. The American Society for Testing and Materials (ASTM)

modified the 802.11a standard to match the vehicular environment, and from this

effort, IEEE standardized a new standard specifically for wireless access in the vehic-

ular environment (WAVE) which is IEEE 802.11p with higher tolerance to multi-path

propagation and Doppler spread effects for moving vehicles [5, 13].
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