Analytical Investigation and Implementation of Carry and Forward based Routing Protocol for Vehicular Ad hoc Network

 ${\rm by}$

© Aslinda Hassan

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May 2014

St. John's

Newfoundland

Abstract

Recent research studies have recognized the applicability of carry and forward based routing in a vehicular ad hoc network (VANET), where packets are stored and carried by a moving vehicle until another vehicle comes into its transmission range and the packets are transmitted via wireless channel. This thesis explores several research topics concerning the use of a carry and forward approach in a vehicular network. In the first part of our research, we develop an end-to-end delay model in a unidirectional highway using vehicle-to-vehicle connectivity parameters that include the carry and forward approach which extends an existing catch-up time delay model for two disconnected vehicle clusters to multiple disconnected clusters on a unidirectional highway. Consequently, two distributions are newly derived to represent the number of clusters on a highway using a vehicular traffic model. The analytical results obtained from the end-to-end distribution model are then validated through simulation results. In the second part of our research, we present a fuzzy logic based beaconing system where beacon intervals are adjusted based on packet carried time, number of single-hop neighbors, and vehicles speed. It is common for vehicles in a VANET to exchange information by broadcasting beacon messages periodically. This information is required not only for routing protocols when making routing decisions, but also for safety applications. Choosing a suitable interval for broadcasting beacon messages has been considered a communication challenge since there will be a trade-off between information accuracy and channel usage. Therefore, an adaptive

ii

beaconing approach is needed so that vehicles can regulate their beacon rate based on traffic condition. Through simulation in a grid model and a realistic scenario, we are able to show that the fuzzy logic based beaconing system is not only able to reduce routing overhead and packet collision, but also decrease the average end-to-end delay and increase the delivery rate as well. The last issue of this thesis focuses on developing a proactive multi-copy routing protocol with carry and forward mechanism that is able to deliver packets from a source vehicle to a destination vehicle at a small delivery delay. It has been ascertained by the majority of researches in VANET that the carry and forward procedure can significantly affect an end-to-end delivery delay. Our approach is to replicate data packets and distribute them to different relays. The proposed protocol creates enough diversity to reach the destination vehicle with a small end-to-end delivery delay while keeping low routing overhead by routing multiple copies independently. The simulation results in an urban grid model show that the proposed multi-copy forwarding protocol is able to deliver packets at small delivery delay compared to a single-copy forwarding algorithm without having to rely on real time traffic data or flooding mechanism.

iii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisors Professor M. Azizur Rahman and Dr. Mohamed Hossam Ahmed for their continuous guidance, advice and encouragement towards the completion of the PhD program.

Special thanks to the member of my supervising committee, Dr. Saleh A. Saleh, and Dr. Glyn George for their useful comments and suggestions for my thesis.

I am very grateful to University Technical Melaka Malaysia (UTeM) for providing me an opportunity and scholarship to further my Doctoral study at Memorial University of Newfoundland Canada.

I also would like to express my deepest gratitude and sincere appreciation to my husband Mr. Azziddin Razali and my three wonderful daughters, my dearest friend Fatemeh M. Kiaie, my father Mr. Hassan Adam, my sisters, as well as other family members, relatives and friends for their understanding and everything they have done for me. They have supported and encouraged me besides showing their great patience during all my period of studies at MUN. Their existence in my life reminds me that there are things more important than this work.

Special thanks to all MUN Faculty members and School of Graduate Studies for giving full support and assistantship regarding the university policy and management aspects.

iv

CONTENTS

A	bstra	i	í
\mathbf{A}	cknov	vledgements iv	7
Li	st of	Tables	2
\mathbf{Li}	st of	Figures xi	i
\mathbf{Li}	st of	Abbreviations xv	i
\mathbf{Li}	st of	Symbols xix	2
1	Intr	oduction 1	-
	1.1	Background	-
	1.2	Research Motivations	F
	1.3	Research Objectives	ì
	1.4	Thesis Contributions	7
	1.5	Thesis Organization)

2	Lite	erature	e Review	11
	2.1	Overv	iew on VANET	11
	2.2	VANE	T Routing Protocols	16
	2.3	Adapt	ive Beaconing System in Vehicular Ad hoc Network	23
2.4 End-to-end Delay Analysis for Carry and Forward based Routing in				
	VANET			
	2.5	Conclu	usion	31
3	Ana	alytical	l Framework for End-to-End Delay based on Unidirectional	1
	Hig	hway S	Scenario	33
	3.1	Introd	luction	33
	3.2	System	n Model of the Time Duration for the Catch-up Phase \ldots	35
		3.2.1	The Derivation of Closed Form Solution for CDF and PDF of	
			Message Propagation Distance, $X(t)$	38
		3.2.2	The Derivation of Closed Form Solution for Cumulative Dis-	
			tribution Function of $X'\left(t\right)$ - Distance that the Partition Tail	
			Moves	42
		3.2.3	Derivation of PDF for $f_{{\cal L}_{UC}}$ - the Distribution of Disconnected	
			Vehicles Gap	45
		3.2.4	Derivation of CDF and PDF of ${\cal T}_C$ via Numerical Integration	
			and Approximation of T_C Distribution	46

	3.3	Derivation of the Sum of Multiple Catch-up Time, T_D , for Unidirec-		
		tional	Highway	52
		3.3.1	Analysis on the Distribution of Number of Clusters	56
			3.3.1.1 Analysis of N_{C_1}	56
			3.3.1.2 Analysis of N_{C_2}	58
		3.3.2	Derivation of T_D Distribution based on T_C and N_c distributions	60
	3.4	Result	is and Analysis for Distribution of Total Catch-up Time T_D in	
		One V	Vay Street	61
		3.4.1	Numerical Results	61
		3.4.2	Simulation Results	68
	3.5	Conclu	usion	74
4	Ada	ptive	Beaconing System Based on Fuzzy Logic Approach	75
	4.1	Introd	uction	75
	4.2	Overv	iew of Fuzzy Logic	77
		4.2.1	Fuzzy Logic Membership Function	79
		4.2.2	Fuzzy Logic System (FLS)	81
	4.3	Adapt	ive Beaconing System based on Fuzzy Logic System for Vehicular	
		Netwo	rk	84
		491		~ (
		4.3.1	Key Routing Parameters and Design	84
		4.3.1	Key Routing Parameters and Design	84

		4.3.3	Fuzzification of Inputs and Output	87
		4.3.4	Fuzzy Inference Engine	92
		4.3.5	Defuzzification	95
	4.4	Simula	ation Framework and Evaluation for Manhattan Grid Model $\ .$.	97
		4.4.1	Simulation Assumptions	97
		4.4.2	Mobility and Network Model	97
		4.4.3	Performance Metrics	98
		4.4.4	Simulation Results and Analysis	99
	4.5	Simula	ation Framework and Evaluation for Realistic Scenario $\ . \ . \ .$	104
		4.5.1	Mobility and Network Model	104
		4.5.2	Simulation Results and Analysis	107
	4.6	Conclu	usion	113
5	The	· Imple	ementation of Proactive Multi-copy Routing (PMC) Pro)-
	toco	ol		114
	5.1	Introd	uction	115
	5.2	Proact	tive Multi-Copy Routing Protocol	116
		5.2.1	Design Assumptions	116
		5.2.2	Proactive Multi-Copy (PMC) Protocol Design	117
		5.2.3	Single-copy Forwarding	119
		5.2.4	Multi-copy forwarding	124
	5.3	Simula	ation Framework	130

		5.3.1 Mobility and Network Model	130
		5.3.2 Performance Metrics	131
	5.4	Simulation Results and Analysis	133
	5.5	Conclusion	136
6	Con	clusions and Future Work	137
	6.1	Conclusions	137
	6.2	Future Research Directions	140
Bi	bliog	raphy	142
\mathbf{A}	Tab	les of Confidence Intervals	159
	A.1	Chapter 4 Simulation Results with 95% Confidence Interval $\ .\ .\ .$.	159
	A.2	Chapter 5 Simulation Results with 95% Confidence Interval $\ \ldots \ \ldots$	162
В	Sou	rce Codes Headers	166
С	Mol	oility and Network Simulation Tools	176
	C.1	Simulators for Vehicle Mobility Pattern	176
	C.2	Network Simulation Tools	177
D	\mathbf{List}	of Publications	181

LIST OF TABLES

3.1	Notations and Model Parameters needed for the derivation of T_C dis-	
	tribution	37
3.2	Exponential Regression Parameters	49
4.1	The main rules for the fuzzy inference engine	92
4.2	Network Model Configuration	99
4.3	Network Model Configuration	106
4.4	ATB Simulation Parameters [37]	106
4.5	ATB results in from [37]	108
5.1	Network Model Configuration	132
A.1	End-to-end delay	159
A.2	Packet Delivery Ratio	160
A.3	Routing Overhead Ratio	160
A.4	Collision Ratio	160
A.5	End-to-end delay	161

A.6	Packet Delivery Ratio	1
A.7	Routing Overhead Ratio	1
A.8	Collision Ratio	2
A.9	End-to-end delay	2
A.10	Packet Delivery Ratio	3
A.11	Routing Overhead Ratio	3
A.12	Collision Ratio	3
A.13	End-to-end delay	4
A.14	Packet Delivery Ratio	4
A.15	Routing Overhead Ratio	4
A.16	Collision Ratio	5

LIST OF FIGURES

2.1	Three types of VANET network architecture	12
2.2	VADD scenario between a mobile node and a stationary destination .	20
3.1	Example of message propagation scenario	35
3.2	F_{T_C} distribution with different values of flow rates (vehicle/hour)	47
3.3	The comparison between the exact distribution of T_C and its approxi-	
	mation	52
3.4	Scenario for N_{C_1} distribution	57
3.5	Scenario for N_{C_2} distribution	59
3.6	PDF of N_{C_1}	62
3.7	PDF of N_{C_2}	62
3.8	Expected values of C_L and S_{inter} for N_{C_1} distribution	63
3.9	Expected values of X_f and X_c for N_{C_2} analysis	65
3.10	$E[X_f]$ and $E[X_c]$ numerical results from [40] $\ldots \ldots \ldots \ldots \ldots$	65
3.11	Information propagation speed from T_{D_1} and T_{D_2} analyses	66

xii

3.12	Information propagation speed from [40]	66
3.13	PDF of T_{D_1}	67
3.14	PDF of T_{D_2}	67
3.15	Simulation Scenario	69
3.16	Comparison between analytical results of T_{D_1} and T_{D_2} and simulation	
	results of T_D	73
4.1	Crisp set for $tall$	78
4.2	Fuzzy set for <i>tall</i>	78
4.3	Triangular Membership Function	79
4.4	Trapezoid Membership Function	80
4.5	R-Function of a Trapezoidal Function	80
4.6	L-Function of a Trapezoidal Function	80
4.7	Fuzzy logic system components	82
4.8	Flowchart of the carry and forward based routing protocol \ldots	84
4.9	Beacon Packet Format	85
4.10	Fuzzy logic components in the Adaptive Beaconing System	87
4.11	Membership Functions for Adaptive Beaconing FLS Input $\ensuremath{\mathit{Carried\ Time}}$	88
4.12	Membership Functions for Adaptive Beaconing FLS Input Number of	
	Neighbors	89
4.13	Selection of neighbors for input Number of neighbors	90
4.14	Membership Functions for Adaptive Beaconing FLS Input $Speed$	91

4.15	Membership Functions for Adaptive Beaconing FLS Output Beacon	
	Interval	91
4.16	Correlation between FLS inputs and output	95
4.17	Defuzzification using center of gravity	96
4.18	Manhattan Grid Model used in the simulation	98
4.19	Simulation results comparison between Adaptive Beacon Interval and	
	FBI	103
4.20	Map of Toronto city based on OpenStreetMap	105
4.21	Map of Toronto city generated by VanetMobisim	105
4.22	Interval rate comparison between ABS and ATB in two different den-	
	sities	109
4.23	Performance comparison between ABS and ATB	112
5.1	Transition modes in PMC	118
5.2	Scenario for single-copy routing in an intersection	120
5.3	Visual representation of Equation (5.1)	121
5.4	A snap-shot from the earlier example in Figure 5.2 \ldots	122
5.5	Example scenario for multi-copy forwarding at an intersection \ldots .	125
5.6	Example scenario for minimizing redundancy at an intersection \ldots	126
5.7	Manhattan grid topology used in the simulation	131
5.8	Simulation results comparison between single-copy forwarding and PMC	C135
C.1	NS2 Basic Architecture	178

	C.2	Common convent	ion of modeling	in NS-2	30
--	-----	----------------	-----------------	---------	----

LIST OF ABBREVIATIONS

ABS	Adaptive Beaconing System
AODV	Ad-hoc On-demand Distance Vector
ASTM	American Society for Testing and Materials
ATB	Adaptive Traffic Beacon
BBR	Border Node based Routing
CDF	Cumulative Distribution Function
COG	Center of Gravity or Centroid
CPU	Central processing unit
DSR	Dynamic Source Routing
DSRC	Dedicated Short Range Communications
DV-CAST	Distributed Vehicular Broadcast
ETSI	European Telecommunications Standard Institute
	xvi

FBI	Fixed Beacon Interval
FCC	United States Federal Communications Commission
FLS	Fuzzy Logic System
GPCR	Greedy Perimeter Coordinator Routing
GPS	Global Positioning System
GPSR	Greedy Perimeter Stateless Routing
GyTAR	Greedy Traffic-Aware Routing
IDM_LC	Intelligent Driver Model with Lane Changing
IEEE	Institute of Electrical and Electronics Engineers Inc.
ITS	Intelligent Transportation Systems
IVC	Inter-Vehicle Communication
MAC	Media Access Control
MANET	Mobile Ad hoc Network
MMSE	Minimum Mean Square Error
MOPR	Movement Prediction-based Routing
MURU	Multi-hop routing protocol for Urban Vehicular Ad hoc Net-
	work

xvii

NS-2	Network Simulator version 2
PDF	Probability Density Function
РНҮ	Physical
PMC	Proactive Multi-copy Routing
SCF	Single-copy Forwarding
SNR	Signal to Noise Ratio
SSE	Sum of Square Errors
UMB	Urban Multi-hop Broadcast protocol
V2I	Vehicle-to-Infrastructure
V2V	Vehicle-to-Vehicle
VADD	Vehicle-Assisted Data Delivery
VANET	Vehicular Ad hoc Network
VC	Vehicular Communication
WAVE	Wireless Access in the Vehicular Environment
WLAN	Wireless Local Area Network

LIST OF SYMBOLS

C_L	the length between the first vehicle and the last vehicle in a cluster
D	The length of a road
$DPkt_n$	Data packets with id $n = 1 \cdots m$
$F_Y(y)$	Cumulative distribution function of a random variable \boldsymbol{Y}
$f_Y(y)$	Probability density function of a random variable \boldsymbol{Y}
I_i	Intersections available in a city map
I_c	The current intersection
I_{min}	Minimum beacon interval
I_{max}	Maximum beacon interval
L	Gap of between two neighboring vehicles
L_c	Gap between two neighboring connected vehicles
L_{uc}	Gap between two neighboring disconnected vehicles
λ	Traffic flow rate (vehicles/unit time)
λ_s	Vehicles density (vehicles/unit distance)
λ_{T_C}	Minimum mean square error between the exact distribution of ${\cal T}_C$

xix

and an exponential distribution

M	The number of vehicle gaps in a cluster	
nb_table Table for the local neighborhood state information		
m_copy	Table for packet replication information	
N_c	Number of vehicle clusters on a highway	
N(t)	Number of vehicles arrive at the highway during interval $[0,t]$	
$P\left[y\right]$	Probability of an event y	
$\Phi_Y(s)$	Characteristic function of a random variable Y	
r	Vehicle radio range	
R^2	Coefficient of determination	
r_{I_i}	Road segments at Intersection i	
\overrightarrow{R}	Road direction	
S_{inter}	The spacing between the last vehicle of the leading cluster and	
	the first vehicle of the following cluster	
Т	The arrival time of a vehicle at the highway and it is uniformly distributed at	
	interval $(0, t]$	
T_c	Time duration of a catch-up phase	
T_f	Time duration of a forward phase	
T_D	The sum of multiple catch-up times, T_c	
V	the vehicles' speed and it is uniformly distributed at interval $[v_{min}, v_{max}]$	
v_s	A source vehicle	

- v_d A destination vehicle
- v_k Neighboring vehicles
- v_c A current forwarding vehicle
- v_{nexth} A next hop vehicle
- w_C Channel quality weighting
- w_I Interval weighting
- X_f The distance traveled by messages during a forwarding phase
- X_c The distance traveled by messages during a catch-up phase
- X(t) Message propagation distance during (0, t]
- X'(t) Distance that the partition tail moves during [0,t]
- Y The size of a cluster

CHAPTER 1

INTRODUCTION

1.1. Background

Vehicular Ad hoc Network (VANET) is vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications using wireless local area network technologies. The main idea of VANET is to provide continuous connectivity to mobile users while on the road, and to provide efficient vehicle-to-vehicle communications [1,2]. In recent years, the research and development in this area has intensified due to several factors. One of the contributing factors is the potential advantages of VANET applications. V2V and V2I communications have enabled the development and implementation of a variety of applications, as well as providing a broad range of information to drivers and travelers. By integrating a vehicle's on-board devices with the network interface, various types of sensors and Global Positioning System (GPS) devices, the vehicle has the capability to aggregate, process and disseminate information about itself and

1

its environment to other vehicles in the immediate vicinity that can be used for enhancing road safety and providing passenger comfort [3–5].

In addition, the advancements in computing and wireless communication technologies have increased interest in "smart" vehicles, resulting in more vehicle manufacturers beginning to adopt the use of information and technology to tackle the issue of safety and the environment, as well as the comfort of their vehicles. A smart *vehicle* should at least be equipped with on-board units, also known as in-vehicle equipments, that are needed for communication. For inter-vehicle communication, it is assumed that a vehicle should have a central processing unit (CPU) that implements applications and communication protocols; a wireless transceiver for transmitting and receiving data packets or wireless signals; a GPS receiver for location and time synchronization information, and a human interface between the driver and the system [6–8]. In [8,9], the authors described computing platforms for *vehicular* communication (VC) that are dedicated to VC functionality and independent from car processors and controllers. Car processors and controllers are normally used for tasks such as fuel injection, braking, transmission and car charging [8,9]. However, VC computing platforms are independent from these vehicle power systems and are responsible for V2V and V2I communication protocols and applications. The VC computing platforms usually use information provided by the vehicle processors and controller and forward them to safety and driving efficiency applications [8].

Another contributing factor in the increment of VANET studies is the commitment of national and regional governments to assign wireless spectrum and the wide implementation of wireless access technologies that provide the required radio interface to facilitate V2V and V2I communications between vehicles [5, 10, 11]. In 1999, the United States Federal Communications Commission (FCC) assigned the 75 MHz band of Dedicated Short Range Communications (DSRC) at the 5.850 - 5.925 GHz frequency for Intelligent Transportation Systems (ITS) application in North America, which is used for variety of services such as safety applications, real-time traffic management, traveler information and many more [3, 5, 11, 12]. In Europe, ETSI (European Telecommunications Standard Institute), which is responsible for the standardization in the telecommunication industry, has designated the frequency band between 5.885 - 5.905 GHz for ITS applications in year 2008 [3, 5, 11]. DSRC radio technology is built based on the IEEE 802.11p standard, which is modified from the IEEE 802.11a standard since the latter is not sufficient enough to support intervehicle communication. The American Society for Testing and Materials (ASTM) modified the 802.11a standard to match the vehicular environment, and from this effort, IEEE standardized a new standard specifically for wireless access in the vehicular environment (WAVE) which is IEEE 802.11p with higher tolerance to multi-path propagation and Doppler spread effects for moving vehicles [5,13].

3