Faculty of Electrical Engineering

FUZZY LOGIC CONTROLLED SPMSM DRIVES FOR LONG CABLE APPLICATIONS

Cheok Yong Seng

Master of Science In Electrical Engineering

2014
FUZZY LOGIC CONTROLLED SPMSM DRIVES FOR LONG CABLE APPLICATIONS

CHEOK YONG SENG

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014
DECLARATION

I declare that this thesis entitle Fuzzy Logic Controlled SPMSM Drives for Long Cable Applications is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :
Name : Cheok Yong Seng
Date :
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature : ..
Supervisor : Assoc. Prof. Dr Zulkiflie Ibrahim
Date : ..
DEDICATION

To my beloved mother, father and wife
ABSTRACT

In many industrial Variable Speed Drives (VSD) applications require that the Voltage Source Pulse Width Modulation (PWM) Inverter and the motor be at separate locations, often resulting in long motor leads, high voltage oscillation at the motor terminal, increase harmonics content and affect the overall motor speed performance. To our knowledge, a detailed investigation of the impact of various cable lengths over speed response has not been reported in the literature. Therefore, the research focuses on investigation and evaluation of the performance of a Vector Controlled Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) drive, controlled by PI speed controller and FL speed controller for different cable lengths conditions. Current control is performed in the stationary reference frame, using hysteresis current controllers. The scope of research is focusing on low speed operation based on simplified 9 rules Fuzzy Logic speed controller and tested for tested 100 meter maximum cable lengths and 1.1kW SPMSM. The drive is modeled, simulated and implemented using MATLAB, SIMULINK and FUZZY LOGIC Toolboxes. The experimental study is carried out based on dSPACE hardware platform for validating the simulation results. PI and Fuzzy Logic speed controllers are designed and tuned to obtain the best performance with criteria less than 0.72% overshoot and ±0.1 steady state error are acceptable. All the controller parameters are fixed based on designed case study for overall simulation and experimental studies. The overshoot/undershoot, settling time and rise time of the speed response are used to evaluate the controller performance. The simulation and experimental results have showed that the speed response and load rejection are degraded due to variation in cable length and increase of motor inertia. The proposed Fuzzy Logic has demonstrated better performance in term of step speed command, load rejection capability and THD compare with the results obtained from PI speed controller for different cable length conditions. The THD of the three-phase stator current is increased when motor is connected with longer cable. Fuzzy Logic speed controller shows better THD of stator currents as compare to PI speed controller where the THD was remain constant even cable length was increasing. When switching frequency of the Hysteresis PWM is increased, the stator currents will be closer to sinusoidal and indirectly reduced the %THD of the drives. Study on variable speed drive performance versus different cable length can be further investigated for medium and high motor speed commands operation.
ABSTRAK

ACKNOWLEDGEMENTS

No one can learn by themselves without the help of others in an attempt to seek knowledge from the time he was in the cradle to the grave, and I gladly would like to express gratitude for those who have helped me along the way of my studies in the successful completion of this thesis. I wish to express my sincere appreciation to my main thesis supervisor, Assoc. Prof. Dr Zulkifilie Ibrahim, for encouragement and guidance. Besides, I am very thankful to my lecturer Mrs. Jurifa, Mrs Nurazlin, and Mr. Hairol for their guidance and advices. Without their continued support and interest, this thesis would not have been same as presented here.

My group of postgraduate students Mrs. Normiza, Mr. Anggun, Mr. Musa and Mr. Ahmad Shukri should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Background of High Performance AC Drives
 1.2 Problem Statement
 1.3 Research Objectives
 1.4 Scope of Work
 1.5 Contribution of the Research
 1.6 Thesis Outline

2. **LITERATURE REVIEW**
 2.1 Introduction
 2.2 Vector Control of a Surface Mounted Permanent Magnet Synchronous Machine
 2.2.1 Rotor Flux Oriented Control of Current-Fed SPMSM
 2.2.2 Rotor Flux Oriented Control of Voltage-Fed SPMSM
 2.3 Long Cable Drives Application
 2.4 Conventional Speed Controller
2.5 Current Control Method for PWM Voltage Source Inverter (VSI) 22

2.6 Design of Fuzzy Logic Speed Controller 24

2.6.1 Fuzzy Control Rules 26

2.6.2 Membership Function 29

2.6.3 Defuzzification 30

2.6.4 Scaling Factor Calculation 30

2.7 Summary 33

3. METHODOLOGY 35

3.1 Research Methodology 35

3.2 Mathematic Model of Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) 38

3.2.1 Phase Variable Voltage Equation in the Original Reference Frame 38

3.2.2 Transformation to the d,q Reference Frame Fixed to the Rotor 42

3.2.3 Rotor Flux Oriented Control of SPMSM 46

3.3 Voltage Source Inverter 47

3.4 Hysteresis Current Controller 52

3.5 PI Speed Controller 56

3.6 Vector Controlled SPMSM Drives 57

3.7 Long Cable Model 59

3.7.1 Impedance measurement of 10 meter cable length 61

3.7.2 Circuit constant used for the simulation 66

3.8 Summary 68
4. DESIGN OF SPEED CONTROLLER 69

4.1 Design of PI Speed Controller 69

4.2 Simulation model of Rotor Flux Oriented Control (RFOC) with PI Controller 70

4.2.1 Initial Speed response for RFOC with PI Controller 70

4.2.2 Speed Response with Different Cable Length 72

4.3 Simulation Model of Rotor Flux Oriented Control (RFOC) with Fuzzy Logic Controller 79

4.3.1 Initial Speed Response for RFOC with Fuzzy Logic Controller 82

4.3.2 Comparative Study Between PI Speed Controller and Fuzzy Logic Speed Controller for Long Cable Application 83

4.4 Summary 88

5. EXPERIMENTAL INVESTIGATION 89

5.1 Introduction 89

5.2 Experimental Rig Setup 89

5.3 Software Configuration 91

5.4 Hardware Configuration 93

5.4.1 dSPACE System 93

5.4.2 Optocoupler 93

5.4.3 Voltage Source Inverter 94

5.4.4 SPMSM integrated with Resolver 94

5.4.5 Position Sensing with Resolver to Digital Converter (RDC) 95

5.4.6 Current Sensing with Hall Effect Sensor 96

5.4.7 High Voltage Differential Probe Calibration 101
5.4.8 Fluke Power Quality Analyzer Calibration

5.5 Description of the Experimental Procedure

5.6 Experimental Result

5.6.1 Tuning for PI and Fuzzy Logic speed controller on standard cable length

5.6.1.2 Step speed command from standstill

5.6.2 RFOC with PI speed controller for 36 meter and 100 meter cable length

5.6.2.1 Step speed command from standstill for PI speed controller

5.6.2.2 Speed command step down by 20% for PI speed controller

5.6.2.3 Step load torque application for PI speed controller

5.6.3 Comparative study of PI and Fuzzy Logic speed controller for different cable length application

5.6.3.1 Step speed command from standstill for PI and FL speed controller

5.6.3.2 Speed command step down by 20% for PI and FL speed controller

5.6.3.3 Step load torque application for PI and FL speed controller

5.6.3.4 Over voltage comparison between PI and FL for different cable length

5.6.3.5 Total Harmonic Distortion of three phase stator voltage and current versus different cable length application

5.7 Summary

6. CONCLUSION

6.1 Conclusion

6.2 Future Work

REFERENCE

APPENDIX A – Motor Data
<p>| APPENDIX B – Simulink Model in Simulation | 160 |
| APPENDIX C – Simulink Model in Experimental | 166 |
| APPENDIX D – Hardware Configuration | 169 |
| APPENDIX E – THD M-File Formula | 172 |
| APPENDIX F – Publications | 173 |</p>
<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1 : Matrix 49 rules table (Standard)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Table 2.2 : Matrix 9 rules table (Isa, Ibrahim, & Patkar, 2009)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Table 3.1 : Comparison between the Cyclo converter, LCI, and PWM VSI drives on dynamic performance and controllability (Rashid, 2001)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Table 3.2 : Principle of the hysteresis controller</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Table 3.3 : Cable Constant per unit length</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Table 3.4 : Cable parameters in differential mode when 10 meter cable length was used (a)R_Dif (b)L_Dif (c)C_Dif</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Table 3.5 : Cable parameters in common mode when 10 meter cable length was used. (a)G_com (b)C_com</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Table 4.1 : Effects of increasing parameter K_p and K_i independently</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Table 4.2 : Data of Fuzzy Logic Speed Controller</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Rules editor from Fuzzy toolbox MATLAB</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Membership functions of 9 rules FL speed controller: (a) speed error; (b) change in speed error; (c) q-axis command current; (d) three dimensional control surface.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Fuzzy logic speed controller</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Internal Structure of Fuzzy Logic Controller</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research Methodology flow chart</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Stator and rotor winding magnetic axes, common rotor-fixed reference frame and current space vector.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>The electrical power conversion topology</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>The basic structure of three-phase VSI</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Hysterisis current control scheme</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Hysterisis Current Control</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>(a) Simulation result of phase current and (b) voltage for PI Speed controller</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>PI Speed Controller based vector controlled SPMSM drive for long cable application</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Rotor flux oriented control scheme with PI speed controller and hysterisis current control (configuration used for simulation)</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Distributed parameter model per unit length for the long cable</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Cross section of the 4 conductor symmetric cable used in the experiment</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Simulation result of ringing frequency for Voltage line to line at terminal motor based on simulation model Figure 3.9 and Figure 3.10</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Parameter extracting method for 10 meter cable length</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Cable parameters in differential mode when the 10 meter cable length was used (a)R_Dif (b)L_Dif (c)C_Dif</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Cable parameters in common mode when the 10 meter cable length was used. (a)G_com (b)C_com</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Extraction of per-unit-length constants for the lossy long cable simulation</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Initial speed response for RFOC with PI Controller (a) Rated Speed 418rad/s (b) Rated load 3.6Nm applied and (c) Step command reduce 10%</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Comparison of speed responses obtained for different cable lengths during start-up (a) 100% rated speed 418rad/s (b) 50% of rate speed (c) 25% of rate speed (d) Rise time versus Cable length at rated speed (418rad/s)</td>
<td>73</td>
</tr>
</tbody>
</table>
Figure 4.3: Comparison of speed responses to step rated load torque application obtained for different cable lengths: (a) at rated 418 rad/s (b) at 50% of rate speed (c) at 25% of rate speed (d) Load disturbance recovery time versus cable length at rated torque

Figure 4.4: FFT frequency comparison between standard cable (2 meter) and long cable (100 meter) for phase ‘A’ stator current

Figure 4.5: THD of 3 phase stator voltage and current versus cable length based on PI speed controller

Figure 4.6: Comparison of speed responses for increased 20% of rated inertia for different cable length (a) at rated speed 418 rad/s (b) at rate torque

Figure 4.7: Simulink model of Fuzzy logic speed controller with scaling factors and limiter

Figure 4.8: Initial speed response for RFOC with F.L Controller (a) Rated Speed 418 rad/s (b) Rated load 3.6Nm applied and (c) Step command reduce 10%

Figure 4.9: Comparison between PI speed controller and Fuzzy logic controller to step speed command and rated load applied for standard length cable.

Figure 4.10: Comparison between PI and Fuzzy logic speed controller to step speed command for 100 and 200 meter cable length at different step speed command

Figure 4.11: Comparison between PI and Fuzzy logic speed controller at rated torque applied for 100 and 200 meter cable length at step load command applied

Figure 5.1: Motor Speed Control System Block Diagram

Figure 5.2: Experimental rig

Figure 5.3: RTI board library for the DS1103

Figure 5.4: Calibration speed of RDC

Figure 5.5: Output signal from resolver

Figure 5.6: Hall Current Sensor calibration on 3 phase current (Phase A, B and C)

Figure 5.7: Hall Current Sensor calibration setup

Figure 5.8: Hardware configuration

Figure 5.9: High Voltage Differential Probe calibration

Figure 5.10: Fluke Power Quality Analyzer meter calibration circuit.

Figure 5.11: Fluke 435 power Quality Analyser meter calibration hardware setup

Figure 5.12: Setup of the Power Quality Analyzer meter

Figure 5.13: Results of current measurement by Power Quality Analyzer meter

Figure 5.14: Rotor flux oriented control scheme with PI speed controller and hysteresis current control (Simulink/Matlab Configuration used for experimental)

Figure 5.15: Experimental setup of PI Speed Controller

Figure 5.16: Experimental setup of Fuzzy logic speed controller with scaling factor and limiter

Figure 5.17: Experimental setup of membership functions of 9 rules FL speed controller: (a) speed error; (b) change in speed error; (c) q-axis command current; (d) three dimensional control surface.

Figure 5.18: Reference speed profile used for whole experimental for PI and FL speed controller

Figure 5.19: Experimental responses at 500rpm for standard cable length a) speed at 500rpm b) reference stator q-axis currents c) Actual stator phase ‘a’ current
Figure 5.20 : Experimental results of Phase Voltage and current for PI and FL speed controllers

Figure 5.21 : Experimental responses comparison between 2 meter, 36 meter and 100 meter cable length at 500rpm with PI speed controller a) speed at 500rpm b) reference stator q-axis currents c) Actual stator phase ‘a’ current

Figure 5.22 : Experimental responses comparison between 2 meter, 36 meter and 100 meter cable length at step down 20% speed command with PI speed controller a) speed at 500rpm b) reference stator q-axis currents c) Actual stator phase ‘a’ current

Figure 5.23 : Experimental responses comparison between 2 meter, 36 meter and 100 meter cable length at step load torque applied with PI speed controller a) sudden load torque 7.36Nm is applied b) reference stator q-axis currents c) Actual stator phase ‘a’ current

Figure 5.24 : Experimental responses comparison between PI and FL speed controller for 36 meter and 100 meter cable length at step speed command from standstill (a) and (b) speed at 500rpm (c) and (d) reference stator q-axis currents (e) and (f) Actual stator phase ‘a’ current

Figure 5.25 : Experimental responses comparison between PI and FL speed controller on different cable length at speed command step down by 20% (a) and (b) speed at 400rpm (c) and (d) reference stator q-axis currents on (e) and (f) Actual stator phase ‘a’ current

Figure 5.26 : Experimental responses comparison between PI and FL speed controller on different cable length at step load torque applied (a) and (b) sudden load torque 7.36Nm is applied (c) and (d) reference stator q-axis currents (e) and (f) Actual stator phase ‘a’ current

Figure 5.27 : Experimental results for V_{L-L} at motor terminal based with PI speed controller.

Figure 5.28 : Experimental results for V_{L-L} at motor terminal based on FL speed controller.

Figure 5.29 : Overvoltage at motor terminal comparison between PI and FL speed controllers for 2 meter, 36 meter and 100 meter cable lengths.

Figure 5.30 : THD current stator of PI speed controller versus FL speed controller for different cable length application.

Figure 5.31 : THD current stator of 0.1 versus 0.5 hysteresis band.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Motor Data</td>
<td>158</td>
</tr>
<tr>
<td>B</td>
<td>Simulink Model in Simulation</td>
<td>160</td>
</tr>
<tr>
<td>C</td>
<td>Simulation Model in Experimental</td>
<td>166</td>
</tr>
<tr>
<td>D</td>
<td>Hardware Configuration</td>
<td>169</td>
</tr>
<tr>
<td>E</td>
<td>THD M-File Formula</td>
<td>172</td>
</tr>
<tr>
<td>F</td>
<td>Publications</td>
<td>173</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of High Performance AC Drives

Variable-speed drives are continuously innovated. Their development is characterized by the progress made in various areas including power and microelectronics, control systems, magnetic materials, modern communication technologies (e.g. for ultra-fast bus communications), etc. The DC drives became an absolute selection in motion industry since their flux and torque can be controlled easily by the field and armature currents. The torque of the DC drives is controlled via the armature current while maintaining the field component constant, thus fast torque can be achieved easily. As the consequence, the DC drives extensively used in wide-ranging of applications which require speed and position control with high dynamic performance and high precision characteristics. The disadvantage of the DC drives mainly due to existence of the commutator and brushes in the DC motor which used to obtain the flux and torque components to be always perpendicular to one another, which require periodic maintenance. However, these problems can be overcome by the application of ac motors, which can have simple and rugged structure, high maintainability and economy. AC motors are more robust and immune to heavy overloading compare to DC motor (Rashid, 2001). Among the various ac drive systems, those which contain the squirrel cage induction motor have a particular cost advantage. At present the cage induction motor is the most frequently used motor in industry. This is due to the fact that it is simple, rugged, requires only low maintenance and is one of the cheapest machines available at all power ratings. However, permanent magnet synchronous motor (PMSM) drives are used in many applications and receiving increased attention because of their
high torque density, high efficiency, and small size. The PMSM is preferable in industrial servo applications compare to the DC motor due to considerations of the cost, low maintenance, maximum speed capability, size and simplicity of design (Patil, Chile, & Waghmare, 2010).

With the rapid development in microprocessor, the high performance DSP chip becomes a popular research on digital control for ac drives due to their high-speed performance, simple circuitry, on-chip peripherals of a micro-controller into a single chip solution (Kung & Huang, 2004). The experimental results demonstrate that in step command response and frequency command response, the rotor position of SPMSM can fast track the prescribed dynamic response well. However, the whole system required a complicated operation of the proposed control algorithm, programming and difficulty on control design modification. However, in (Amamra, Barazane, Boucherit, & Cherifi, 2010) has shown the practical feasibility of the proposed approach that allows robust control of the induction. The control algorithm is built within Simulink environment combined with the Real- Time Interface (RTI) provided by dSPACE and is implemented by the main processor of the DS-1103 board in real-time. The combination of dSPACE DS1103 DSP and MATLAB/Simulink effectively created a rapid control prototype environment, in which the designer focused on control design rather than programming details or debugging control languages.

In recent years various speed and position sensorless control schemes have been developed for variable-speed ac drives. The main reasons for the development of these “sensorless” drives are: reduction of hardware complexity and cost, increased mechanical robustness and overall ruggedness, operation in hostile environments, higher reliability; decreased maintenance requirements, increased noise immunity, unaffected machine
inertia, improvement of the vibration behaviour, elimination of sensor cables etc (Rashid, 2001).

Basic principles of vector control (field orientation), introduced in the early Seventies (Blaschke, 1972), showed that decoupled control of flux and torque was theoretically possible in three-phase AC machine. Since there are three flux vectors in an induction machine, three method of vector control can be distinguished: the stator-flux-oriented control, the air-gap-flux-oriented control and rotor-flux oriented control (Vas P., 1990). The rotor-flux oriented control is the most popular method because of simple control system structure. All the vector controllers require accurate information about the instantaneous spatial position. The most popular alternative control method was direct torque control (DTC), was introduced by (Takahashi & Noguchi, 1986). The main feature of DTC is the absence of co-ordinate transformation and current controllers. DTC same as vector control require flux and torque estimates. However, the overall complexity of the control system is substantially reduced, compared with vector controlled drives.

1.2 Problem Statement

In many industrial VSD applications require that the Voltage Source Pulse Width Modulation (PWM) inverter and the motor be at separate locations, often resulting in long motor leads of 15 – 150 meter (Matheson, Von Jouanne, & Wallace, 1999). Drive system used in oil exploitation, offshore platform drilling and mining industries usually required longer motor feeders longer than 1 km. Variable speed drive performance encounter significant overvoltage issue at motor terminal when apply on long cable application. This is due to the relative different between characteristic impedance of the cable and output impedance of the drive. The drive side voltage can have large amplitude oscillations, over
twice its mean value and high THD content, mainly at the harmonic of the PWM signal, depending on the cable length and characteristic.

As reported in the literature review, overall motor drives performance degraded due to variation in voltage supply to the motor as well as the THD of the voltage and current (Buddingh, Dabic, & Groten, 2008). Variation in applied voltages and large oscillation in motor currents leads to variation in the operating point, result in increased Total Harmonics Distortion (THD) and degradation of the motor speed responses in term of oscillation, overshoot, settling time, steady state error else well as torque responses during motor acceleration and load disturbance operation.

1.3 Research Objectives

The research project investigates the effects of the cable length and the motor terminal voltage variation over speed response behaviour of the vector controlled variable speed drives with Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) which is controlled by PI and Fuzzy Logic Speed controllers. The main objectives of the research can be summarised as follows:

i. To investigate the overall performances of the vector controlled SPMSM drives in terms of speed responses behaviour and load rejection capabilities controlled by PI and FL speed controllers for different cable length.

ii. To study the effect of overvoltage on THD of the motor current for different cable length.

iii. To compare the robustness of the Fuzzy Logic and PI speed controllers for different cable length and variation in motor inertia.

iv. To implement the developed Fuzzy Logic and PI speed controllers in an experimental rig for different cable length.
1.4 Scope of Work

The work undertaken in this research consists of five stages.

1. To model three-phase Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) into d-q motor model, three-phase Voltage Source Inverter (VSI), hysteresis current controllers, long cable, PI speed controller, FL speed controller and rotor flux oriented control of a voltage-fed SPMSM drives.

2. To investigate the SPMSM drives behaviour which is controlled by PI speed controller for different cable length. A detailed study of speed response characteristics between a motor drive connected with standard cable length (2 meter) and a motor drive connected with long cable length (200 meter and 400 meter) for standstill to rated speed application, load disturbance and robustness to the motor inertia change is carried out.

3. To investigate the SPMSM drives behaviour which is controlled by Fuzzy Logic speed controller for different cable length. The Fuzzy logic controller used in the research is based on the simplified Fuzzy Logic controller proposed in paper (Isa, Ibrahim, & Patkar, 2009). A detailed comparative analysis of speed response characteristics between a motor drive connected with standard cable length (2 meter) and a motor drive connected with long cable length (200 meter and 400 meter) for standstill to rated speed application, load disturbance and robustness to the motor inertia change is carried out.

4. To develop an experimental rig consists of PC installed with MATLAB/SIMULINK, DS1103 DSP of dSPACE, IGBT drivers and modules, Resolver Digital Converter (RDC), 300VDC power supply, 1.1kW SPMSM, DC generator and 4 conductors symmetric cable PVC insulated with maximum 100 meter.
5. In this research only focuses on the low speed drive (500rpm) due to low accuracy at the Resolver Digital Converter (RDC). A detailed comparative analysis between standard cable length (2 meter) and long cable length (36 meter and 100 meter) of speed response from standstill to below rated speed application (500rpm). This study also takes into consideration the effects of Total Harmonic Distortion (THD) of three-phase stator currents and overvoltage at motor terminal over speed response transient in term of rise time, load disturbance and robustness to the motor inertia change.

1.5 Contribution of the Research

The contribution of the research consists of:

1. A detailed investigation on the overall motor drives behaviour controlled by Fuzzy Logic and PI speed controllers under motor terminal voltage variation due to overvoltage reflection based on different cable length

2. A detailed simulation and hardware experimental investigation of the SPMSM drive which is controlled by PI and Fuzzy Logic under inertia variation condition for different cable length application. Also the correlation between THD, cable length and speed responses.

1.6 Thesis Outline

A brief overview of background high performance AC drives and its applications in industry such as aerospace actuators, robotics and industrial applications has been given in this chapter. High performance SPMSM drives and the concept of vector control are review in Chapter 2. This includes a detailed literature survey of long cable drive