THE OBLIQUE IMPACT RESPONSE
OF COMPOSITES AND SANDWICH
STRUCTURES

Thesis submitted in accordance with the requirement of
The University of Liverpool for the degree of
Doctor in Philosophy

by

Siti Hajar Sheikh Md Fadzullah

School of Engineering

October 2014
ACKNOWLEDGEMENTS

In the name of God, Most Beneficial, Most Merciful.

I would like to convey my gratitude to my primary supervisor, Professor Wesley Cantwell for his continuous support, guidance, words of wisdom and trust in me to complete this PhD studies. A special thanks to Dr Graham Schleyer for his feedback and motivations throughout this journey.

My sincere gratitude to members of the School of Engineering, including Mr Stephen Pennington, Mr Jijimon Matthews, Mr Dave Atkinson, Mrs Denise Bain as well as my colleagues including Dr Mohamed Zaki Hassan, Dr Mohd Ruzaimi Mat Rejab, Dr Muhammad Al-Tenaji, Mr Mohd Zuhri Yusoff, Miss Alia Ruzanna and acquaintances from the Malay Speaking Circle Liverpool (MSC Liverpool) for their kind assistance, friendship, care and support. My special thanks to Dr. Olawale F.Ifayefunmi, Dr Zaleha Mustafa, Dr Rafidah Hasan, Dr Massila Kamalrudin and Mrs Ruzy Haryati Hambali for their endless prayers, help, support and words of encouragement throughout the completion of this thesis.

A special dedication to my loving husband, Radin Suparman Joyo, my beloved son, Radin Amir Zikri, my dearest mother, Hamidah Abdul Wahab and my family who have showered me with their unconditional love, sacrifice, support, prayers and motivation throughout this long journey to success.

I would also like to thank the Universiti Teknikal Malaysia Melaka (UTeM) and the Government of Malaysia for sponsoring this PhD studies.

This thesis is dedicated to my late father, Sheikh Md. Fadzullah Sheikh Hassan who had loved, inspired and motivated me to reach this level of greatness in the field of knowledge.
LIST OF PUBLICATIONS

ABSTRACT

This research project focussed on the low-velocity oblique impact response of glass fibre-reinforced epoxy laminates and sandwich structures with a range of polymeric cores of linear PVC and PET with nominal densities in the range of 90-140 kg/m3, conducted at normal (0°), 10° and 20° inclination angles, at energies up to 40 J. For the laminated composites and the linear PVC sandwich structures, at maximum impact energies, the damage area reduced whilst the energy absorbed increased with increasing inclination angle. Damage took the form of matrix cracking, due to bending and shear, combining with fibre fracture due to tensile loading. In the case of the higher density foam-core sandwich structures (PVC and PET), the maximum damage area occurs at 10° and less severe damage occurs at 20°, suggesting an effect of the combination of tensile, compression and shear occurred at 10°. Interestingly, the absorbed energy reduced with increasing inclination angle for these structures. The threshold energy in which visible damage occurs was observed at 14 J and 10 J for the laminated composites and sandwich structures, respectively. At higher energy levels (40 J), full perforation occurred. Contrary to the observations at relatively low energies, the PET-based sandwich structures showed increased damage with increasing inclination angle. An energy-balance model was established and used to successfully predict the maximum impact force (P_{max}) values, showing good agreement with the experimental results up to the threshold energy. In addition, these findings also showed that core density has a great influence on the impact response of the sandwich structures, whereby the contact stiffness, C, and the maximum impact force (P_{max}), increased with an increase in core density.
NOMENCLATURES

Symbols

\(t \) \quad \text{Impact duration}

\(h_c \) \quad \text{Thickness of the core}

\(E \) \quad \text{Young’s modulus of the composite}

\(\rho \) \quad \text{Density of the composite}

\(R_p \) \quad \text{Support span}

\(\rho_1 \) \quad \text{Density of the facesheet}

\(M \) \quad \text{Target mass}

\(m \) \quad \text{Mass of the indenter}

\(k \) \quad \text{Constant stiffness; static force required to produce unit transverse deflection}

\(V_o \) \quad \text{Velocity of the indenter immediately before impact}

\(U_o \) \quad \text{Energy of the indenter before impact}

\(U_i \) \quad \text{Energy of the indenter at time, } t

\(U_p \) \quad \text{Strain energy stored by the plate at time, } t

\(F, P \) \quad \text{Contact force}

\(F_{\text{max}} \) \quad \text{Maximum load (force)}

\(V \) \quad \text{Velocity of the indenter}

\(E_b \) \quad \text{Energy absorbed in bending effects}

\(E_s \) \quad \text{Energy absorbed in shear effects}

\(E_m \) \quad \text{Energy stored due to membrane stiffness}

\(E_c \) \quad \text{Energy stored in the contact region during indentation}
K_{bs} Linear stiffness including bending and transverse shear deformation effects

K_m Membrane stiffness

ω Overall deformation of the plate (target)

ω_o Maximum deflection of the plate

α_o Maximum indentation of the plate

G Shear modulus of the foam core

L Span

D Flexural rigidity of the skins

A Geometrical parameter that depends on the thickness of the core and skin materials, as well as the beam width.

δ_{max} Maximum displacement

P_{max} Maximum contact force

C Contact stiffness

α Indentation

E Young’s modulus

E_1 Young’s Modulus of the indenter

E_2 Young’s Modulus of the target

R Radius of the indenter

ν Poisson’s ratio

δ Displacement

n Indentation exponent

P_{crit} The critical impact load or threshold value

t Laminate thickness

E Flexural modulus
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{IIc}</td>
<td>Critical value of the energy release rate for Mode II fracture</td>
</tr>
<tr>
<td>P_f</td>
<td>Indentation load at shear failure</td>
</tr>
<tr>
<td>K_c</td>
<td>Constraint factor</td>
</tr>
<tr>
<td>F_f</td>
<td>Maximum impact force</td>
</tr>
<tr>
<td>τ_{13d}</td>
<td>Dynamic transverse shear strength of the facesheet</td>
</tr>
<tr>
<td>q_d</td>
<td>Dynamic crushing strength</td>
</tr>
<tr>
<td>ε_{cr}</td>
<td>Tensile fracture strain</td>
</tr>
<tr>
<td>N_{cr}</td>
<td>Membrane fracture force</td>
</tr>
<tr>
<td>P_f</td>
<td>Damage initiation load for a circumferential crack</td>
</tr>
<tr>
<td>d</td>
<td>Damage length</td>
</tr>
<tr>
<td>R_e</td>
<td>Indenter radius of curvature</td>
</tr>
<tr>
<td>γ_f</td>
<td>Transverse shear fracture strain</td>
</tr>
<tr>
<td>G_{13}</td>
<td>Transverse shear modulus of the honeycomb</td>
</tr>
<tr>
<td>E_l</td>
<td>Imparted energy</td>
</tr>
<tr>
<td>V_S</td>
<td>Striking velocity</td>
</tr>
<tr>
<td>V_R</td>
<td>Rebound velocity</td>
</tr>
<tr>
<td>U_R</td>
<td>Strain energy due to the deflection of the guide rods</td>
</tr>
<tr>
<td>K</td>
<td>Transverse stiffness of the indenter and the guide rod assembly</td>
</tr>
<tr>
<td>F_H</td>
<td>Horizontal force in the guide rod assembly</td>
</tr>
<tr>
<td>F_N</td>
<td>Normal or reaction force</td>
</tr>
<tr>
<td>F_s</td>
<td>Striking force (measured by the force transducer during an impact test)</td>
</tr>
<tr>
<td>θ</td>
<td>Plate inclination angle</td>
</tr>
<tr>
<td>k</td>
<td>Indenter unit stiffness in horizontal direction</td>
</tr>
</tbody>
</table>
\(\delta x \) Displacement in horizontal direction

\(F_T \) Friction or tangential force

\(\mu \) Coefficient of friction

\(r \) Radius of the right cylinder

\(R \) Long radius of the elliptical oblique cylinder

\(I \) Angle between the right cylinder and the elliptical oblique cylinder

\(D \) Diameter of the damage

Abbreviations

- SDOF Single-degree of freedom
- TDOF Two degree of freedom
- ILSS Interlaminar shear strength
- CSM Chopped strand mat
- ACG Advanced Composites Group
- UD unidirectional
- PVC poly (vinyl chloride)
- PET poly (ethylene terephthalate)
- BVID barely visible impact damage
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii
LIST OF PUBLICATIONS .. iii
ABSTRACT ... iv
NOMENCLATURES .. v
TABLE OF CONTENTS .. ix
LIST OF FIGURES ... xv
LIST OF TABLES .. xxix
CHAPTER I: INTRODUCTION ... 1
1.0 Background .. 1
1.1 Typical applications of fibre reinforced polymer (FRP) and sandwich structures ... 3
1.2 Motivation and Scope of the Research Work .. 10
1.3 Aims and Objectives of the study ... 10
1.4 Organisation of the Thesis .. 11
1.5 References .. 11
CHAPTER II: LITERATURE REVIEW .. 15
2.0 Introduction.. 15
2.1 Classifications of Impact Response ... 16
2.2 Impact Dynamics (Impact Models) .. 18
2.2.1 Spring-mass model ... 18
2.2.2 Energy-balance model .. 21
2.3 Contact Mechanics ... 24
2.3.1 Indentation of laminates .. 24
2.3.2 Indentation response of sandwich structures.. 25
2.4 Impact Damage in Composites and Sandwich Structures 29
 2.4.1 Failure mode in composite laminates .. 30
 2.4.2 Failure mode in sandwich structures .. 32
 2.4.3 Damage Prediction ... 34
 2.4.3.1 Damage predictions in composite laminates 34
 2.4.3.2 Damage predictions in sandwich structures 36
2.5 Perforation behaviour of composite laminates and sandwich structures... 40
 2.5.1 Perforation behaviour of composite laminates subjected to normal impact ... 40
 2.5.2 Perforation behaviour of sandwich structures subjected to normal impact ... 41
2.6 Oblique (Non-normal) impact on composites and sandwich structures 45
 2.6.1 Background ... 45
 2.6.2 Oblique impact at the low-velocity .. 46
 2.6.3 Oblique impact response at high velocity 52
 2.6.4 Perforation of composite laminates and sandwich structures subjected to oblique impact.. 56
2.7 Summary of Literature Review .. 63
2.8 References .. 64

CHAPTER III: EXPERIMENTAL PROCEDURE .. 78
3.0 Experimental Procedure .. 78
 3.1 Skin Materials ... 78
 3.2 Core Materials .. 79
 3.2.1 Foam materials ... 79
 3.2.1.1 Linear PVC foams ... 79
3.2.1.2 PET Foams ... 81
3.3 Materials Preparation ... 82
 3.3.1 Preparation of the composite plates and skin materials 82
 3.3.2 Preparation of the core materials 83
 3.3.3 Fabrication of the foam-core sandwich panels 84
3.4 Low Velocity Impact Testing .. 85
 3.4.1 Indentation tests .. 89
3.5 Surface Analysis ... 90
 3.5.1 Visual observation .. 90
 3.5.2 Measurement of the maximum permanent indentation 91
 3.5.3 Optical microscopy of the damaged panels 91
 3.5.4 The energy-balance model .. 92
 3.5.5 Prediction of the critical force to initiate damage in composite laminates ... 94
3.6 Summary ... 95
3.7 References ... 95
CHAPTER IV: RESULTS AND DISCUSSION 97
4.0 Results and Discussion .. 97
 4.1 Normal and Oblique Impact Response of GFRP Composite Laminate 97
 4.1.1 Theoretical predictions for impact response of the plain composites at normal and oblique angles using the energy-balance model 99
 4.1.1.1 Determination of contact parameters 99
 4.1.2 Experimental results following normal and oblique impact on the GFRP laminate ... 102
 4.1.3 Comparison of experimental and theoretical results 122
4.1.3.1 Predictions of maximum contact force using an energy-balance model 122

4.1.3.2 Damage initiation in an 8-ply GFRP laminate 124

4.2 Normal and Oblique Impact Response of Foam-Based Sandwich Structures................................. 125

4.2.1 Normal and Oblique Impact Response of Linear PVC (R63.80) Sandwich Structures................................. 126

4.2.1.1 Theoretical predictions for the impact response of the linear PVC (R63.80) sandwich structures using an energy-balance model................................. 126

4.2.1.1.1 Determination of the contact parameters................................ 126

4.2.1.2 Experimental results following normal and oblique impact tests on linear PVC (R63.80) sandwich plates .. 129

4.2.1.3 Comparison between experimental and theoretical results 148

4.2.2 Normal and oblique impact response of linear PVC (R63.140) sandwich panels ... 149

4.2.2.1 Theoretical predictions for impact response of the linear PVC (R63.140) sandwich structures at normal and oblique angles using the energy-balance model... 150

4.2.2.1.1 Determination of contact parameters........................ 150

4.2.2.2 Experimental results following normal and oblique impact tests on linear PVC (R63.140) sandwich plates .. 153

4.2.2.3 Comparison of experimental and theoretical results 170

4.2.3 Normal and oblique impact tests on PET (T92.100) sandwich plates. 171
4.2.3.1 Theoretical predictions for impact response of the PET (T92.100) sandwich structures at normal and oblique angles using the energy-balance model .. 172

4.2.3.1.1 Determination of contact parameters................................. 172

4.2.3.2 Experimental results following normal and oblique impact tests on PET (T92.100) sandwich plates ... 174

4.2.3.2.1 Comparison of experimental and theoretical results 181

4.2.4 Normal and oblique impact tests on PET (T92.130) sandwich plates. 182

4.2.4.1 Theoretical predictions for the impact response of the PET (T92.130) sandwich structures at normal and oblique angles using the energy-balance model .. 182

4.2.4.1.1 Determination of the contact parameters 182

4.2.4.2 Experimental results following normal and oblique impact tests on PET (T92.130) sandwich plates ... 185

4.2.4.2.1 Comparison of experimental and theoretical results 191

4.3 Perforation behaviour of PET Sandwich Foam Structures under Impact Loading at Normal and Oblique Angles ... 192

4.3.1 Perforation behaviour of PET (T92.100) sandwich foam structures... 193

4.3.2 Perforation behaviour of the PET (T92.130) sandwich foam structures 200

4.4 Summary .. 209

4.5 References .. 220

CHAPTER V: CONCLUSIONS ... 223

5.0 Conclusions .. 223

5.1 Characterization tests ... 223
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Energy-balance model</td>
<td>224</td>
</tr>
<tr>
<td>5.3</td>
<td>Impact response and damage</td>
<td>224</td>
</tr>
<tr>
<td>5.4</td>
<td>Perforation behaviour</td>
<td>225</td>
</tr>
<tr>
<td>5.5</td>
<td>Further work</td>
<td>226</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Photograph of the Airbus A400M, the next generation of military aircraft [2].. 3

Figure 1.2 A side view of the Swedish 72-metre long Visby Class or YS 2000 corvette [4]. .. 4

Figure 1.3 Cross-section of a rotor blade giving the nomenclature of the different elements of the blades [5].. 5

Figure 1.4 The new Burbo Bank offshore wind farm in Liverpool Bay [6]............... 6

Figure 1.5 Cross-sections of GFRP elements [7].. 6

Figure 1.6 Pontresina bridge in Switzerland [8].. 7

Figure 1.7 New Generation' high-speed train [9] .. 8

Figure 1.8 A lightweight structure for Kuala Lumpur’s monorail system manufactured by DK Composites, Malacca, Malaysia [10]... 9

Figure 1.9 The Australia FR-1, a two-seat roadster concept car [12]............................ 9

Figure 2.1 (a) The single-degree-of-freedom model, where M= mass of the target, K = spring stiffness and X = indentation ; (b) the two-degree-of-freedom model, where \(M_1 \) = the mass of the indenter, \(M_2 \) = effective mass of the target, \(K_b \) = bending stiffness, \(K_s \) = shear stiffness, \(K_m \) = membrane stiffness, \(x_1 \) = indentation of the indenter, \(x_2 \) = indentation of the target [11].. 19

Figure 2.2 Linear spring of constant, \(k \), impacted by a striker having a mass,\(m \), and initial velocity, \(V_o \) [6]... 20

Figure 2.3 Schematic of a static indentation test showing impact force (P), displacement, (\(\delta \)), indentation, (\(a \)) and deflection (w) [45]. .. 25
Figure 2.4 (a) Indentation test set-up, and in (b) Comparison between load–indentation curves deduced from finite element modelling and indentation test testing [80]. .. 26

Figure 2.5 Typical stress–strain curve for the compression of a polyurethane foam (80 kg/m³) [74]. .. 27

Figure 2.6 A schematic of a sandwich beam during indentation [74]. (Note: z = longitudinal direction, x = transverse direction, P = applied load, l = half length of crushed foam). .. 28

Figure 2.7 (a) Comparison of the quasi-static and dynamic values of (a) the contact stiffness parameter, C; and (b) indentation exponent ‘n’ [62]. .. 29

Figure 2.8 Types of matrix cracking including (a) tensile cracking and (b) shear cracking [11]. ... 30

Figure 2.9 Schematic representations showing a typical impact damage mode for a composite laminate [41]. ... 32

Figure 2.10 Typical stages of load-displacement curve for a composite sandwich panel subjected to normal impact loading [58]. ... 33

Figure 2.11 The variation of the damage initiation force with indenter radius based on a GFRP plate [7]. .. 36

Figure 2.12 Comparison between quasi-static and impact load-displacement characteristics for 0.9 m square sandwich panels with 3.25-mm GRP skins and 25 mm thick H130 foam core loaded by 50 mm diameter indenters. 43

Figure 2.13 Typical load-displacement traces following drop weight normal impact test on the sandwich structures of the (a) linear PVC and (b) the PET foams [64]. 44

Figure 2.14 Cross-sections of perforated sandwich panels (a) linear PVC.............. 44

Figure 2.15 Four phases of the degree of perforation [103]. 46
Figure 2.16 (a) A schematic illustration of an impact event and; in (b) the associated system of forces [94].

Figure 2.17 Calculated strain (absorbed by guide rods) vs plate inclination angle following normal and oblique impact on chopped strand mat (CSM) reinforced polyester laminates [94].

Figure 2.18 Normal force vs maximum permanent indentation following normal and oblique impact on chopped strand mat (CSM) reinforced polyester laminates [94].

Figure 2.19 Maximum gross damage area vs plate inclination angle following normal and oblique impact on chopped strand mat (CSM) reinforced polyester laminates [94].

Figure 2.20 Experimental results showing (a) the variation of the critical impact energy vs. impact angle and (b) the impact energy associated with the normal impact velocity component vs. impact angle [86].

Figure 2.21 Damage area vs. incidence angle at low, intermediate and high energy levels, using 6.35-mm thick specimens [96].

Figure 2.22 Impact and exit craters for 24-ply carbon fibre/PEEK composite laminates, using 2-mm Al indenter [51].

Figure 2.23 Schematic diagram of the normal and oblique impact test set-up [97].

Figure 2.24 The change in kinetic energy due to perforation of normal and oblique impact on carbon fibre reinforced epoxy laminates of different thicknesses [97].

Figure 2.25 Evaluation of the effective linear thickness offered to the indenter during normal and oblique penetration on carbon fibre reinforced epoxy laminates [97].

Figure 2.26 Damage area measured by ultrasonic C-scan vs. impact energy for each of the impacted carbon fibre reinforced epoxy laminates [97].
Figure 2.27 Damage area as a function of impact energy following high velocity impact on woven CFRP laminates at normal incidence [50] .. 58
Figure 2.28 Damage area as a function of impact energy following oblique impact on woven CFRP laminates [50].. 59
Figure 2.29 Images of cross-sections of woven laminates impacted below the ballistic limit with an impact velocity of 92 m/s at (a) 0° and (b) 45° [52].............. 60
Figure 2.30 Bottom views of woven laminates impacted close to the ballistic limit, at different angles; (a) 0° and (b) 45° [52]... 60
Figure 2.31 Predicted load-displacement traces for sandwich panels fabricated using cross-linked PVC (C70.130) as well as PET (T92.100) subjected to oblique impact at angles of 0°, 10°, 20° and 30°[92]... 61
Figure 2.32 The variation of perforation energy with impact angle for three sandwich structures [92]... 61
Figure 2.33 Predicted cross-sections of sandwich panels made with C70.130 cross-linked PVC and PET T92.105 PVC subjected to oblique impact at incident angles of 0°, 10°, 20° and 30°, respectively [92], .. 63
Figure 3.1 Illustration of the stacking sequence for an 8-ply composite laminate... 83
Figure 3.2 Curing profile for the glass fibre-reinforced composites (SE84). 83
Figure 3.3 Polymeric foam core materials used in the sandwich constructions....... 84
Figure 3.4 Schematic of a sandwich foam structure assembly......................... 84
Figure 3.5 A schematic diagram illustrating the instrumented drop-weight test assembly, showing the indenter connected to the load-cell and the mass between two guide rails. ... 85
Figure 3.6 The Instrumented drop-weight impact test set-up for oblique impact testing (20° inclination)... 86
Figure 3.7 An example of a ProAnalyst software interface of a 20° impact on a thin laminate................................. 87

Figure 3.8 A closer view of the test-setup for a drop-weight impact test, with the use of a customized jig with 20° inclination angle. ... 88

Figure 3.9 A static indentation test set-up using the oblique impact test rig, showing (a) front view of the sandwich panels loaded at 10° of inclination; (b) A closer view showing contact between the hemispherical indenter and the inner surface of the sandwich panel. .. 89

Figure 3.10 A stereomicroscope, connected to the Lumenera Infinity camera for real-time viewing and image capturing.. 92

Figure 4.1 Typical load-indentation traces following an indentation test on an 8-ply glass fibre reinforced epoxy (GFRP) laminate, at a crosshead displacement rate of 1 mm/min using a 12-mm diameter hemispherical indenter... 100

Figure 4.2 (a) Contact stiffness, C, for an 8-ply GFRP laminate tested under static indentation loading at varying inclination angles, (b) Contact parameter ‘n’ for an 8-ply GFRP laminate tested under static indentation loading at varying inclination angles. .. 101

Figure 4.3 Typical load-time traces for an 8-ply GFRP laminate subjected to 5.6 J under normal and oblique impact. ... 104

Figure 4.4 Typical load-time traces for an 8-ply GFRP laminate subjected to 14 J under normal and oblique impact. ... 105

Figure 4.5 Typical load-time traces for an 8-ply GFRP laminate subjected to 20 J under normal and oblique impact. ... 105

Figure 4.6 Typical load-time traces for an 8-ply GFRP laminate subjected to 28 J under normal and oblique impact. ... 106
Figure 4.7 Typical load-displacement traces for an 8-ply GFRP laminate following normal impact at energies of 5.6 J and 14 J. ... 107
Figure 4.8 Typical load-displacement traces for an 8-ply GFRP laminate following normal impact at energies of 20 J and 28 J. ... 107
Figure 4.9 Typical energy-time traces for an 8-ply GFRP laminate following normal impact loading. ... 107
Figure 4.10 A schematic diagram showing a typical energy vs. time curve when rebound occurs [8]. ... 109
Figure 4.11 Typical load-displacement traces for an 8-ply GFRP laminate subjected to a 10° impact at energies of 5.6 J and 14 J. .. 110
Figure 4.12 Typical load-displacement traces for an 8-ply GFRP laminate subjected to a 10° impact at energies of 20 J and 28 J. .. 110
Figure 4.13 Typical energy-time traces for an 8-ply GFRP laminate following 10° impact loading. ... 111
Figure 4.14 Typical load-displacement traces for an 8-ply GFRP laminate subjected to a 20° impact at 5.6 J and 14 J. ... 113
Figure 4.15 Typical load-displacement traces for an 8-ply GFRP laminate subjected to a 20° impact at energies of 20 J and 28 J. .. 113
Figure 4.16 Typical energy-time traces for an 8-ply GFRP laminate following 20° impact loading. ... 113
Figure 4.17 Absorbed energy against impact energy for an 8-ply GFRP laminate subjected to normal and oblique impact... 115
Figure 4.18 Maximum impact force against impact energy for an 8-ply GFRP laminate subjected to normal and oblique impact. .. 115
Figure 4.19 Calculated maximum normal force, \(F_N \), for an 8-ply GFRP laminate against impact energy during normal and oblique impact. ... 116

Figure 4.20 Damage area against impact energy for an 8-ply GFRP laminate subjected to normal and oblique impact... 117

Figure 4.21 Maximum depth of permanent indentation vs. impact energy following normal and oblique impact on an 8-ply GFRP laminate... 118

Figure 4.22 Photographs of the back surfaces of 8-ply GFRP laminate subjected to impact at 28 J at (a) a normal angle; (b) 10° and 20°. ... 119

Figure 4.23 Optical micrographs showing cross-sections of an 8-ply GFRP laminate subjected to impact loading at 28 J with inclination angles of (a) 0°; (b) 10° and (c) 20°. (Note: ‘1 & 2’ \(\equiv \) failure at the interface and ‘3’ \(\equiv \) ductile fibre fracture). 121

Figure 4.24 Experimental and predicted maximum contact force (lines) for an 8-ply GFRP laminate subjected to normal and oblique impact... 124

Figure 4.25 The variation of the damage threshold force, \(P_{crit} \), with inclination angle showing both the experimental results and the predictions offered by the Sutherland and Soares model (solid line) [5]. ... 125

Figure 4.26 Typical load-indentation traces for the linear PVC (R63.80) sandwich foam panels following static indentation testing at a crosshead displacement rate of 1 mm/min and at normal, 10° and 20° inclination angles.. 127

Figure 4.27 Average values of the contact stiffness, \(C \), for the linear PVC R63.80 sandwich panels following static indentation loading at increasing inclination angles. ... 128

Figure 4.28 Average values of the indentation exponent, \(n \), for the linear PVC R63.80 sandwich panels following static indentation loading at increasing inclination angles. ... 129
Figure 4.29 Load-time traces for the linear PVC R63.80 sandwich structures subjected to normal and oblique impacts at 10 J. .. 131
Figure 4.30 Load-time traces for the linear PVC R63.80 sandwich structures subjected to normal and oblique impacts at 20 J. .. 131
Figure 4.31 Load-displacement traces for the linear PVC (R63.80) sandwich panel following normal impact at 5 J and 10 J. .. 133
Figure 4.32 Load-displacement traces for the linear PVC (R63.80) sandwich panel following normal impact at 15 J and 20 J. .. 133
Figure 4.33 Energy-time traces following a normal impact on the linear PVC (R63.80) sandwich structures. .. 133
Figure 4.34 Load-displacement traces for the linear PVC (R63.80) sandwich panel following a 10° impact at 5 J and 10 J. ... 135
Figure 4.35 Load-displacement traces for the linear PVC (R63.80) sandwich panel following a 10° impact at 15 J and 20 J. ... 136
Figure 4.36 Energy-time traces following a 10° impact on the linear PVC (R63.80) sandwich structures. ... 136
Figure 4.37 Load-displacement traces for the linear PVC (R63.80) sandwich panel following a 20° impact at 5 J and 10 J. ... 137
Figure 4.38 Load-displacement traces for the linear PVC (R63.80) sandwich panel following a 20° impact at 15 J and 20 J. ... 138
Figure 4.39 Energy-time traces following a 20° impact on the linear PVC (R63.80) sandwich structures. ... 138
Figure 4.40 Absorbed energy against impact energy following normal and oblique impact on linear PVC (R63.80) sandwich structures... 139
Figure 4.41 Maximum impact force against impact energy following normal and oblique impact on the linear PVC (R63.80) sandwich structures........................... 140
Figure 4.42 Calculated maximum normal force, F_N, against impact energy following normal and oblique impact on the linear PVC (R63.80) sandwich structures. 140
Figure 4.43 Damage area against impact energy following normal and oblique impact on the linear PVC (R63.80) sandwich structures. 142
Figure 4.44 Maximum depth of permanent indentation vs. impact energy following normal and oblique impact on the linear PVC (R63.80) sandwich structures. 143
Figure 4.45 Photographs showing the impact surface following a 20 J impact on the linear PVC (R63.80) sandwich structures oriented at (a) 0°; (b) 10° and (c) 20° .. 145
Figure 4.46 Optical micrographs of the linear PVC (R63.80) sandwich panels showing cross-sections of the impacted surface following impact at 20 J with impact angles of (a) 0° ;(b) 10° and (c) 20° 147
Figure 4.47 Experimental and predicted maximum impact force (solid line) for the linear PVC R63.80 sandwich plates subjected to normal and oblique impact. 149
Figure 4.48 Typical load-indentation traces for the linear PVC (R63.140) sandwich foam panels during static indentation testing at a crosshead displacement rate of 1 mm/min and at normal, 10° and 20° inclination angles......................... 150
Figure 4.49 Average values of contact stiffness, C, for the linear PVC R63.140 sandwich panels during static indentation loading at increasing inclination angles. ... 151
Figure 4.50 Average value of contact parameter, ‘n’, for the linear PVC R63.140 sandwich panels following static indentation loading at increasing inclination angles. ... 152
Figure 4.51 Load-time traces for the linear PVC R63.140 sandwich panels subjected
to normal and oblique impact at 10 J... 154
Figure 4.52 Load-time traces for the linear PVC R63.140 sandwich panels subjected
to normal and oblique impact at 20 J... 154
Figure 4.53 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following normal impact at 5 J and 10 J.. 155
Figure 4.54 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following a normal impact at 15 J and 20 J.. 156
Figure 4.55 Typical energy-time traces for the linear PVC (R63.140) sandwich
structures following normal impact... 156
Figure 4.56 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following a 10° impact at 5 J and 10 J... 158
Figure 4.57 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following a 10° impact at 15 J and 20 J... 158
Figure 4.58 Typical energy-time traces for the linear PVC (R63.140) sandwich
structures following a 10° impact... 159
Figure 4.59 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following a 20° impact at 5 J and 10 J... 160
Figure 4.60 Load-displacement traces for the linear PVC (R63.140) sandwich panel
following a 20° impact at 15 J and 20 J... 161
Figure 4.61 Energy-time traces for the linear PVC (R63.140) sandwich structures
following a 20° impact... 161
Figure 4.62 Absorbed energy against inclination angle following normal and oblique
impact on the linear PVC (R63.140) sandwich structures................................. 162