Faculty of Manufacturing Engineering

MODELING OF REACTIVELY SPUTTERED TiAIN COATING ON TUNGSTEN CARBIDE INSERT TOOL: ITS PROPERTIES AND CUTTING PERFORMANCE IN DRY TURNING OF AISI D2 STEEL

Esmar Budi

Ph.D in Manufacturing Engineering

2010
MODELING OF REACTIVELY SPUTTERED TiAlN COATING ON TUNGSTEN CARBIDE INSERT TOOL: ITS PROPERTIES AND CUTTING PERFORMANCE IN DRY TURNING OF AISI D2 STEEL

ESMAR BUDI

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2010
ABSTRACT

An extended theoretical model of reactive sputtering of TiAlN coating has been developed to study the effect of substrate bias (V_b) and nitrogen (N_2) flow rate on the coating composition and deposition rate. The model simulation results showed that the critical N_2 flow rate (f_{N_2}^c) to achieve a stoichiometry composition of unbiased (V_b = 0 V) and biased (V_b = -80 V) substrate was 4 sccm and 3 sccm, respectively. At N_2 flow rate lower than f_{N_2}^c, the coating composition increased with an increase in V_b and N_2 flow rate due to the increase of ion flux to the substrate while the deposition rate decreased due to the coating densification and the decreased sputtering rate. At N_2 flow rate higher than f_{N_2}^c, the coating composition and deposition rate did not depend on the V_b and N_2 flow rate due to the domination of neutral particles deposition than ions deposition. The model verification using secondary data showed an accurately prediction on the coating composition and deposition rate at N_2 flow rate higher than f_{N_2}^c. The calculated coating composition at N_2 flow rate lower than f_{N_2}^c showed a deviation due to heterogeneous reactions between the sputtered particles (Ti and Al) and N at the substrate surface, while the deviation of calculated deposition rate was due to coating densification. The experimental investigation was designed by using Response Surface Methodology (RSM) and conducted by using magnetron sputtering in deposition of TiAlN coating on WC inserts. The coating composition and thickness were obtained by using SEM/EDX. The coating structure and morphology were obtained by using XRD and AFM, respectively. The coating hardness and adhesion were obtained by using ultra-micro hardness test and indentation test, respectively. The cutting test was carried out in CNC dry turning of AISI D2 steel. The flank wear and surface roughness were obtained by using optical microscopy and surface roughness tester, respectively. The results showed that generally the coating composition of biased substrate (-100, -150, -200 V) was consistently higher than that of unbiased substrate whereas the deposition rate of biased substrate is lower than that of unbiased substrate. Analysis of the coating thickness showed that generally the coating thickness decreased with an increase in the V_b and N_2 flow rate. At N_2 flow rate lower than 50 sccm, the thinnest coating (~1000 nm) is achieved by unbiased substrate due to low ions fluxes for reaction at the substrate surface. The coating hardness, structure and morphology were significantly influenced by the V_b while the interaction of the V_b and N_2 flow rate significantly influenced the coating adhesion. The coating hardness increased (~7 GPa) with an increase in the V_b up to -200 V due to decreased coating crystal size. At N_2 flow rate of 70 sccm, the adhesion strength increased with an increase in the V_b up to -200 V due to decreased compressive stress. The lowest flank wear (~0.4 mm) due to high adhesion strength was achieved at -200 V and 70 sccm.
ABSTRAK

Sebuah model percikan reaktif salutan TiAIN lanjut telah dibangunkan untuk kajian kesan pincangan substrat \(V_b \) dan kadar aliran nitrogen \(N_2 \) pada kandungan salutan dan kadar pengendapan. Hasil simulasi model menunjukkan bahwa kadar aliran \(N_2 \) genting \(f_{N_2}^c \) substrat tak terpincang \(V_b = 0 \) V dan terpincang \(V_b = -80 \) V untuk mencapai kandungan stoikiometri masing-masing adalah 4 sccm dan 3 sccm. Pada kadar aliran \(N_2 \) kurang daripada \(f_{N_2}^c \), kandungan salutan bertambah dengan penambahan \(V_b \) disebabkan penambahan fluks ion ke permukaan substrat, sedangkan kadar pengendapan berkurang disebabkan penumpukan salutan dan pengurangan kadar percikan. Pada kadar aliran \(N_2 \) di atas \(f_{N_2}^c \), kandungan salutan dan kadar pengendapan tidak bergantung pada \(V_b \) dan kadar aliran \(N_2 \), disebabkan penguasaan pengendapan zarah neutral daripada pengendapan ion. Pengesahan model dengan menggunakan data sekunder menunjukan jangka jitu kandungan salutan dan kadar pengendapan pada kadar aliran \(N_2 \) di atas \(f_{N_2}^c \). Kandungan salutan jangka pada kadar aliran \(N_2 \) di bawah \(f_{N_2}^c \), menunjukan sebuah sisihan disebabkan tindak balas heterogen antara zarah percik (Ti dan Al) dan N pada permukaan substrat, sementara itu sisihan kadar pengendapan jangka disebabkan penumpuan salutan. Ujikaji dirancang dengan menggunakan kaedah permukaan gerak balas (RSM) dan dilaksanakan dengan menggunakan percikan magnetron dalam pengendapan salutan TiAIN pada sisip WC. Kandungan dan ketebalan salutan diperoleh dengan SEM/EDX. Struktur dan morfologi salutan masing-masing diperoleh dengan XRD dan AFM. Kekerasan dan lekatan salutan masing-masing diperoleh dengan ujian kekerasan mikro ultra dan ujian lekuk. Ujian pemotongan dilaksanakan dengan larik CNC pada keluli AISI D2. Keausan sisi dan kekasaran permukaan masing-masing diperoleh dengan menggunakan mikroskop optik dan ujian kekasaran permukaan. Hasil kajian menunjukan bahwa pada umumnya kandungan salutan substrat terpincang (-100, -150, -200 V) adalah tekan lebih tinggi daripada kandungan substrat tak terpincang sebaliknya kadar pengendapan substrat terpincang adalah lebih rendah daripada kadar pengendapan substrat tak terpincang. Analisis pada ketebalan salutan menunjukan bahawa umumnya, ketebalan salutan berkurang dengan penambahan \(V_b \) dan kadar aliran \(N_2 \). Sungguhpun begitu pada kadar aliran \(N_2 \) di bawah 50 sccm, ketebalan salutan paling nipis (~1000 nm) dicapai oleh substrat tak terpincang disebabkan fluks ion yang rendah untuk tindak balas pada permukaan substrat. Kekerasan, struktur dan morfologi salutan adalah dipengaruhi secara signifikan oleh \(V_b \), sementara saling tindak antara \(V_b \) dan kadar aliran \(N_2 \) mempengaruhi lekatan salutan. Pada umumnya, kekerasan salutan bertambah (~7 GPa) dengan penambahan \(V_b \) kepada -200 V disebabkan pengurangan saiz halbuh. Pada kadar aliran \(N_2 \) 70 sccm, kekuatan lekatan bertambah dengan penambahan \(V_b \) kepada -200 V disebabkan pengurangan tegangan mampat. Keausan sisi terendah (~0.4 mm) yang disebabkan kekuatan lekatan tinggi dicapai pada -200 V dan 70 sccm.
ACKNOWLEDGEMENTS

The author would like to express sincere appreciation to Prof. Dr. Mohd. Razali bin Muhamad, my principal supervisor, for guiding and giving inputs to the present work. I am very thankful to En. Saifuddin Hafiz bin Yahaya, my co-supervisor, for his contribution in the model development and to Dr. Md Nizam bin Abdul Rahman for very valuable discussions and advice during the course at my study.

I gratefully acknowledge the support from the staff at the Advanced Manufacturing Center (AMC), CNC, Metrology and Material Engineering Laboratory during the experimental work. I am also grateful to Faculty of Manufacturing Engineering and Universiti Teknikal Malaysia Melaka (UTeM) for providing research facilities and funds and I would like to thank Physics Department and Universitas Negeri Jakarta (UNJ) for their approval and support during study leave.

Thank you to my colleagues, postgraduate students and staff of UTeM. Finally, I am very grateful to my family, wife and children, for their patience and support.
DECLARATION

I declare that this thesis entitled "Modeling of reactively sputtered TiAlN coating on tungsten carbide insert tool: its properties and cutting performance in dry turning of AISI D2 steel" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : ..
Date : ..
DEDICATION

To my beloved father, mother, wife and children:
Sumarna (alm.), Komariah, Pepi, Giga and Tera
TABLE OF CONTENT

ABSTRACT ... ii
ABSTRAK ... iii
ACKNOWLEDGEMENTS .. iv
DECLARATION ... v
DEDICATION ... vi
TABLE OF CONTENT .. vii
LIST OF TABLES .. xii
LIST OF FIGURES ... xvi
LIST OF ABBREVIATIONS ... xxiv
LIST OF SYMBOLS ... xxv
LIST OF APPENDICES .. xxix
RELATED PUBLICATIONS .. xxx

CHAPTER

1 INTRODUCTION ... 1
 1.1 Background ... 1
 1.2 Research problem ... 4
 1.3 Objectives of study .. 7
 1.4 Significance of research 7
 1.5 Scope of research ... 10
 1.6 Structure of thesis .. 11

2 LITERATURE REVIEW ... 12
 2.1 Reactive sputtering process 12
 2.2 Sputtering parameters 17
 2.2.1 Sputtering yield 17
 2.2.2 Sticking coefficient 18
 2.2.3 Reactive gas flow 19
 2.2.4 Vacuum pumping and pressure 20
 2.2.5 Substrate bias 22
 2.2.6 Substrate temperature 23
 2.2.7 Target power, voltage and current 23
4.2.2.4 Procedures of TiAlN coating deposition
4.2.3 Cutting performance test
 4.2.3.1 Tool and work material
 4.2.3.2 Cutting condition
4.3 Characterization of coating surface and its performance
 4.3.1 Optical microscopy
 4.3.2 Surface roughness test
 4.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX)
 4.3.4 X-Ray Diffraction (XRD)
 4.3.5 Adhesion test
 4.3.6 Ultra-micro hardness test
 4.3.7 Atomic Force Microscopy (AFM)

5 RESULTS AND DISCUSSIONS

5.1 Model simulation results
 5.1.1 Effect of substrate bias at various nitrogen flow rate
 5.1.2 Effect of pump speed and target current
 5.1.3 Sensitivity analysis on reactive sputtering model
 5.1.4 Comparison with secondary data
 5.1.5 Discussion

5.2 Preliminary experiment of sputtering deposition

5.3 Experimental result of sputtered TiAlN coating
 5.3.1 Composition of TiAlN coating
 5.3.1.1 Analysis of TiAlN coating composition
 5.3.1.2 Analysis of TiAlN coating composition using RSM
 A. Analysis of Ti/Al ratio
 B. Analysis of Ti/(Ti+Al+N) ratio
 5.3.1.3 Discussion
 5.3.2 Deposition rate
 5.3.2.1 Effect of substrate bias on TiAlN coating thickness
 5.3.2.2 Effect of nitrogen flow rate on TiAlN coating thickness
 5.3.2.3 Discussion
 5.3.3 Structure of TiAlN coating
 5.3.3.1 Substrate (tungsten carbide insert)
 5.3.3.2 Effect of substrate bias on TiAlN coating structure
 5.3.3.3 Effect of nitrogen flow rate on TiAlN coating Structure
 5.3.3.4 Analysis of TiAlN coating structure using RSM
 A. Analysis of crystal plane spacing of (111) TiAlN coating
 B. Analysis of crystal size of (111) TiAlN coating
 5.3.3.5 Discussion
5.3.4 Morphology of TiAlN coating
5.3.4.1 Effect of substrate bias on TiAlN coating roughness 213
5.3.4.2 Effect of nitrogen flow rate on TiAlN coating roughness 217
5.3.4.3 Analysis of TiAlN coating roughness using RSM 221
5.3.4.4 Discussion 226

5.3.5 Hardness of TiAlN coating 229
5.3.5.1 Effect of substrate bias on TiAIN coating hardness 230
5.3.5.2 Effect of nitrogen flow rate on TiAIIN coating hardness 232
5.3.5.3 Analysis of TiAlN coating hardness using RSM 235
5.3.5.4 Discussion 239

5.3.6 Adhesion of TiAlN coating
5.3.6.1 Effect of substrate bias on TiAlN coating adhesion 244
5.3.6.2 Effect of nitrogen flow rate on TiAlN coating adhesion 246
5.3.6.3 Analysis of TiAlN coating adhesion using RSM 249
5.3.6.4 Discussion 255

5.4 Study of cutting parameters optimization using RSM 256
5.4.1 Analysis of cutting parameters effect on flank wear 258
5.4.2 Analysis of cutting parameters effect on surface roughness 265
5.4.3 Optimization of flank wear and surface roughness 272
5.4.4 Discussion 273

5.5 Cutting performance of TiAlN coating
5.5.1 Analysis of sputtering parameters effect on TiAlN coating flank wear
5.5.1.1 Effect of substrate bias on TiAlN coating flank wear 276
5.5.1.2 Effect of nitrogen flow rate on TiAlN coating flank wear 278
5.5.2 Analysis of TiAlN coating flank wear using RSM 281
5.5.3 Analysis of surface roughness using RSM 284
5.5.4 Comparison of TiAlN coating performance 286
5.5.5 Discussion 287

5.6 Summary of the results
5.6.1 Correlation of TiAlN coating properties and its cutting performance 289
5.6.2 Correlation of TiAlN coating properties 296
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Al content (x), structure/phase and hardness of Ti<sub>1-x</sub>Al<sub>x</sub>N coating</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Al content (x), structure/phase and preferred plan orientation of Ti<sub>1-x</sub>Al<sub>x</sub>N coating</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>W-Co substrate used in several investigations</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Sputtering parameters for preliminary experiment of TiAlN coating</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Sputtering parameters of TiAlN coating deposition</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Material specifications</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Workpiece chemical composition</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>Cutting parameters</td>
<td>108</td>
</tr>
<tr>
<td>5.1</td>
<td>Relative error of surface coverage fraction on substrate (θ<sub>s</sub>) of TiAlN coating with respect to data of Lii et al. (1998) at I = 0.7 A, V<sub>b</sub> = -80 V and S = 100 l/s</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>Relative error of deposition rate of TiAlN coating with respect to data of Lii et al. (1998) at I = 0.7 A, V<sub>b</sub> = -80 V, S = 100 l/s</td>
<td>133</td>
</tr>
<tr>
<td>5.3</td>
<td>Relative error of model calculated θ<sub>s</sub> of TiAlN coating with respect to data of Shew et al. (1997) at I = 0.7 A, V<sub>b</sub> = 0 and S = 100 l/s</td>
<td>135</td>
</tr>
<tr>
<td>5.4</td>
<td>Relative error of model calculated θ<sub>s</sub> of TiAlN coating with respect to data of Shew et al. (1997) at I = 0.7 A, V<sub>b</sub> = -80 V and S = 100 l/s</td>
<td>135</td>
</tr>
</tbody>
</table>
Relative error of model calculated deposition rate of TiAlN coating with respect to data of Shew et al. (1997) at I = 0.7 A, Vb = 0 V and S = 100 l/s

Relative error of model calculated deposition rate of TiAlN coating with respect to data of Shew et al. (1997) at I = 0.7 A, Vb = -80 V and S = 100 l/s

Experimental result of TiAlN coating composition and surface coverage fraction on substrate (θ) at I = 5 A and S = 2050 l/s

Relative error of θ of TiAlN coating at I = 5 A and S = 2050 l/s

Experimental result of Ti/Al and Ti/(Ti+Al+N) ratio of TiAlN coating using RSM

Sequential model sum of squares of Ti/Al ratio

Lack of fit tests of Ti/Al ratio

ANOVA for response surface 2FI model analysis of Ti/Al ratio

Sequential model sum of squares of Ti/(Ti+Al+N) ratio

Lack of fit tests of Ti/(Ti+Al+N) ratio

ANOVA for response surface quadratic model analysis of Ti/(Ti+Al+N) ratio

Experimental result of model calculated D of TiAlN coating at I = 5 A and S = 2050 l/s

Relative error of model calculated deposition rate of TiAlN coating at I = 5 A and S = 2050 l/s

XRD data of TiAlN coating at various nitrogen flow rate and substrate bias

XRD data of TiAlN coating at various substrate bias and nitrogen flow rate

Experimental result of D_{111} and d_{111} of TiAlN coating using RSM

Sequential model sum of squares of d_{111}

Lack of fit tests of d_{111}

ANOVA for response surface linear model of d_{111}

Sequential model sum of squares of D_{111}
Lack of fit tests of D_{111}

ANOVA for response surface linear model of D_{111}

Confirmation test results of d_{111}

Experimental result of TiAlN coating roughness

Experimental result of rms roughness of TiAlN coating using RSM

Sequential model sum of squares of rms roughness

Lack of fit test of rms roughness

ANOVA for response surface linear model of rms roughness

Experimental result of TiAlN coating hardness

Experimental result of TiAlN coating hardness using RSM

Sequential model sum of squares of TiAlN coating hardness

Lack of fit test of TiAlN coating hardness

ANOVA for response surface quadratic model of TiAlN coating hardness

Experimental result of lateral crack diameter measurement of TiAlN coating

Experimental result of lateral crack diameter and slope of TiAlN coating using RSM

Sequential model sum of squares of slope

Lack of fit test of slope

ANOVA for response surface quadratic model of slope

Confirmation test results of slope

Experimental result of commercially TiAlN coating flank wear and surface roughness using RSM

Sequential model sum of squares of commercially TiAlN coating flank wear

Lack of fit test of commercially TiAlN coating flank wear

ANOVA for response surface quadratic model of commercially TiAlN coating flank wear

Confirmation test results of commercially TiAlN coating flank wear

Sequential model sum of squares of surface roughness

Lack of fit test of surface roughness
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.51</td>
<td>ANOVA for response surface linear model of surface roughness</td>
<td>266</td>
</tr>
<tr>
<td>5.52</td>
<td>Confirmation test results of surface roughness</td>
<td>272</td>
</tr>
<tr>
<td>5.53</td>
<td>Experimental result of flank wear and surface roughness of TiAlN coating performance using RSM</td>
<td>276</td>
</tr>
<tr>
<td>5.54</td>
<td>Sequential model sum of squares of flank wear of TiAlN coating</td>
<td>281</td>
</tr>
<tr>
<td>5.55</td>
<td>Lack of fit test of flank wear of TiAlN coating</td>
<td>282</td>
</tr>
<tr>
<td>5.56</td>
<td>ANOVA for response surface linear model of flank wear of TiAlN coating</td>
<td>282</td>
</tr>
<tr>
<td>5.57</td>
<td>ANOVA for the effect of sputtering parameters on surface roughness</td>
<td>285</td>
</tr>
<tr>
<td>5.58</td>
<td>Comparison of flank wear and surface roughness</td>
<td>286</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic diagram of reactive sputtering (Berg and Nyberg, 2005)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of sputtered target (Mattox, 1998)</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of molecules adsorption on a flat surface (Ohtsu et al., 2007)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>TiAlN structure (fcc-NaCl structure) models schematic. Ti occupies fcc positions and the cube corners. Al occupy the octahedral sites at the centers of the cube edges (Paldey et al., 2004)</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Model schematic of (a) hexagonal-TiAlN; (b) hexagonal-AlN (Kimura et al., 2003)</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Thornton structure zone model. Zone I, II, III and T are related to growth mechanism of atomic shadowing during transport, surface diffusion, bulk diffusion and transition of I & II, respectively (Thornton, 1986)</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Structure Zone Model at various coating thickness as function of reduced temperature T_s/T_m, where T_s = deposition temperature and T_m = melting point of the material (Barna & Adamik, 1998)</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Region of wear at major and minor cutting edge in single point turning tool (Boothroyd & Knight, 2006)</td>
<td>58</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) Region of tool wear on cutting tool; (b) flank wear measurement (Lim et al., 1999)</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic diagram of surface roughness (Lou et al., 1998)</td>
<td>62</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic diagram of surface roughness measurement</td>
<td>63</td>
</tr>
<tr>
<td>3.1.</td>
<td>Schematic diagram of the reactive gas flow in reactive sputtering process based on Berg's model (Berg et al., 1987)</td>
<td>73</td>
</tr>
</tbody>
</table>
3.2 Formation of plasma sheaths and plasma sheath potential due to the existing of a difference in potential between V_p and V_b; (b) potential drop (from V_p to $-V_b$) within the plasma sheath increase with an increase in negatively V_b (note: $|V_b| < |V_{bl}| < |V_{b2}|$) (Lieberman & Lichtenberg, 1994; Ellmer, 2000; Zhou et al., 2007)

3.3 Schematic diagram of total particle fluxes at target and substrate.

3.4 Schematic diagram of total particle fluxes at target

3.5 Schematic diagram of total particle fluxes at substrate

4.1 Central Composite Design for 3 factors at two levels

4.2 Examples of response surface in: (a) contour plot; (b) three dimension; (c) cubic surface; where x_1, x_2, x_3 are independent variables (Design expert, 2006)

4.3 Experimental design flow

4.4 Schematic diagram of magnetron sputtering system (top view)

4.5 Schematic diagram of WC insert tool

4.6 Schematic diagram of tool holder: (a) tool holder 1; (b) tool holder 2

4.7 Measurement of flank wear, VC (ISO 3685 (E), 1993)

4.8 Schematic diagram of signal produced and penetration depth of incident electron beam with the sample (Mattox, 1998)

5.1 Simulation results of TiAlN coating at $I = 0.7$ A, $S = 100$ l/s, $V_b = 0$ and various nitrogen flow rate: (a) surface coverage fraction on target (θ_t) and substrate (θ_s); (b) deposition rate; (c) nitrogen flow consumption by target (F_t), substrate (F_s) and pump (F_p)

5.2 Simulation results of TiAlN coating at $I = 0.7$ A, $S = 100$ l/s and various substrate bias and nitrogen flow rate: (a) surface coverage fraction on target (θ_t) and substrate (θ_s); (b) deposition rate; (c) nitrogen flow consumption by target (F_t), substrate (F_s) and pump (F_p)

5.3 Simulation results of TiAlN coating at $I = 0.7$ A, $V_b = -80$ V and various pump speed and nitrogen flow rate: (a) surface coverage fraction on substrate (θ_s); (b) deposition rate

5.4 Simulation results of TiAlN coating at $V_b = -80$ V, $S = 2050$ l/s and various target current and nitrogen flow rate: (a) surface coverage fraction on substrate (θ_s); (b) deposition rate
Sensitivity analysis of: (a), (b) surface coverage fraction on substrate (θ_s); (c) deposition rate (D) at I = 0.7 A, S = 100 l/s and various nitrogen flow rate and substrate bias

Sensitivity analysis of: (a) surface coverage fraction on substrate (θ_s); (b) deposition rate (D) at I = 0.7 A, S = 100 l/s and various substrate bias and nitrogen flow rate

Sensitivity analysis of: (a) surface coverage fraction on substrate (θ_s); (b) deposition rate (D) at I = 5 A, S = 2050 l/s and various nitrogen flow rate and substrate bias

Sensitivity analysis of: (a) surface coverage fraction on substrate (θ_s); (b) deposition rate (D) at I = 5 A, S = 2050 l/s and various substrate bias and nitrogen flow rate

Model calculated (solid line) and measured θ_s of TiAlN coating at I = 0.7 A, S = 100 l/s, V_b = -80 V and various nitrogen flow rate:
(a) Auger Electron Spectroscopy (AES) analysis;
(b) Wave-Length Dispersive x-ray spectroscopy (WDS) analysis

Model calculated (solid line) and measured deposition rate of TiAlN coating (data of Lii et al., 1998) at I = 0.7 A, S = 100 l/s, V_b = -80 V and various nitrogen flow rate

Model calculated (solid line) and measured θ_s (data of Shew et al., 1997) of TiAlN coating at I = 0.7 A, S = 100 l/s and various nitrogen flow rate:
(a) V_b = 0; (b) V_b = -80 V

Model calculated (solid line) and measured deposition rate of TiAlN coating (data of Shew et al., 1997) at I = 0.7 A, S = 100 l/s and various nitrogen flow rate and substrate bias of:
(a) V_b = 0, (b) V_b = -80 V

Simulation result for N2 partial pressure during TiAlN coating deposition at I = 0.7 A, S = 100 l/s, V_b = -80 V and various nitrogen flow rate

SEM of TiAlN coating on WC insert at I = 3 A, V_b = -100 V, T = 350 °C, substrate rotation = 5 rpm, t = 90 min, Ar flow rate = 123 sccm, N2 flow rate of:
(a) 20 sccm; (b) 10 sccm

EDX of TiAlN coating on WC insert at I = 3 A, V_b = -100 V, T = 350 °C, substrate rotation = 5 rpm, t = 90 min, Ar flow rate = 123 sccm, N2 flow rate of:
(a) 20 sccm, (b) 10 sccm

SEM of TiAlN coating on WC insert at I = 5 A, V_b = -100 V, T = 350 °C, substrate rotation = 5 rpm, t = 90 min, Ar flow rate = 123 sccm, N2 flow rate = 60 sccm
Model calculated (solid line) and measured (experimental result) θ_s of TiAlN coating at $I = 5$ A, $S = 2050$ l/s and various substrate bias and nitrogen flow rate

Model calculated (solid lines) and measured (experimental result) θ_s of TiAlN coating at unbiased substrate ($V_b = 0$) and various nitrogen flow rate and its comparison with biased substrate of: (a) $V_b = -100$ V; (b) $V_b = -150$ V; (c) $V_b = -200$ V

EDX of TiAlN coating composition at various nitrogen flow rate and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V

EDX of TiAlN coating composition at various substrate bias and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 65 sccm

Interaction effect on Ti/Al ratio of TiAlN coating: (a) Ti/Al ratio vs nitrogen flow rate: triangle line curve is at high negatively substrate bias and the square line curve is at low negatively substrate bias; (b) Ti/Al ratio vs substrate bias: triangle line curve is at high nitrogen flow rate and the square line curve is at low nitrogen flow rate

Three dimension graph of Ti/Al ratio as function of substrate bias and nitrogen flow rate

Interaction effect on Ti/(Ti+Al+N) ratio of TiAlN coating: (a) Ti/(Ti+Al+N) ratio vs nitrogen flow rate: triangle line curve is at high negatively substrate bias and the square line curve is at low negatively substrate bias; (b) Ti/(Ti+Al+N) ratio vs substrate bias: triangle line curve is at high nitrogen flow rate and the square line curve is at low nitrogen flow rate

Three dimension graph of Ti/(Ti+Al+N) ratio as function of substrate bias and nitrogen flow rate

Model calculated (solid line) and measured (experimental result) deposition rate of TiAlN coating at $I = 5$ A, $S = 2050$ l/s and various substrate bias and nitrogen flow rate

Deposition rate of TiAlN coating at various nitrogen flow rate and its comparison with biased substrate at: (a) $V_b = 0$; (b) $V_b = -100$ V; (c) $V_b = -150$ V; (d) $V_b = -200$ V

SEM of TiAlN coating thickness at 65 sccm and substrate bias of: (a) -79 V; (b) -150 V; (c) -221 V Magnification is 20000x and scale is in 1 μm
5.28 SEM of TiAlN coating thickness at 60 sccm and substrate bias of: (a) 0 V; (b) -100 V; (c) -200 V Magnification is 20000x and scale is in 1 μm

5.29 SEM of TiAlN coating thickness at 30 sccm and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V Magnification is 20000x and scale is in 1 μm

5.30 TiAlN coating thickness at various nitrogen flow rate and substrate bias

5.31 SEM of TiAlN coating thickness at -100 V and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 70 sccm. Magnification is 20000x and scale is in 1 μm

5.32 SEM of TiAlN coating thickness at -150 V and nitrogen flow rate of: (a) 30 sccm; (b) 58 sccm; (c) 65 sccm; (d) 72 sccm. Magnification is 20000x and the scale is in 1 μm

5.33 SEM of TiAlN coating thickness at -200 V and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 70 sccm. Magnification is 20000x and scale is in 1 μm

5.34 SEM of TiAlN coating thickness at 0 V and nitrogen flow rate of: (a) 40 sccm; (b) 50 sccm; (c) 60 sccm Magnification is 20000x and scale is in 1 μm.

5.35 TiAlN coating thickness at various substrate bias and nitrogen flow rate

5.36 XRD of Tungsten Carbide (WC) insert tool as substrate

5.37 XRD of TiAlN coating at 65 sccm and various substrate bias

5.38 XRD of TiAlN coating at 60 sccm and various substrate bias

5.39 XRD of TiAlN coating at 30 sccm and various substrate bias

5.40 Crystal plane spacing of TiAlN coating at various substrate bias and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 65 sccm

5.41 Crystal size of TiAlN coating at various substrate bias and nitrogen flow rate of: (a) 65 sccm; (b) 60 sccm; (c) 30 sccm

5.42 XRD of TiAlN coating at -100 V and various nitrogen flow rate

5.43 XRD of TiAlN coating at -150 V and various nitrogen flow rate

5.44 XRD of TiAlN coating at -200 V and various nitrogen flow rate

5.45 XRD of TiAlN coating at 0 V and various nitrogen flow rate

5.46 Crystal plane spacing of TiAlN coating at various nitrogen flow rate and substrate bias of: (a) 0 V; (b) -100 V; (c) -150 V; (d) -200 V

xx
5.47 Crystal size of TiAlN coating at various nitrogen flow rate and substrate bias of: (a) 0 V; (b) -100 V; (c) -150 V; (d) -200 V

5.48 Crystal plane spacing of (111) TiAlN coating (d_{111}) at 70 sccm and various substrate bias

5.49 Three dimension graph of linear predictive model of d_{111} as function of substrate bias and nitrogen flow rate

5.50 (a) Effect of nitrogen flow rate on the crystal size of (111) TiAlN coating crystal at -200 V and various nitrogen flow rate; (b) effect of substrate bias on crystal size of (111) TiAlN coating (D_{111}) at 70 sccm and various substrate bias

5.51 Three dimension of linear model predictive of D_{111} TiAlN coating as function of substrate bias and nitrogen flow rate

5.52 Optimum sputtering parameters to achieve the lowest d_{111} of TiAlN coating

5.53 TiAlN coating surface morphology at 65 sccm and substrate bias of: (a) -79 V; (b) -150 V; (c) -221 V

5.54 TiAlN coating surface morphology at 60 sccm and substrate bias of: (a) -100 V; (b) -200 V

5.55 TiAlN coating surface morphology at 30 sccm and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V

5.56 Rms roughness of TiAlN coating at various nitrogen flow rate and substrate bias

5.57 TiAlN coating surface morphology at -100 V and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 70 sccm

5.58 TiAlN coating surface morphology at -150 V and nitrogen flow rate of: (a) 30 sccm; (b) 58 sccm; (c) 65 sccm; (d) 72 sccm

5.59 TiAlN coating surface morphology at -200 V and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 70 sccm

5.60 Rms roughness of TiAlN coating at various substrate bias and nitrogen flow rate

5.61 Rms roughness of TiAlN coating at 65 sccm and various substrate bias

5.62 Three dimension graph of rms roughness of TiAlN coating as function of substrate bias and nitrogen flow rate

5.63 Force vs indentation depth of TiAlN coating at various substrate bias and nitrogen flow rate of: (a) 65 sccm; (b) 60 sccm; (c) 30 sccm

5.64 TiAlN coating hardness at various nitrogen flow rate and substrate bias

xxi
5.65 Force vs indentation depth of TiAlN coating at various nitrogen flow rate and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V

5.66 TiAlN coating hardness at various substrate bias and nitrogen flow rate

5.67 TiAlN coating hardness at 65 sccm and various substrate bias

5.68 Three dimension graph of TiAlN coating hardness as function of substrate bias and nitrogen flow rate

5.69 Lateral crack diameter vs applied load for TiAlN coating at various substrate bias and nitrogen flow rate of: (a) 30 sccm; (b) 60 sccm; (c) 65 sccm

5.70 Slope measurement of TiAlN coating at various nitrogen flow rate and substrate bias

5.71 Lateral crack diameter vs applied load of TiAlN coating at various nitrogen flow rate and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V

5.72 Slope measurement of TiAlN coating at various substrate bias and nitrogen flow rate

5.73 Interaction effect on slope. Triangle line and square line are high level and low level of nitrogen flow rate, respectively

5.74 Three dimension graph of slope as functions of substrate bias and nitrogen flow rate

5.75 Optimum sputtering parameters to achieve lowest slope

5.76 Interaction effect on commercially TiAlN coating flank wear at f = 0.4 mm/rev. Square and tringle lines indicate a low and a high level of depth of cut, respectively

5.77 Three dimension graph of quadratic predictive equation of commercially TiAlN coating flank wear at feed rate of 0.3 mm/rev as function of cutting speed and depth of cut

5.78 Optical microscope of commercially TiAlN coating flank wear at: (a) f = 0.4 mm/rev, v = 468 m/min, a = 0.4 mm; (b) f = 0.4 mm/rev v = 300 m/min, a = 0.4 mm. Magnification is 50x

5.79 Optimum cutting conditions to achieve the lowest flank wear

5.80 Surface roughness at: (a) v = 300 m/min, a = 0.4 mm and various feed rate; (b) f = 0.4 mm/rev, a = 0.4 and various cutting speed

5.81 Surface roughness contours at various feed rate and cutting speed and depth of cut of: (a) 0.5 mm; (b) 0.3 mm

5.82 Three dimension model of linear predictive equation of surface roughness at depth of cut 0.5 mm and various feed rate and cutting speed
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.83</td>
<td>Optimum condition to achieve lowest surface roughness</td>
</tr>
<tr>
<td>5.84</td>
<td>Optimum condition to achieve lowest flank wear and surface roughness</td>
</tr>
<tr>
<td>5.85</td>
<td>Optical microscopy of TiAlN coating flank wear at various substrate bias and nitrogen flow rate of: (a) 70 sccm; (b) 65 sccm; (c) 60 sccm. Magnification is 50x</td>
</tr>
<tr>
<td>5.86</td>
<td>TiAlN coating flank wear at various nitrogen flow rate and substrate bias</td>
</tr>
<tr>
<td>5.87</td>
<td>Optical microscopy of TiAlN coating flank wear at various nitrogen flow rate and substrate bias of: (a) -100 V; (b) -150 V; (c) -200 V. Magnification is 50x</td>
</tr>
<tr>
<td>5.88</td>
<td>TiAlN coating flank wear at various nitrogen flow rate</td>
</tr>
<tr>
<td>5.89</td>
<td>TiAlN coating flank wear at: (a) N₂ flow of 65 sccm and various substrate bias; (b) substrate bias of -150 V and various nitrogen flow rate</td>
</tr>
<tr>
<td>5.90</td>
<td>Three dimension graph of TiAlN coating flank wear as function of substrate bias and nitrogen flow rate</td>
</tr>
<tr>
<td>5.91</td>
<td>Three dimension graph of surface roughness as function of substrate bias and nitrogen flow rate</td>
</tr>
<tr>
<td>5.92</td>
<td>Correlation of flank wear and hardness of TiAlN coating</td>
</tr>
<tr>
<td>5.93</td>
<td>Correlation of flank wear and adhesion strength of TiAlN coating</td>
</tr>
<tr>
<td>5.94</td>
<td>Correlation of flank wear and (111) crystal plane spacing of TiAlN coating</td>
</tr>
<tr>
<td>5.95</td>
<td>Correlation of flank wear and rms roughness of TiAlN coating surface</td>
</tr>
<tr>
<td>5.96</td>
<td>Correlation of flank wear and composition of TiAlN coating: (a) Ti content; (b) Al content; (c) N content</td>
</tr>
<tr>
<td>5.97</td>
<td>Correlation of flank wear and thickness of TiAlN coating</td>
</tr>
<tr>
<td>5.98</td>
<td>Correlation of adhesion strength and d₁₁₁ of TiAlN coating</td>
</tr>
<tr>
<td>5.99</td>
<td>Correlation of hardness and adhesion strength of TiAlN coating</td>
</tr>
<tr>
<td>5.100</td>
<td>Correlation of hardness and (111) crystal plane spacing of TiAlN coating</td>
</tr>
<tr>
<td>5.101</td>
<td>Correlation of hardness and roughness of TiAlN coating</td>
</tr>
<tr>
<td>5.102</td>
<td>Correlation of hardness and thickness of TiAlN coating</td>
</tr>
<tr>
<td>5.103</td>
<td>Correlation of adhesion strength and thickness of TiAlN coating</td>
</tr>
<tr>
<td>5.104</td>
<td>Correlation of adhesion strength and composition of TiAlN coating: (a) Ti content; (b) Al content; (c) N content</td>
</tr>
</tbody>
</table>

xxiii