

Faculty of Manufacturing Engineering

A STUDY ON BOTTELENECK OPERATIONS TO OPTIMIZE MANPOWER PLANNING FOR PRODUCTIVITY IMPROVEMENT AT **2HC DOOR LINING ASSEMBLY LINE VIA MODAPTS**

Nur Amira Binti Zulkarnain

Master of Manufacturing Engineering

2013

C Universiti Teknikal Malaysia Melaka

A STUDY ON BOTTELENECK OPERATIONS TO OPTIMIZE MANPOWER PLANNING FOR PRODUCTIVITY IMPROVEMENT AT 2HC DOOR LINING ASSEMBLY LINE VIA MODAPTS

NUR AMIRA BINTI ZULKARNAIN

A thesis submitted

in fulfilment of the requirement for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2013

DECLARATION

I hereby, declared this report entitled "A Study on Bottleneck Operations to Optimize Manpower Planning for Productivity Improvement at 2HC Door Lining Assembly Line via MODAPS" is the results of my own research except as cited in references

:

:

:

Signature Name Date

Nur Amira Binti Zulkarnain 28th June 2013

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Master of Manufacturing Engineering The member of the supervisory is as follow:

:

:

:

Signature Supervisor Name Date

Lynı Dr Seri Rahayu Binti Kamat

28th June 2013

DEDICATION

This study is dedicated to Johnson Control Incorporation, JCI Alor Gajah plant. Hopefully the study will help JCI to grow further as the best Automotive Manufacturing line worldwide by having the least Equivalent Unit, EQU value among all JCI companies This study is also dedicated to bosses and top management level who always support any improvement and kaizen activities done in order to gain more profit and to further contribute to nation and people in need. They have given us the drive and discipline to tackle any task with enthusiasm and determination. Without their love and support this project would not have been made possible.

ABSTRACT

This study was performed in order to find optimize manpower planning for productivity improvement at 2HC 1.8 door lining assembly line. MODAPTS or Modular Arrangement of Predetermined Time Standards, which was developed by Mr. G. Chris Heyde, has been used widely in manufacturing field and benchmarking from the success of other well performance company, Johnson Control Incorporation, JCI is taking the initiative to use MODAPTS. MODAPTS system relates standard time value to human body movement in performing a work. In the study, MODAPTS code will be generated based on video taken and line balancing graph will be plotted. Using VSM layout, waste will be identified and this will be followed by improvement activity in order to reduce or eliminate the waste. Once again MODAPTS code will be generated to monitor the impact of the assembly line, suggestion either to combine two different workstation will be made. This will be followed by initiation of MODAPTS code is reliable enough, time study at the actual assembly line will be carried out.

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Kajian telah dijalankan untuk menentukan bilangan pekerja yang optimum untuk penambahbaikan proses pemasangan 2HC 1.8 door lining. MODAPTS atau Modular Arrangement of Predetermined Time Standards, yang telah dicipta oleh Mr. G. Chris Heyde, telah digunakan secara meluas dan mendapat pengiktirafan antarabangsa. Dengan menjadikan kejayaan syarikat-syarikat terkemuka yang telah menggunakan MODAPTS sebagai penanda aras, Jonhson Control Incorporation, JCI mengambil initiatif untuk turut sama menggunakan MODAPTS. Sistem MODAPTS menghubungkan nilai ukuran masa dengan pergerakan badan manusia dalam menjalankan pekerjaan seharian. Di dalam kajian ini, kod MODAPTS akan dimuat naik berdasarkan aktiviti-aktiviti yang telah dirakamkan di dalam video dan rajah penyeimbangan melibatkan semua proses yang terlibat akan dibuat. Bukan itu sahaja, dengan menggunakan susunatur VSM, pembaziran yang terdapat di dalam process pemasangan door lining ini akan dikenalpasti dan ini akan diikuti oleh aktiviti-aktiviti yang boleh mengurangkan atau menyingkirkan pembaziran tersebut. Kod MODAPTS dan rajah penyeimbangan masa untuk setiap proses akan sekali lagi dimuat naik untuk memantau kesan daripada aktiviti-aktiviti mengurangan pembaziran Cadangan sama ada untuk menggabungakan dua stesyen kerja akan dibuat berdasarkan rajah penyeimbangan yang dibuatkan menerusi kod MODAPTS. Kajian secara manual menggunakan jam randik akan dijalankan sebagai pengesahan sama ada kod MODAPTS ini boleh diguna pakai sebelum cadangan ini dicadangkan secara langsung kepada pihak pengurusan JCI.

ACKNOWLEDGEMENT

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them.

I am highly indebted to Johnson Control Automotive Seating (M) Sdn Bhd, especially to Alor Gajah Plant's members for their guidance and constant supervision as well as for providing necessary information regarding the project & also for their support in completing the project.

I would also like to express my gratitude towards my parents for their kind co-operation and encouragement which help me in completion of this project. My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities.

TABLE OF CONTENT

DE	ECLARATION	
	EDICATION	
	BSTRACT	i
AF	3STRAK	ii
A	CKNOWLEDGEMENTS	iii
	ABLE OF CONTENTS	iv
	ST OF TABLES	vi
	ST OF FIGURES	ix
	ST OF APPENDICES	xi
	ST OF ABBREVIATIONS	xii
CF	IAPTER	
1.		
1.	1.1. Background	1
	1.2. The Main Challenges for JCI in 2012 and 2011	2
	1.3. Problem Statement	5
	1.4. Objective	5
	1.5. Scope of Study and Limitation	5 5
	1.6. Finding on Research (MODAPTS)	5
	1.0. Thiding on Research (MODAI 15)	5
2.	LITERATURE REVIEW	
	2.1. Introduction	6
	2.2. Background of Car Manufacturing System	6
	2.3. Relationship between Toyota Production System (TPS) Principles	
	and Rules	7
	2.4. TPS Principles versus Lean Production	8
	2.5. Value Stream Mapping	14
	2.6. Line Balancing	14
	2.7. Predetermined Time Systems (PTS)	17
	2.8. Method Time Measurement (MTM)	18
	2.9. Maynard Operational Sequence Technique (MOST)	22
	2.10. Modular Arrangement of Predetermined Time Standard (MODAPTS)	24
	2.10.1. Classes of MODAPTS elements	25
	2.11. Conclusion	27
		21
3.	RESEARCH METHODOLOGY	
	3.1 Introduction	31
	3.2 Background of Research	31
	3.3 Research Approach	32
	3.3.1 Final Year Project I (FYP I)	33
	3.3.2 Final Year Project II (FYP II)	36
	3.4 Project Planning (Schedule)	38
4.	RESULT	
		40

4.1.Introduction	40
4.2. Video captured for MODAPTS activity	40
4.3.Generating MODAPTS code and Line Balancing for Current Process	41

iv

	4.4. Waste and Improvement Identification	46
	4.5.Implementation of Improvement Activities to Reduce Waste	47
	4.5.1 No proper place for weather strip kitting area	47
	4.5.2 Blue marker pen position too far	48
	4.5.3 Screw position not visible and bending required for screwing	
	And part attachment	48
	4.5.4 Manual tightening torque location too far	49
	4.5.5 Ultrasonic robot stop working after few cycle	49
	4.6. New Line Balancing Chart with amended MODAPTS code prior to	
	Waste reduction activities	50
	4.7.Further Suggested Improvement activity for 2HC1.8 Door Lining	
	Assembly Process Line.	51
5.	DISCUSSION	
	5.1 Introduction	54
	5.2 The Impact of Kaizen Activities towards Line Balancing	54
	5.2.1 No proper place for weather strip kitting area	55
	5.2.2 Blue marker pen position too far	56
	5.2.3 Screw position not visible and bending required for screwing	
	And part attachment	58
	5.2.4 Manual tightening torque location too far	59
	5.2.5 Ultrasonic robot stop working after few cycle	6 1
	5.3 Further Suggested Improvement activity for 2HC1.8 Door Lining	
	Assembly Process Line.	62
6.	CONCLUSION	
	6.1 Introduction	66
	6.2 Summary	66
	6.3Conclusion	67
	6.4Suggestion or Recommendation	67
RE	EFERENCES	68
AF	PPENDICES	70

LIST OF TABLES

TABL	E TITLE	PAGE
1	Johnson Control (JCI) Ranking in Fortune 500 for 2010 until 2012	1
2	JCI plant in Malaysia and its customers	2
3	Affected Industry Estate during Thailand Flood Crisis on October 2011.	
	(Taken from http://www.gccapitalideas.com/2011/11/03/floods-in-	
	thailand-2/)	4
4	The Impacts of Applying TPS' Practices Applied in Manufacturing	
	Lines.	7
5	The impact of TPS principles and rules	8
6	Similarity and Differences between TPS and Lean Production System	9
7	7 Types of Waste in Lean.	12
8	SALBP Constraints in Real World Automotive Operations	15
9	Proposed Time Standard Power Plant Removal (Taken from Chaudhary	
	(2006)	16
10	Comparison of MODAPTS versus Time Study for Power Plant Remova	l
	(Taken from Chaudhary (2006))	17
11	List of TMU value for MTM Method on Reach motion	19
12	List of TMU value for MTM Method on Grasp motion	19
13	List of TMU value for MTM Method on Move element	20
14	List of TMU value for MTM Method on Position element	20
15	List of TMU value for MTM Method on Release element	20
16	List of TMU value for MTM Method on Disengage element	21
17	List of TMU value for MTM Method on Turn element	21
1 8	List of TMU value for MTM Method on Apply Pressure (AP) Element	21
1 9	List of TMU value for MTM Method on Eye Travel and Eye Focus	
	Element	22

vi

20	List of TMU value for MTM Method on Body, Leg and Foot Motion	
	Element	22
21	List of TMU value for MTM Method on Hand and Arm Motion	
	Element	22
22	Difference between First and Higher Lever of PMTS (Taken from	
	Groover (2007))	23
23	MODAPTS' Time Standard	25
24	Coding and Part Involve in Movement Activities.	26
25	Coding and Description of Activities for Terminal Class. (Taken from	
	Chaudhary (2006))	. 28
26	Coding and Description for Auxiliary Class	. 30
27	Gant Chart for FYPI and FYPII Project Execution	. 38
28	Action Plan for MODAPTS Application for Line Balancing	. 39
29	Distribution of workstation for 2HC 1.8 Door Lining Assembly Process	42
30	Details analysis on Value Added (VA), Non-Value Added (NVA) and	
	Necessary Non-Value Added (NNVA) of the whole processes for 2HC	
	1.8 Door Lining Assembly Process	44
31	Short listed Potential Waste found at 2HC 1.8 Door Lining assembly	
	line	46
32	VA, NVA and NNVA Percentage after Waste Elimination Activities	50
33	MODAPTS Code Generated for Weather Strip Installation for Fr RH	56
34	MODAPTS code generated for Weather Strip installation after Kaizen	
	activities	56
35	MODAPTS Code for Reaching Blue Marker Pen before Improvement activ	vities57
36	MODAPTS Code for Reaching Blue Marker Pen after Improvement	
	Activities	7
37	Summary of time saving for processes involved with the usage of blue	
	marker pen in order to produce I car set of 2HC1.8 DL	57
38	MODAPTS codes for end garn tightening activity before Kaizen activity	
	apply to the line	59
39	MODAPTS codes for end garn tightening activity after Kaizen activity 4	
	implemented	60
40	MODAPTS code for plastic parts tightening activity before Kaizen activity	
	apply to line	60

41	MODAPTS code for plastic parts tightening activity after Kaizen activity 4	
	apply to line60	
42	Summary of time saving for processes involved for tightening activity in order	r
	to produce I car set of 2HC1.8 DL61	
43	Distribution of workstation for 2HC 1.8 Door Lining Assembly Process -	
	Combine Rr RH and Rr LH63	
44	Time Study Captured via Stop Watch for Combine Assembly Part of Rr RH ab	bd
	Rr LH	

viii

LIST OF FIGURES

FIGURE

TITLE

1	Flooded area in Thailand dated on 8th October 2011. (Taken from
	http://www.thaiflood.com/en/)
2	Definition of Leanness. (Bauou, 2008)12
3	Procedure for Method Time Measurement (MTM)18
4	Procedure for Maynard Operational Sequence Technique (MOST)
5	MTM Work Hierarchy (Taken from Groover (2007)
6	MOST Work Hierarchy (Taken from Groover (2007)
7	Arm Part Used for Movement Activity. (Taken from MODAPTS (2008))25
8	Type of Movement and Specific Coding for Movement Activities
9	Symbols of Activities and Coding for Terminal Class. (Taken from
	MODAPTS (2008))
10	Type of Activities and Coding Involved for Terminal Class
11	Symbols and Coding for Auxiliary Class
12	Project Planning and task distribution for FYP I and FYP II
13	Initial Stage Process Flow for Improvement Activity
14	Current State Value Stream Mapping for 2HC 1.8 DL Assy at JCI Alor Gajah
15	Potential Project Area for Improvement Identified
16	Multi-disciplinary Project Team Members
17	Process Flow for MODAPTS Application
18	Example of video taken for MODAPTS project41
19	MODAPTS coding for Door Lining Assembly
20	Line Balancing Chart generated from MODAPTS workbook
21	Line Balancing Chart generated via normal stop watch time study method43
22	VA, NVA and NNVA distribution for every process

23	Manning efficiency and suggested manning at 80% to 100% MODAPTS
	application45
24	Before and After Improvement Activity 1 via Kaizen47
25	Before and After Improvement Activity 2 via Kaizen
26	Before and After Improvement Activity 3 via Kaizen
27	Before and After Improvement Activity 4 via Kaizen
28	Before and After Improvement Activity 5 via Kaizen
29	Line Balancing Chart After Waste Elimination
30	Latest VA, NVA and NNVA distribution for all 2HC Door Lining assembly
	process after improvement made51
31	Manning efficiency and suggested manning at 80% to 100% MODAPTS
	application
32	Line Balancing for 2HC1.8 Using Stop Watch after Kaizen Activities 52
33	2HC 1.8 Door Lining Line Balancing Chart with Rear RH and LH Part
	Assembly process being combine
34	Before and After Improvement Activity 1 via Kaizen55
35	Before and After Improvement Activity 2 via Kaizen56
36	Before and After Improvement Activity 3 via Kaizen58
37	Difficulty found at Part Assembly Station58
38	Bending Activity Required during Assembly Process
39	Before and After Improvement Activity 4 via Kaizen
40	Before and After Improvement Activity 5 via Kaizen
41	Line Balancing Graph Generated by MODAPTS after Kaizen Activities
	Implemented
42	Average Line Balancing Graph for 2HC1.8 Door Lining based on Timing
	using Stop Watch
43	MODAPTS Line Balancing Graph for Combination of Assembly of Part for
	Rr RH & LH63
44	Current and Proposed Process Layout for 2HC1.8 Door Lining Assembly
	Line
45	Line Balancing Graph for 2HC1.8 Door Lining Assembly Line using
	Average Time Recorded via Stop Watch65

LIST OF APPENDICES

APPE	CNDIX TI	ГLЕ	PAGE
A	MODAPTS workbook before Kaizen act	ivities	70
В	MODAPTS workbook after kaizen activi	ities	82
С	MODAPTS workbook of proposed comb	bine station	93

xi

LIST OF SYMBOLS

JCI	-	Johnson Control Incorporation
JCAS	-	Johnson Control Automotive Seating
JCAS-SA	-	Johnson Control Automotive Seating Shah Alam
JCAS-TM	-	Johnson Control Automotive Seating Tanjung Malim
JCAS-Pkn	-	Johnson Control Automotive Seating Pekan
MODAPTS	-	Modular Arrangement of Predetermine Time Standard
TPS	-	Toyota Production System
JIT	-	Just in Time
VSM	-	Value Stream Mapping
SALBP	-	Simple Assembly Balancing Problem
MTM	-	Method Time Management
MOST	-	Maynard Operational Sequence Technique
PMTS	-	Predetermined Motion Time System
CI	-	Continuous Engineer
HMSB	-	Honda Malaysia Sdn Bhd
Fr RH	-	Front Right Hand
Fr LH	-	Front Left Hand
Rr RH	-	Rear Right Hnad

xii

Rr LH	-	Rear Left Hand
Assy	-	Assembly
FG	-	Finish Good
WSHTP	-	Weather Strip
VA	-	Value Added
NVA	-	Non Value Added
NNVA	-	Necessary Non Value Added

xiii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Background

Johnson Controls (JCI) is a global diversified technology and industrial leader serving customers in more than 150 countries. Globally we are a major player in Automotive, Electronic, Power Solution and Building Efficiency. JCI has been listed as one of the most successful company around the world and this can be observed based on Fortune 500 performance year to year basis. The Fortune 500 is an annual list compiled and published by Fortune magazine that ranks the top 500 U.S. closely held and public corporations as ranked by their gross revenue after adjustments made by Fortune to exclude the impact of excise taxes companies incur. The list includes publicly and privately held companies for which revenues are publicly available.

Year	Ranking	Revenue	Profit
2010	83	28,497.00	-338
2011	76	34,305.00	1,491.00
2012	67	40,833.00	1,624.00

Table 1: Johnson Control (JCI) Ranking in Fortune 500 for 2010 until 2012

Johnson Control which operated in Malaysia is having three different entities:

Johnson Control Automotive Seating (M) Sdn Bhd;

1

- Johnson Control Automotive Interiors (M) Sdn Bhd;
- Johnson Control Automotive Components (M) Sdn Bhd

In Malaysia itself, JCI is located at four different plants serving local and international automotive base. Our plants and our customers in Malaysia are:

Plant Location	Customer
Shah Alam Plant (JCAS-SA) in Selangor	Proton, Toyota, Volvo
Tanjung Malim Plant (JCAS-TM) in Perak	Proton, BMW and Volkswagen
Pekan Plant in Pahang (JCAS-Pkn)	Mercedes and Isuzu
Alor Gajah Plant in Melaka (JCAS-AG)	Exclusively build up for Honda Malaysia
	Sdn Bhd

Table 2: JCI plant in Malaysia and its customers

The year of 2012 and 2011, is a very challenging year for Johnson Control as a whole. This is due to reduction of total number of business which was cause by natural disaster especially in Asia Region, focusing in Malaysia, therefore, in order for JCI to remain as the most favorable seat supplier, JCI has to be competitive enough. A lot of automotive assemblers in Malaysia prefer to have JCI as their main seat supplier due to products' quality showed. The only reason that make they have a second taught of JCI mainly due to the price which they consider quit expensive comparing to others seat manufacturers in Malaysia.

1.2 The Main Challenges for JCI in 2012 and 2011

Thailand which located at the southern east part of Asia is situated in between 15° 00' North latitude and 100° 00' East longitude. Due to its location at particular latitude and longitude, Thailand is having three distinctive seasons which are:

- Summer Season (April to May)
- Rainy Season (June to October)
- Winter Season (November to February)

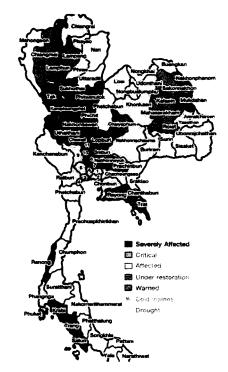
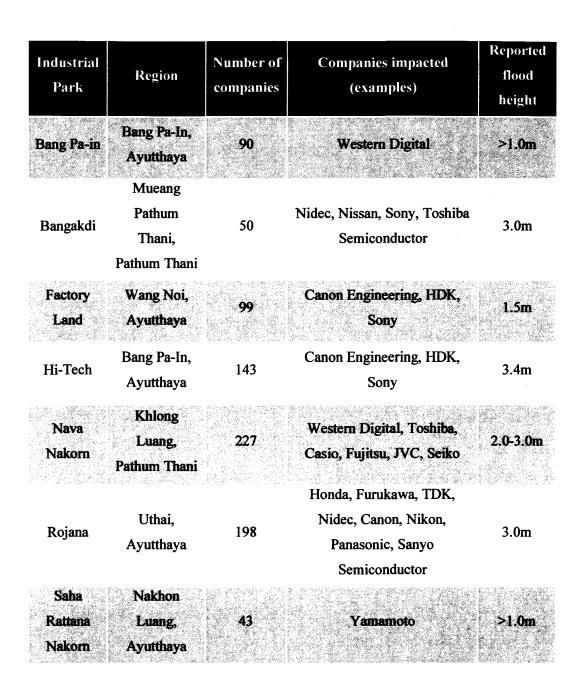



Figure 1: Flooded area in Thailand dated on 8th October 2011. (Taken from http://www.thaiflood.com/en/)

During the fourth quarter of 2011, Thailand faces a massive flood throughout the country which affected three quarter of the country and is the worst in more than 50 years. According to Jeff Master's blog, for 2011, Thailand faced the highest disaster cost worldwide due to its flood crisis which started on Jun 2011 and only end on November 2011 causing USD 45.0 billion damage. The main Thailand economic sectors affected by the hit are agriculture, tourism and manufacturing. The flood had forced seven main industrial estates in Thailand to halt their operation and this has never happened for the past 40 years.

Table 3: Affected Industry Estate during Thailand Flood Crisis on October 2011. (Taken from http://www.gccapitalideas.com/2011/11/03/floods-in-thailand-2/)

4

C Universiti Teknikal Malaysia Melaka

1.3 Problem Statement

Johnson Control Automotive Seating (JCAS) Alor Gajah plant was builds purposely to serve Honda Malaysia Sdn. Bhd. (HMSB). In order to be competitive enough and become the main seat and interior parts assembler and supplier in Malaysia, any improvement activity is welcome especially those which can reduce the overall total cost of operation.

1.4 Objective

The overall objective is to study current line balancing at Johnson Control Automotive Seating (M) Sdn. Bhd for 2HC 1.8 door lining assembly processes. The specific objectives are as follow:

- (i) to study current line balancing using MODAPTS approach
- (ii) to analyze area of improvement
- (iii) to propose Value Stream Mapping for the process to improve its productivity.

1.5 Scope of study and limitation

Study will be focussing on the latest business opportunity granted by Honda Malaysia Sdn Bhd.which is door lining interior business for 2HC (Civic) model and the focus variant will be on 2HC 1.8 variant. There are other variant for this particular model, however focus study will be base on the easiest and simplest variant and benchmarking will be done before proceeding to other variant due to additional processes and parts used.

1.6 Finding on Research (MODAPTS)

It is suggested that MODAPTS can be used to relate standard time value to human body movement in performing a work. No stopwatch required, it is ergonomically and method sensitive. It is easy to be learn, inexpensive and there is no royalty fees involved when it is used, not like other predetermined time system method.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The background of car manufacturing system and the concept of Toyota Production System (TPS), Toyota Production System (TPS) versus Lean Production, Line Balancing, Value Stream Mapping, Predetermined Time Systems (PTS), Method Time Measurement (MTM), Maynard Operational Sequence Technique (MOST) and Modular Arrangement of Predetermined Time Standard (MODAPTS) will be discussed in this chapter which will be applied in the later part of the study.

2.2 Background of Car Manufacturing System

Johnson Control Inc. (2010) explained that the automotive manufacturing environment has evolved over time starting from craft production which stated on 1894 through Fordism in 1908 to Toyota Production System (TPS) in late 1940. Skilled craftsmanship focussed on producing car by skilled worker in individual production which took long assembly time, high personalization of cars, produced at small volume at high costs and extended delivery time while Fordism, which carry over Hendy Ford's name focussed on combining mass consumption with mass production in order to produce sustained economic growth and widespread material achievement. Making profit and at the same time focussing on satisfying customer with highest quality product at lowest cost and in shortest time while developing workers' skill and improving workers' safety and morale through continuous

6