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ABSTRACT 

Among the different multiphase ac drive solutions, one of the most widely reported 
in the literature is the six-phase machine. The machines can be realised into two different 
configurations, symmetrical and asymmetrical. For the symmetrical configuration, the 
stator winding consists of two sets of three-phase windings that are spatially shifted by 60° 
where spatial displacement between any two consecutive phases is the same and equal to 
60°. For the asymmetrical configuration, the two sets of three-phase windings are spatially 
shifted by 30°. As a result, the spatial shift between consecutive phases becomes non
equidistant. 

In this thesis, modulation techniques for both symmetrical and asymmetrical six
phase machines are investigated. The machines are configured in open-end winding 
configuration where both ends of the stator winding are connected to separate isolated 
inverters in a topology known as dual-inverter supply. Compared to conventional single
sided supply topology where one end of the winding is connected to an inverter while the 
other side is star-connected, some additional benefits are offered by the dual-inverter 
supply topology. First, fault tolerance of the drive is improved, since the supply is realised 
with two independent inverters. In case one of the inverters is faulted, the other can 
continue to provide power to the machine. Second, the same phase voltages can be 
achieved with half the de-link voltages on the two inverter inputs compared to the single
sided supply, which can be useful in applications such as electric and hybrid electric 
vehicles and medium sized ships, where the de voltage levels are limited. Further, due to 
the nature of the topology, additional diodes and capacitors like in the Neutral Point 
Clamped (NPC) and Flying Capacitor (FC) VSis are not required. The latter results in a 
further advantage - capacitor voltage balancing techniques are not required. 

Two pulse width modulation (PWM) techniques for control of the dual-inverter 
supplied six-phase drives are proposed in this thesis. The first is a reference sharing 
algorithm where the inverters are modulated using reference voltage that is shared equally 
and unequally between the two modulators. For both symmetrical and asymmetrical six
phase drives, a better performance, in term of total harmonic distortion (THD) of phase 
voltage is obtained when the reference is shared unequally between the two modulators. 
The second technique is carrier-based modulation where the modulation of the two 
inverters is determined by the disposition of the carrier signals. Three variations of carrier 
signals disposition are investigated namely; the phase disposition (PD-PWM), alternate 
phase opposition disposition (APOD-PWM) and phase-shifted PWM (PS-PWM). For the 
symmetrical six-phase -drive, the best phase voltage and current THDs are obtained using 
APOD-PWM while for asymmetrical six-phase drive, the APOD-PWM produces the worst 
current THD despite having the best voltage THD among the three methods. 

All the developed modulation techniques are analysed using simulations and 
experiments undertaken using a laboratory prototypes. The waveforms and spectra of 
phase voltage and load current obtained from the simulation and experimental works are 
presented in this thesis together with the THD of both the voltage and current over entire 
linear modulation range. 
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I .Introduction 

Chapter 1 

INTRODUCTION 

1.1 Preliminary considerations 

Higher power demands on converters and drives are continuously being imposed by 

industrial users . The reasons for this are the requirements to reach higher production rates, 

cost reduction (large-scale economy), improved efficiency, etc. Available mature drive 

topologies, which are mainly based on two-level inverters and three-phase machines, are 

currently unable to meet the high power demands due to the lack of availability of 

semiconductor devices that possess the required high current carrying and voltage blocking 

capability. Since the available semiconductor devices (which are currently up to 6 kV and 

6 kA [Franquelo et al. (2010)]) can only be used for limited power applications, alternative 

solutions have to be devised for higher power industrial applications in the region of tens 

of megawatt. 

High power demands are currently met by using two different approaches. The first 

approach is to continue to use the three-phase machine, but the per-phase power of the 

machine is distributed among a higher number of semiconductor devices than the number 

normally used in a two-level inverter. Such an inverter is known as multilevel inverter, and 

it produces output leg voltage with more than two levels. Multilevel inverters produce a 

better quality of output voltage waveform, but the implementation requires a higher 

number of semiconductor devices; hence request for more complex switching strategy. 

Nevertheless, various multilevel inverter topologies have been reported for various high 

power industrial applications such as traction, mining, automotive, renewable energy, 

adjustable speed drives and uninterruptible power supply [Franquelo et al. (2008)]. 

In the second approach, the high power demand is met by utilising a multiphase 

machine, which is a machine with stator winding consisting of more than three phases. The 

idea is to divide the total power across more phases, so that a reduced per-phase power 

rating can be achieved, hence allowing the usage of the currently available power 

semiconductor devices. As the number of phases increases, higher power demands can be 

1 
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I .Introduction 

meet. For example, a six-phase winding has been used for a 25 MW synchronous motor 

drive [Zdenek (1986)] while a nine-phase winding has been utilised for a 36.5MW ship 

propulsion drive [Gritter et al. (2005)]. Another example is utilisation of a fifteen-phase 

19MW induction motor drive for military ship application [Benamatmane and McCoy 

(1998)]. 

Certain aspects however, regarding the utilisation of multiphase drives for high 

power application, such as the required converter topology, converter control strategy, and 

the machine construction, ask for significant modifications of the methods and techniques 

that are conventionally applied to the three-phase drives. In terms of the construction of the 

multiphase machine, the phase number of a stator winding can be selected either as an odd 

number or as an even number. Different winding arrangements can be made, and in 

general the winding can be realised as a symmetrical or asymmetrical configuration [Levi 

et al. (2007)]. Machine with a prime number of phases (5, 7, 11, 13 and etc) can only be 

realised using a symmetrical configuration, and the stator windings are connected to a 

single neutral point. For this configuration, a spatial displacement between any two 

consecutive phases is always equal to a. = 2nln, where n is the number of phases. Examples 

of such a machine are mainly reported for five-phase machines [Shuai and Corzine (2005), 

Ward and Hiirer (1969)] and seven-phase machines [Casadei et al. (2010), Grandi et al. 

(2006), Khan et al. (2009)]. 

As for a machine with an even phase number ( 4, 6, 8, 10 and etc) or with an odd 

composite phase number (9, 15, 21 and etc), the arrangement of the stator windings can be 

realised in at least four different ways. Consider a machine that has an n = ak number of 

phases with a= 3, 5, 7 ... and k = 2, 3, 4 .. . For symmetrical configuration, with a.= 2nln, 

the complete winding can be configured to have k sub-winding with a phases each. 

Alternatively, the windings can also be constructed as asymmetrical configuration, where 

the first phases of the k sub-winding are spatially displaced by a. = nln. For both 

symmetrical and asymmetrical configurations, the windings could either be connected to a 

single neutral point or to k isolated neutral points. Multiphase machine, having phase 

number equal to a multiple of three, are regularly considered for such configurations. For 

example, a symmetrical configuration with winding connected into a single neutral point is 

reported for six-phase machines [Dujic et al. (2007a), Kianinezhad et al. (2005)] and nine

phase machines [Dujic et al. (2007b), Grandi et al. (2007b)], while windings connected to 

multiple neutral points are reported for six-phase machine (with two neutral points) 

[Correa et al. (2003b)], nine-phase machine (with three neutral points) [Grandi et al. 
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I .Introduction 

(2007a)] and fifteen-phase machine (with five neutral points) [Youlong et al. (2007)]. For 

the asymmetrical configuration, multiphase machines with two isolated neutral points are 

the most common for six-phase machines [Bakhshai et al. (1998), Gopakumar et al. 

(1993), Hadiouche et al. (2006), Marouani et al. (2008), Prieto et al. (2010), Zhao and Lipo 

(1995)] . Also, an example of a machine with windings connected to multiple neutral points 

has been reported for nine-phase machine (with three neutral points) [Steiner et al. (2000)] . 

Next, multiphase machine can also be realised by using multiple sets of five-phase 

windings. Such a configuration, for example, is reported for fifteen-phase machine 

[Benamatmane and McCoy (1998)]. 

One particular even phase number, very frequently considered in the literature, is six. 

In this project, the scope of research is focused towards the development of PWM 

techniques for six-phase machines, where both asymmetrical and symmetrical winding 

configurations will be considered. The windings of the machine are excited by using 

inverter topologies that are able to produce multilevel voltage waveforms. The supply of 

the machines is obtained from two two-level inverters in so-called open-end winding 

configuration. 

In what follows a brief review of various multiphase variable speed drive aspects is 

provided. The emphasis of the review is placed mainly on the current state-of-the-art in the 

area of six-phase drives and also multiphase drives that have a composite number of 

phases. 

1.2 An overview of PWM control of multiphase drives 

Multiphase drives, although known for many decades, have started to attract greater 

attention of researchers and industry worldwide only relatively recently. Multiphase drives 

are at present considered as serious contenders for specialised applications, where high 

reliability and high power ratings are required, such as electric ship propulsion [Gritter et 

al. (2005), Parsa and Toliyat (2005)] , locomotive traction [Abolhassani (2005), Steiner et 

al. (2000)], industrial high power applications [McSharry et al. (1998)] , electric and 

hybrid-electric vehicles [Bojoi et al. (2005), Parsa et al. (2005)] and more-electric aircraft 

[Atkinson et al. (2005)]. 

An upsurge in interest in multiphase drives has been driven by several benefits of 

multiphase machines, which include higher torque density, lower per-phase power 

handling requirement, improved reliability, increased fault tolerance, improved noise 

characteristics and greater efficiency [Levi et al. (2007), Parsa (2005)]. Different types of 
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I .Introduction 

multiphase machines have been developed, designed and studied. These include induction 

and synchronous machines having stator windings with different number of phases where 

five, six and seven are the most dominant ones. Thus an opportunity exists to explore 

different control strategies that are best suited for a given application [Levi (2008)]. 

Detailed mathematical models of multiphase machines have been derived and this, 

combined with the rapid development of digital signal processors and power electronic 

components, has enabled investigation and implementation of numerous control methods 

for multiphase machines [Levi et al. (2007)]. 

Utilisation of multiphase machines in industrial applications is possible due to the 

fact that an ac machine, when used in a variable speed drive system, is not connected 

directly to the utility supply. Instead, there is an interface between the utility supply and 

the machine, a power electronic converter. The converter can easily provide the required 

number of phase voltages (with the necessary phase difference) that matches the number of 

machine 's stator winding phases. The converter is most frequently an inverter, and inverter 

that produces more than three-phase output is normally referred to as a multiphase inverter. 

In the pre-PWM era and early days of multiphase machines, multiphase inverter was 

switched at a fundamental frequency. Six-step mode of operation of three-phase inverter 

inevitably produces low frequency torque ripple and at the time the utilisation of 

multiphase machines was considered as one approach to solve the problem. A six-phase 

induction machine, constructed based on asymmetrical stator winding configuration with 

two isolated neutrals, was extensively investigated in order to push the harmonics to higher 

frequencies. The six-phase supply of the machine was normally obtained by means of two 

three-phase voltage source inverters (VSD [Abbas et al. (1984), Nelson and Krause (1974)] 

or by two three-phase current source inverters (CSI) [Gopakumar et al. (1984)]. 

When the era of PWM started, this advantage became less important srnce the 

harmonics can now be effectively controlled by using a PWM technique. However, for 

very high power applications, in order to maintain low switching losses, this advantage is 

still relevant due to the limitation of the switching frequency of currently available 

semiconductors. Research on PWM techniques for multiphase inverters has also gradually 

increased, particularly for low and medium power applications. 

In the following sub-sections, PWM techniques, applicable to two-level and 

multilevel multiphase drives, are discussed. 
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l .Introduction 

1.2.1 Two-level inverter supplied multiphase drives 

At present, multiphase variable speed drives are invariably supplied from two-level 

multiphase inverters, which are controlled using appropriate PWM techniques. Two main 

groups of PWM techniques are usually considered which are carrier-based PWM and space 

vector PWM (SVPWM). 

For multiphase inverters, the simplest way to implement the carrier-based PWM 

technique is by comparing a set of sinusoidal reference voltages (with appropriate phase 

difference) with a triangular carrier waveform. The technique is normally known as 

sinusoidal PWM (SPWM) and the output from the comparison is used to generate 

switching signals for the semiconductor switches in each inverter leg. Further, the carrier

based PWM is usually implemented with an injection of appropriate harmonics into the 

reference signals. Similar to three-phase inverter with the third harmonic injection, it is 

also possible to improve the utilisation of the de bus voltage of multiphase inverters 

(without moving into over-modulation range) by injecting the appropriate zero-sequence 

harmonics into the reference voltages. This technique can be easily extended to multiphase 

inverters with an odd number of phases and single neutral point. However, the effect of 

improvement that can be achieved regarding de bus voltage utilisation is weakened as the 

number of phases increases [Iqbal et al. (2006)]. 

The principle of carrier-based PWM with zero-sequence harmonic injection can also 

be utilised for asymmetrical multiphase machines that have a number of phases that is a 

multiple of three. The machines are configured to have a number of three-phase sub

windings and each sub-winding needs to be connected to an isolated neutral point and 

supplied by a three-phase inverter. Such an implementation has been realised for an 

asymmetrical six-phase induction machine with two isolated neutral points, constructed by 

using two sets of three-phase windings. Zero-sequence harmonics are injected into the 

reference voltage of each set [Bojoi et al. (2002)], resulting in the same improvement of 

the de bus voltage utilisation as in the three-phase inverter. 

For SVPWM techniques, the set of sinusoidal reference voltages is represented as a 

reference voltage vector that needs to be generated by the inverter. Each switching state 

combination of inverter legs produces a different voltage vector. By using SVPWM, a 

certain number of space vectors will be used over one switching period, each with an 

appropriately calculated dwell time, in order to produce output voltage vector that has an 

average value equal to the reference. 
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I .Introduction 

Basically, compared to SVPWM, carrier-based PWM technique is simpler and more 

straightforward to implement, since the modulator just has to compare the carrier and the 

reference signals. This advantage becomes more and more pronounced as the number of 

phases increases [Dong et al. (2008a)]. Implementation of carrier-based PWM has been 

considered for a nine-phase inverter [Dong et al. (2008a)] and a fifteen-phase inverter 

(with three isolated neutral points) [Benamatmane and McCoy (1998)]. For SVPWM 

implementation, the number of switching state combinations for two-level multiphase 

inverter can be calculated as Nsw = 2n . Therefore, compared to a three-phase inverter where 

the number of switching states is 23 = 8, the process of selecting the appropriate space 

vectors and devising SVPWM from, for example, 215 = 32768 switching state 

combinations for fifteen-phase machine is obviously not an easy task. 

For a machine with a single neutral point, the other advantage of the SVPWM 

technique, which relates to de bus voltage utilisation, also becomes less significant for 

machines with high number of phases. While SVPWM can improve the de bus voltage 

utilisation of a three-phase inverter by 15.4 7%, the improvement that can be achieved in a 

nine-phase inverter is 1.54% and in a fifteen-phase inverter is merely 0.55% [Dong et al. 

(2008a)]. The same improvements in the de bus voltage utilisation can be obtained by 

means of carrier-based PWM methods if zero-sequence injection is used. However, it is 

important to notice that the de bus utilisation in multiphase VSI supplied drives with a 

composite stator phase number varies depending on the winding configurations 

(symmetrical or asymmetrical) and also the number of neutral points [Dujic et al. (2010)]. 

For example, asymmetrical six-phase drive with stator winding of the machine connected 

to a single neural point has a maximum de bus voltage utilisation of 103.53% while with 

stator winding connected to two isolated neutral points, the maximum de bus voltage 

utilisation is 115.47%. For symmetrical six-phase drive with machine's stator winding 

connected to a single neutral point, no increase of de bus voltage utilisation is obtained, i.e. 

the utilisation is 100%. 

By and large, the existing research in connection with SVPWM control of two-level 

inverters is mainly related to multi phase machines with a lower number of phases such as 

five, six, seven, and nine. For these machines, the SVPWM approach is in general analysed 

more frequently than the carrier-based PWM because it offers a better insight into the 

properties of multiphase drives. SVPWM techniques for two-level multiphase inverters 

have been widely applied for six-phase VSis, in both symmetrical configuration [Correa et 

al. (2003a), Dujic et al. (2007a), Kianinezhad et al. (2005)] and asymmetrical configuration 

6 
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I .Introduction 

[Bakhshai et al. (1998), Gopakumar et al. (1993), Hadiouche et al. (2006), Marouani et al. 

(2008), Prieto et al. (2010), Zhao and Lipo (1995)], as well as for nine-phase VSis [Dujic 

et al. (2007b), Grandi et al. (2007a), Grandi et al. (2007b), Kelly et al. (2003)]. SVPWM 

approach for fifteen-phase inverter is rarely investigated, and one example of such a study 

is reported in [Youlong et al. (2007)]. A comprehensive analysis of the relationship 

between carrier-based PWM and SVPWM techniques for multiphase inverters has been 

reported for a five-phase inverter [Iqbal and Moinuddin (2009)]. 

1.2.2 Multilevel inverter supplied multiphase drives 

Multilevel inverters operate by synthesising a near-sinusoidal output voltage from 

several de voltage levels, usually obtained from capacitors as voltage sources. As the 

number of levels increases, the synthesised output waveform has more and more steps. 

Hence a staircase waveform is produced that approaches the desired sinusoidal waveform. 

Multilevel inverters have some distinct advantages compared to two-level inverters. They 

lead to higher power capability, without requiring high voltage rating of semiconductor 

devices. Besides that, multilevel inverters also produce low harmonic distortion, reduced 

switching frequency, increased efficiency and good electromagnetic compatibility. 

However, as the number of levels increases, the complexity of the control circuit also 

mcreases. 

Since the birth of the first multilevel three-phase inverter about 30 years ago [Nabae 

et al. (1981)], extensive research on multilevel inverters has been carried out worldwide. 

Today, multilevel inverters are considered as one of the most viable solutions for high

power and high-power quality demanding applications [Rodriguez et al. (2009)]. Over the 

years, a number of different types of multilevel inverter topologies have been developed. 

The most frequently considered and well established topologies are diode-clamped inverter 

(which is usually also called neutral point clamped inverter (NPC)), flying capacitor 

inverter (FC) and cascaded H-bridge inverter (CHB) [Wu (2006)]. 

Today, multilevel inverters have been commercialised by many manufactures, with 

variety of control methods in use, in order to cater for different markets [Franquelo et al. 

(2008)] . NPC VSis have become a mature solution for high power ac motor drive 

applications such as conveyors, pumps, fans and mills, which offer solutions for various 

industries such as oil and gas, power generation and distribution, mining, water, metal and 

marine [Klug and Klaassen (2005)]. On the other hand, FC VSis have found specific 

applications for high-power-bandwidth high-switching-frequency applications such as 
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medium-voltage traction drives [Meynard et al. (2002)]. As for CHB VSis, they have been 

successfully commercialized for very high power and power quality demanding 

applications, due to their series expansion capability. Some examples of areas of 

application for CHB VSis are reactive power compensation [Dixon et al. (2005)], electric 

vehicles [Zhong et al. (2006)] and photovoltaic power supplies [Naik and Udaya (2005)]. 

As has been explained at the beginning of this chapter, the demand for high power 

industrial applications is currently met either by using multilevel inverters or by using 

multiphase drives. Since both methods are able to produce a high output power (by using 

only medium power semiconductor devices), combination of multilevel inverters and 

multiphase drives is expected to be able to produce higher output power than any of the 

two can individually, while at the same time retaining the advantages offered by each of 

them. For this reason, an initial attempt to integrate the multilevel inverter and multiphase 

machine has been carried out and the advantages of combining both topologies have been 

described in [Lu and Corzine (2005)]. 

The benefits of combining multilevel inverters and multiphase drives have lead to 

interest in investigation of multilevel multiphase drives. Currently, there are two different 

arrangements for multilevel multiphase drives. The first arrangement is so-called a single

sided supply. One end of the machine's multiphase winding is connected to a multilevel 

inverter, while the other end is star-connected. The second arrangement is a dual-inverter 

supply. Here, both ends of the machine windings are connected to either two-level or 

multilevel inverters. This arrangement is also known as an open-end winding topology. 

The two inverters that are connected at both ends of the open-end windings can have an 

equal or different number of levels. 

The number of switching state combinations for multilevel multiphase inverter 

supply depends on the number of inverter' s phase legs n (i.e. machine 's phases) and the 

number of inverter's output voltage levels /. For a single-sided topology, the number of 

switching states can be calculated as Nsw = zn. For example, if the number of output voltage 

levels is three, a three-phase inverter has 33 
= 27 switching state combinations, while a 

five-phase inverter has 35 
= 243 switching state combinations and a six-phase inverter has 

36 
= 729 switching state combinations. Therefore, with an increase in the number of 

voltage levels, the difference between the number of switching state combinations for 

three-phase and multiphase inverters becomes bigger and bigger. 

For an open-end winding topology, both ends of the machine 's winding are 

connected to two different inverters. Therefore, the total number of switching states is 
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multiplication of the number of switching states produced by each inverter, i.e. N sw = l1n z;, 
where indices 1 and 2 refer to the first and the second inverter. If the open-end winding is 

supplied by two three-level inverters, the number of switching states for an open-end 

winding three-phase drive is 33 x 33 = 729, for a five-phase drive 35 x 35 = 59,049, while for 

an open-end winding six-phase drives it is 36 x 36 
= 531,441. This is much higher than the 

number of switching states for the single-sided supply topology. The abundance of 

switching states provides some advantages for drives with the open-end winding 

configuration. One of them is that a higher number of output voltage levels can be 

achieved, where for example utilisation of two two-level inverters produces the same 

output voltage as a three-level inverter in a single-sided topology [Shivakumar et al. 

(2001a), Stemmler and Guggenbach (1993)]. The selection of which switching states are to 

be used will also have an effect on the performance of the multilevel multiphase drive in 

terms of harmonic content, common mode voltage, de bus voltage utilisation, etc. 

Multilevel multiphase drives, in a single inverter or dual-inverter supply topology, 

always possess a higher number of switching states than the traditional two-level 

multi phase drives. However, some of the switching states lead to the same voltage vectors. 

Therefore, for both topologies, the total number of voltage vectors is always less than the 

number of switching states, meaning that there are redundant switching states (the 

difference between the total number of switching states and the number of different space 

vectors). These redundant switching states are very beneficial, especially for determining 

switching sequence that could minimise the switching losses of the inverters. 

PWM techniques for multilevel mu1tiphase drives, implemented by using single

sided and dual-inverter supply, are reviewed next. 

1.2.2.1 Multilevel multiphase drives with single-sided supply 

For a single-sided configuration, an initial attempt to integrate a multilevel inverter 

with a multiphase machine was carried out for a five-phase NPC VSI [Lu and Corzine 

(2005)]. The inverter is modulated by using a SVPWM strategy and it has been found that, 

compared to a two-level VSI supplied five-phase drive, torque ripple in three-level five

phase system can be reduced significantly, due to the abundance of space vectors. 

However, the basic rule which says that the number of applied vectors must equal the 

number of phases, was not respected. Instead, the nearest three vector concept was used, as 

9 
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in three-phase drives, leading to uncontrollable harmonics in the stator current that belong 

to the second plane. 

More research has followed, mainly based on the SVPWM approach. Investigations 

and new developments of SVPWM for three-level five-phase NPC VSI have been 

supported by simulation [Song et al. (2006)] and by experimental [Gao and Fletcher 

(2010)] results. Development of a general SVPWM scheme for multiphase multilevel 

VSis, including implementation of SVPWM for five-level five-phase CHB VSI, has been 

reported in [Lopez et al. (2008)] and [Lopez et al. (2009)]. 

An attempt to develop a SVPWM scheme for asymmetrical six-phase induction 

machine, by means of two five-level three-phase NPC VSis, is described in [Oudjebour et 

al. (2004)]. Further, a SVPWM scheme has also been developed for six-phase synchronous 

motor, supplied by two three-level three-phase NPC VSis having the same de bus capacitor 

[Yao et al. (2006)]. 

Research on multilevel multiphase drives that utilise carrier-based PWM has been 

carried out to a lesser extent. One example, related to asymmetrical six-phase induction 

machine, is carried out by using two five-level three-phase VSis [Oudjebour and Berkouk 

(2005)]. The switches of each inverter's leg are controlled based on the signal generated 

by comparing the sinusoidal reference voltages with four triangular carrier signals. 

Multilevel multiphase drives, based on single-sided supply, are at present already 

considered for a few industrial applications. One example is the supply of 36.5MW ship 

propulsion drive from four- or five-level nine-phase NPC VSI [Gritter et al. (2005)]. A 

nine-phase transformerless ac traction drive supplied by three three-level three-phase VSI 

bridges has been discussed in [Steiner et al. (2000)]. A rather unusual application of 

multilevel multiphase drives has also been reported, where the drive has been considered 

for micro-electromechanical systems (MEMS) [Neugebauer et al. (2004)]. 

1.2.2.2 Multilevel multiphase drives with dual-inverter supply 

Multilevel multiphase drives with dual-inverter supply topology have several 

advantages, compared to the single-sided topology. One advantage is that the effect of a 

multilevel supply can be achieved by using two-level inverters. Besides that, if one of the 

inverters is inoperable, the system can be reconfigured to be driven by a single inverter 

[Grandi et al. (2011)]. 

Dual-inverter supply topology for machines with open-end windings was initially 

introduced for three-phase drives [Stemmler and Guggenbach (1993)]. Two two-level VSis 
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have been used, with supply commg from isolated de bus voltage sources. This 

arrangement effectively operates as a three-level VSI equivalent in single-sided supply 

topologies. A number of alternative solutions have been also investigated. These include 

use of three-level inverter in conjunction with a two-level inverter at two winding sides, 

with a suggestion that one of the sources can be a capacitor that supplies only reactive 

power [Kawabata et al. (1996)]. The de supplies have a 2:1 ratio and the resulting feeding 

scheme can emulate four-level equivalent of single-sided supply inverter. By using 

asymmetrical de voltage sources (i.e. voltage ratio different from unity) , two two-level 

inverters can produce voltages which are identical to those generated by three-level and 

four-level inverters in single-sided supply mode [Corzine et al. (1999)]. 

Although numerous versions of dual-inverter supply for three-phase drive systems 

have been reported, implementation of this topology in the multi phase drives has started to 

gain momentum only recently. Such an attempt was initially carried out for asymmetrical 

six-phase machine fed by four two-level three-phase VSis [Mohapatra et al. (2002)], 

[Mohapatra and Gopakumar (2006)]. However, the goal of the research was harmonic 

elimination, rather than multilevel operation. Hence the created output voltages are not 

those that would result with a multilevel supply. 

In the last few years, several modulation strategies that are able to create multilevel 

output voltage, produced in an open-end winding multiphase configuration, have been 

reported. Two main types of drive topology have been considered. The first is to use two 

two-level inverters to supply the open-end winding machine with five [Bodo et al. (2011b), 

Bodo et al. (2012b), Jones et al. (2012), Levi et al. (2012), Satiawan (2012)], six [Jones et 

al. (2013), Patkar et al. (2012)], seven [Bodo et al. (201la)] and nine [Bodo et al. (2013a)] 

phases. The second topology is to utilise four two-level inverters where asymmetrical 

machine with six phases is the main focus of the study [Grandi et al. (20 1 Oa ), Grandi et al. 

(20 1 Ob)]. The current state-of -the-art regarding the control of multi phase open-end drive 

is summarised in [Levi et al. (2013)]. 

The control strategies and drive topologies for the multiphase drives which are 

discussed throughout Section 1.2 are developed based on strategies and topologies that 

have been explored before for the three-phase drives. The correlation between the 

developed drive topologies for the multiphase and three-phase drives and the advantages 

and disadvantages of each topology are depicted in Fig.1 .1. 
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Two-level three-phase drives 
Advantages: 
- Standard drive found in industry. 
- Readily available off the shelf 

product. 
- Long established and well 

understood. 

Disadvantages: 
- Not suitable for medium and high 

power application. 
- Not fault tolerant without 

additional hardware. 

D 
Multilevel three-phase single

sided supplied drives 
Advantages: 
- Becoming standard solution for 

medium power applications . 
- Readily available off-the-shelf 

product. 
- Lower THD, reduced switching ,..\ 

frequency leading to higher Y 
efficiency. 

Disadvantages: 
- Increased hardware complexity, 

leading to reduced reliability. 
- More complex control required. 

D 
Multilevel three-phase dual
inverter supplied drives 

Advantages: 
- Application for medium power 

applications. 
- Simpler and cheaper topology than 

standard single-sided topology. 
- Lower THD, reduced switching 

frequency leading to higher 
efficiency. 
Increased fault tolerant capabilities Q 

- Simpler control, no capacitor 
voltage balancing issues. 

Disadvantages: 
- Requirement of isolated de 

supplies. 
- More complex control. 
- Both sides of terminals of the 

machine must be accessible. 
- Increased cable requirement. 

Two-level multiphase drives 
Advantages: 
- Suitable for medium and high power application 
- High torque density. 
- Lower per phase power. 
- Better fault tolerance. 

Disadvantages: 
- Bespoke, not readily available off the shelf 

inverter /machine. 
- More complicated control algorithm. 
- Increased number of sensors and cables. 

D 
Multilevel multiphase single-sided supplied 

drives 
Advantages: 
- A good solution for medium/high power 

applications. 
- Lower THD, reduced switching frequency 

leading to higher efficiency. 
- High torque density, lower per phase power and 

better fault tolerance. 

Disadvantages: 
- Increased hardware complexity, leading to 

reduced reliability. 
- More complex control required. 
- Bespoke, not readily available off the shelf 

inverter/machine. 
- Increased number of sensors and cables. 

D 
Multilevel multiphase dual-inverter supplied 

drives 
Advantages: 
- Application for medium/high power applications 

Simpler and cheaper topology than standard 
single-sided multiphase topology. 
Lower THD, reduced switching frequency 
leading to higher efficiency. 
Increased fault tolerant capabilities. 
Simpler control, no capacitor voltage balancing 
ISSUeS. 

- High torque density, lower per phase power and 
better fault tolerance. 

Disadvantages: 
- Requirement of isolated de supplies. 
- More complex control. 
- Both sides of terminals of the machine must be 

accessible. 
- Bespoke, not readily available off the shelf 

inverter/machine. 
- Increased number on sensors and cables. 

Fig. 1.1 : Research development in the area of multiphase VSI supplied drives . 
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1.3 Research aim and objectives 

The aim of the research is to develop PWM techniques for control of dual-inverter 

supplied six-phase machines with both symmetrical and asymmetrical winding 

configurations. 

The goal of the research has been met by achieving a number of research objectives, 

which are the following: 

1) Development of reference sharing algorithms for control of two six-phase two

level inverters based on open-end topology, using PWM techniques that initially 

developed for single-sided six-phase inverters. 

2) Development of carrier-based PWM techniques for the control of six-phase 

machines, supplied by two two-level six-phase inverters. 

3) Creation of computer simulation for the developed PWM techniques usmg 

MA TLAB/Simulink software. 

4) Implementation of the developed PWM techniques in the available laboratory rigs 

and experimental verification of theoretical findings. 

1.4 Research contributions 

This research constitutes a part of a wider research project, related to multilevel 

multiphase drive systems, which comprise four PhD theses. The work commenced with the 

first PhD [Satiawan (2012)] and continued with the subsequent two projects, [Bodo 

(2013)] and [Dordevic (2013)]. 

In principle, multilevel supply waveform can be realised using either a single-sided 

supply mode, with the multiphase machine having an isolated neutral point, or using dual

inverter supply in conjunction with an open-end winding topology. Further, a multiphase 

stator winding can be designed to have an odd prime number, an odd composite number or 

an even number of phases. The four projects are designed to cater for the two different 

supply options (single-sided mode and dual-inverter supply) and for different phase 

numbers. 

In particular, [Satiawan (2012)] deals with an open-end winding topology of a five

phase machine and relies on utilisation of two two-level five-phase inverters. [Bodo 

(2013)] extends the work of [Satiawan (2012)] by looking at seven- and nine-phase drives 

in dual-inverter supply mode, using at each side two-level inverters, as well as the five

phase drives in various conditions not covered by [Satiawan (2012)]. Finally, [Dordevic 
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(2013)] is intended to cover again odd phase numbers (the emphasis is on five and seven, 

with a possible extension to nine), but this time using a single-sided supply mode with a 

three-level NPC multiphase inverter. 

It follows from the description above that the three current PhD projects all deal with 

odd phase numbers in either single-sided or dual-inverter supply mode. This project is 

therefore designed to cover dual-inverter supply modes, but for machines with even phase 

numbers. The emphasis in the research is placed on six-phase machines, where multilevel 

supply for both symmetrical and asymmetrical winding topologies of six-phase machines 

is investigated. 

The contribution of the research is backed by the publications listed in Appendix 2. 

1.5 Organisation of the thesis 

This thesis is organised in eight chapters and two appendices. 

Chapter 1 gives a brief review of various aspects of multiphase variable speed 

drives . Different arrangements of stator winding for the multiphase drives are explained 

and various inverter topologies and PWM control strategies for the drives are described. 

The emphasis of the review is placed mainly on the current state-of-the-art in the area of 

six-phase drive. Finally, the aim, objectives and originality of the research have also been 

stated. 

Chapter 2 presents a literature review in the area of PWM control for the six-phase 

drive. PWM techniques for two-level six-phase drive are discussed first, followed by the 

PWM techniques for multilevel multiphase drives, covering both single-sided and dual

inverter supply topologies. Reviews of PWM techniques for the dual-inverter supplying 

open-end windings of three-phase drives are included for the sake of completeness of the 

literature studies. 

Chapter 3 discusses space vector model of a two-level six-phase VSI fed 

asymmetrical machine with both two isolated neutral and single neutral points 

configuration. Then, several PWM techniques for two-level asymmetrical six-phase VSI 

with machine windings connected to two isolated neutral points are described. Simulation 

study has been conducted to analyse the performance. The investigated PWM techniques 

are as follows: 

1. Carrier-based SPWM, 

n. Carrier-based PWM with double zero-sequence injection [Bojoi et al. (2002)], 

111. Conventional SVPWM [Gopakumar et al. (1993)], 
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