DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name: SAHAZA BINTI MD. ROZALI
Date of birth: 19th FEBRUARY 1981
Title: OPTIMIZED BACK-STEPPING CONTROLLER FOR POSITION TRACKING OF ELECTRO-HYDRAULIC ACTUATORS

Academic Session: 2013/2014

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☑ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

Signature

810219-04-5006 (NEW IC NO./PASSPORT NO.)

Date: 19/5/2014

Signature of Supervisor

Prof. Dr. Hi Mohd Fuad bin Rahmat
NAME OF SUPERVISOR

Date: 19/5/2014

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.
"We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy (Electrical Engineering)"

Signature : [Signature]
Name : Prof Dr Hi Mohd Fua'ad bin Rahmat
Date : 19/5/2014

Signature : [Signature]
Name : Dr Abdul Rashid bin Husain
Date : 19/5/2014
BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama antara dengan

Disahkan oleh:

Tandatangan : ... Tarikh :
Nama : ..
Jawatan : ..
(Cop rasm)

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar : Prof. Ir. Dr. Mohd Marzuki Mustafa
Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem,
Fakulti Kejuruteraan dan Alam Bina,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor.

Nama dan Alamat Pemeriksa Dalam : Prof. Madya Dr. Mohamad Noh bin Ahmad @ Mohd Sanif
Fakulti Kejuruteraan Elektrik,
UTM Johor Bahru.

Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:

Tandatangan : ... Tarikh :
Nama : ZAINUL RASHID BIN ABU BAKAR
OPTIMIZED BACK-STEPPING CONTROLLER FOR POSITION TRACKING OF ELECTRO-HYDRAULIC ACTUATORS

SAHAZATI MD ROZALI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

May 2014
I declare that this thesis entitled "Optimized Back-Stepping Controller for Position Tracking of Electro-Hydraulic Actuators" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Shazana Md. Rozali

Date : 19/5/2019
For my beloved family...

Muhammad Nizam Kamarudin, Huwaida Muhammad Nizam, Asiah Hassan, Allahyarham Md Rozali Md Sanam, Shahrul Aszad Md Rozali and Norsafwanah Md Rozali...
ACKNOWLEDGEMENT

“In the name of Allah, The Most Gracious, The Most Merciful”

Alhamdulillah, praise to Allah, the Almighty for giving me the guidance, strength, motivation and chances in order to complete this thesis.

Special thanks to my research supervisor, Prof Dr Hj Mohd Fuaa’d bin Rahmat for his guidance, supervision and supports in carrying out this research. My sincere appreciation is also goes to my second supervisor, Dr Abdul Rashid Husain for his advice, assistance and comments in order to finish this work.

I would like to express my deepest gratitude to Dr Kumeresan A. Danapalasingam for lending a hand, time and patience to sit down with me solving the derivation of controller’s algorithm. Special thanks also to Mr Amar Faiz bin Zainal Abidin for helping me in developing the optimisation algorithm. In addition, thanks to my fellow members of Control Lab, Mr Zulfatman, Mr Ling Tiew Gine, Dr Rozaimi bin Ghazali, Mr Syed Najib bin Syed Salim, Mrs Sharatul Izah binti Samsudin, Ms Norhazimi binti Hamzah and Mrs Irma Wani binti Jamaludin for your cooperation and lending your ears and shoulders along the journey of my research.

My acknowledgement also goes to Ministry of Higher Education and Universiti Teknikal Malaysia Melaka (UTeM) for allowed and supporting my research study.

My highly appreciation for my husband, Mr Muhammad Nizam bin Kamarudin, my daughter, Huwaida binti Muhammad Nizam, my mother, Hjh Asiah binti Hj Hassan and my siblings for your understanding, sacrifice, supports and love for me towards the success of this research. Lastly, for my late father, Allahyarham Hj Md Rozali bin Hj Md Sanam, actually this work is for you since you are the best
motivator and supporter for me since I was in my primary school until my higher education although you do not have the opportunity to be in the end of my PhD journey.

For any errors or inadequacies that may remain in this work, the responsibility is entirely on my own. May Allah reward all of your kindness.
ABSTRACT

Electro-hydraulic actuator servo system is commonly found in various types of force and position tracking applications. Nonlinearities of the system come from either the system itself or external disturbance signals. These dynamic characteristics make the controller design for the system to be quite challenging. In order to provide satisfactory system performance for high accuracy trajectory tracking, this thesis presents a model of electro-hydraulic actuator servo system with external disturbance included to the actuator of the system. Backstepping controller is proposed in formulating position tracking control algorithm for this system. The designed controller is integrated with Particle Swarm Optimisation (PSO) and Gravitational Search Algorithm (GSA) techniques as an adaptation method such that the controller adjusts its performance automatically based on the dynamic requirement of the system. The combination of the designed controller with these optimisation techniques is verified by giving different types of known perturbation signals to the system’s actuator. Then, the performance of the system with this controller is compared in terms of its tracking output, tracking error and Sum of Squared Error (SSE) as performance indices for each algorithm. The simulation results show that the output of the system tracked the reference input given with both integration of backstepping with PSO and GSA. However, backstepping-PSO produces smaller value of SSE which is around 0.5 as compared to SSE generated by backstepping-GSA.
ADISTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction to Electro-hydraulic Actuator Servo System 1
1.2 Configuration of Electro Hydraulic Actuator Servo System 3
1.3 Problem Statement and Significant of the Research 7
1.4 Research Objectives 9
1.5 Research Scopes 9
1.6 Contributions of the Research Work 10
1.7 Organization of the Thesis 10
2 LITERATURE REVIEW
2.1 Introduction 12
2.2 Control Strategies of Electro-hydraulic Actuator Servo System 13
 2.2.1 Control Strategies for Force Tracking of Electro-hydraulic Actuator Servo System 13
 2.2.2 Control Strategies for Position Tracking of Electro-hydraulic Actuator Servo System 14
 2.2.3 Summary of the Existing Control Strategies for Electro-hydraulic Actuator Servo System 22
2.3 Backstepping Control Strategies 25
2.4 Optimisation 28
 2.4.1 Particle Swarm Optimisation (PSO) 30
 2.4.2 Gravitational Search Algorithm (GSA) 34
2.5 Summary 36

3 ROBUST CONTROL WITH BACKSTEPPING APPROACH 37
3.1 Introduction 37
3.2 Mathematical Model of Electro Hydraulic Actuator Servo System 38
3.3 Backstepping Control Strategy 42
3.4 Robust Controller Design for Electro Hydraulic Actuator Servo System 45
 3.4.1 Results : Proposition 1 46
3.5 Algorithm of Parameter Optimisation 50
 3.5.1 Particle Swarm Optimisation (PSO) 51
 3.5.2 Gravitational Search Algorithm (GSA) 56
3.6 Summary 62

4 RESULTS AND DISCUSSION 64
4.1 Introduction 64
4.2 Reference Trajectory 66
4.3 Existing Controller for Electro Hydraulic Actuator System 67
4.4 Case 1 : Constant Disturbance 71
4.5 Case 2 : Step Disturbance 87
4.6 Case 3 : Time-varying Disturbance 102
4.7 Case 4 : Without Disturbance 117
4.8 Summary 132
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Parameter of electro hydraulic actuator servo system</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Pseudo-code for backstepping-PSO for the system</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Pseudo-code for backstepping-GSA for the system</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>SSE obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>SSE obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>SSE obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>SSE obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance</td>
<td>99</td>
</tr>
</tbody>
</table>
4.9 Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations

4.10 Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations

4.11 SSE obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance

4.12 SSE obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance

4.13 Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations

4.14 Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations

4.15 SSE obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance

4.16 SSE obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance

4.17 Optimum combination of particles/agents and iterations number which produced the lowest SSE for each case with backstepping-PSO

4.18 Optimum combination of particles/agents and iterations number which produced the lowest SSE for each case with backstepping-GSA
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Application of electro hydraulic actuator system in aircraft, operation table in for medical application, forklift truck and material testing system in industrial application</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>General structure of electro hydraulic actuator servo system</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Block diagram of a position controlled hydraulic servo system</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Controller for Electro Hydraulic Actuator Servo System</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Combination of backstepping control technique with other control method in order to control electro hydraulic actuator servo system</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Tuning method for control parameters of backstepping controller for various of applications</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>General procedure of PSO algorithm</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>The principle of GSA</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Block diagram of the proposed backstepping controller with PSO/GSA algorithm</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Procedure of PSO algorithm on backstepping controller for the chosen system</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Procedure of GSA algorithm on backstepping controller for the chosen system</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Reference trajectory</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>The output of the system produced by SMC-PSO and SMC-GSA</td>
<td>68</td>
</tr>
</tbody>
</table>
4.3 The tracking error produced by SMC-PSO and SMC-GSA

4.4 Sliding surface, s of SMC-PSO and SMC-GSA

4.5 Disturbance signals given to the system’s actuator in each case

4.6 Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.7 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.8 The closed view of position tracking error obtained from back-stepping-PSO

4.9 The closed view of position tracking error obtained from back-stepping-GSA

4.10 SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.11 Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.12 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.13 SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.14 Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.15 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.16 SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.17 u produced by back-stepping-PSO for system with constant disturbance
4.18 \(u \) produced by back-stepping-GSA for system with constant disturbance

4.19 \(SSE \) with respect to number of particles, \(N_p \) and number of iteration, \(N_i \) for system with constant disturbance with backstepping-PSO

4.20 \(SSE \) with respect to number of agent and number of iteration for system with constant disturbance with Backstepping-GSA

4.21 Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.22 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 10 particles/agents within 20 iterations

4.23 \(SSE \) obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.24 Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.25 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.26 \(SSE \) obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.27 Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.28 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.29 \(SSE \) obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.30 \(u \) produced by back-stepping-PSO for system with step disturbance

4.31 \(u \) produced by back-stepping-GSA for system with step disturbance
4.32 \(\text{SSE with respect to number of particles and number of iteration for system with step disturbance with Backstepping-PSO} \)

4.33 \(\text{SSE with respect to number of agent and number of iteration for system with step disturbance with Backstepping-GSA} \)

4.34 Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.35 The closed view of system’s output produced by backstepping-PSO

4.36 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.37 \(\text{SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations} \)

4.38 Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.39 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.40 \(\text{SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations} \)

4.41 Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.42 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.43 \(\text{SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations} \)

4.44 \(u \) produced by back-stepping-PSO for system with time-varying disturbance

4.45 \(u \) produced by back-stepping-GSA for system with time-varying disturbance
4.46 SSE with respect to number of agent and number of iteration for system with time-varying disturbance with Backstepping-PSO

4.47 SSE with respect to number of agent and number of iteration for system with time-varying disturbance with Backstepping-GSA

4.48 Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.49 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.50 SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/agents within 10 iterations

4.51 Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.52 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.53 SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/agents within 30 iterations

4.54 Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.55 Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.56 SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/agents within 50 iterations

4.57 u produced by back-stepping-PSO for system without disturbance

4.58 u produced by back-stepping-GSA for system without disturbance

4.59 SSE with respect to number of agent and number of iteration for system without disturbance with
Backstepping-PSO

4.60 SSE with respect to number of agent and number of iteration for system without disturbance with Backstepping-GSA
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>ARC</td>
<td>adaptive robust controller</td>
</tr>
<tr>
<td>ARX</td>
<td>autoregressive with exogenous</td>
</tr>
<tr>
<td>CAD</td>
<td>computer aided design</td>
</tr>
<tr>
<td>CLF</td>
<td>control Lyapunov function</td>
</tr>
<tr>
<td>EHA</td>
<td>electro hydraulic actuator</td>
</tr>
<tr>
<td>GA</td>
<td>genetic algorithm</td>
</tr>
<tr>
<td>GSA</td>
<td>gravitational search algorithm</td>
</tr>
<tr>
<td>IATE</td>
<td>integral absolute time error</td>
</tr>
<tr>
<td>ILC</td>
<td>iterative learning control</td>
</tr>
<tr>
<td>MIMO</td>
<td>multi input multi output</td>
</tr>
<tr>
<td>PI</td>
<td>proportional integral</td>
</tr>
<tr>
<td>PID</td>
<td>proportional integral derivative</td>
</tr>
<tr>
<td>PSO</td>
<td>particle swarm optimisation</td>
</tr>
<tr>
<td>QFT</td>
<td>quantitative feedback theory</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean square error</td>
</tr>
<tr>
<td>SISO</td>
<td>single input single output</td>
</tr>
<tr>
<td>SVC</td>
<td>static var compensator</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

A_1 - area of chamber 1

A_2 - area of chamber 2

B_s - viscous damper

F_L - external disturbance

F_f - friction

K_s - dynamics equation of spring

L_c - coil inductance

M_p - moving mass

P_1 - pressure from chamber 1

P_2 - pressure from chamber 2

Q_L - volume flow rate

Q_{pump} - constant volume flow rate

R_c - coil resistance

V_1 - volume of chamber 1

V_2 - volume of chamber 2

V_{line} - volume of the pipeline

V_t - volume in the piping between servo valve

c_d - coefficient of volumetric flow of the valve port

k_c - coefficient involving bulk modulus and EHA volume
\(k_1 \) - coefficient of servo valve
\(q_1, q_2 \) - external leakages in the hydraulic actuator
\(q_{12}, q_{21} \) - internal leakages in the hydraulic actuator
\(x_p \) - current position of the hydraulic cylinder
\(x_s \) - total stroke of the hydraulic cylinder
\(x_v \) - spool valve position
\(\beta_e \) - effective bulk modulus
\(\zeta_v \) - servo valve damping ratio
\(\omega_v \) - servo valve natural frequency
\(P_a \) - supply pressure
\(P_r \) - return pressure
\(S \) - piston area
\(fit \) - fitness
\(G \) - global best
\(i \) - number of agents
\(SSE \) - sum of squared error
\(t \) - number of iteration
\(c \) - cognitive coefficient
\(f \) - coefficient of viscous friction
\(k \) - coefficient of aerodynamic elastic force
\(m \) - load at the EHS rod
\(s \) - social coefficient
\(w \) - valve port width
\(\rho \) - oil density