TRACKING PERFORMANCE OF A HOT AIR BLOWER SYSTEM USING PID CONTROLLER WITH PSO AND HARMONIC SEARCH ALGORITHM

ANDY HENG POH SENG

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree Of Electronic Engineering (Industrial Electronics) With Honors

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

JUNE 2015
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

Tajuk Projek
TRACKING PERFORMANCE OF A HOT AIR BLOWER SYSTEM USING PID WITH PSO AND HARMONIC SEARCH ALGORITHM

Sesi
1
Pengajian

Saya ANDY HENG POH SENG mengaku memberikan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√):
 - SULIT*
 - TERHAD**
 - TIDAK TERHAD

*(Mengandungi maklumat yang berdaerah keselamatan atau kepentingan Malaysia seperti yang termakub dalam AKTA RAHSIA RASMI 1972)

**(Mengandungi maklumat terhad yang telah diencerkan oleh organisasi/balai di mana penyelidikan dijalankan)

Disahkan oleh:

[Signature]

(TANDATANGAN PENULIS)

Alamat Tata: 766-k, Jalan Enos 3,
Taman Kerjasama, Bukit Bonang,
75460 Melaka.

Tarikh: 9/6/2015

(COP DAN TANDATANGAN PENYELIA)

SHAARATUL IZAH BINTI SAMSUDIN
Penyelidik

[Signature]

(TANDATANGAN PENYELIA)

Alamat Tata: 766-k, Jalan Enos 3,
Taman Kerjasama, Bukit Bonang,
75460 Melaka.

Tarikh: 9/6/2015
"I hereby declare this report has been done by me except for the certain passage or summary that I already clarified each of their sources."

Signature:
Prepared by: Andy Heng Poh Seng
Date: 9/6/2015
"I hereby declare that I have read this report and in my opinion it is satisfied in partial fulfillment of requirements for the Bachelor of Electronic Engineering with (Industrial Electronics) Honors."

Signature: ...

Supervised by: Samsudin bin Ali

Date: 5/6/2015
Dedicated to my dearest dad and mum who supported me all the time and my friends who always by my side.
ACKNOWLEDGEMENT

First and foremost, I would like to express my deep gratitude to my supervisor, Puan Siti Fatimah Binti Sulaiman and Puan Sharatul Izah Binti Samsudin for her advice and guidance throughout the completion of this project. This project will not complete without the help, support and words of encouragement from her. Thank you.

Next, I would like to thanks my family members for giving me their physical and mental support during this project and my four years study in University Teknikal Malaysia Melaka.

Special thanks to my friends, Lim Hooi Chen and Lee Kian Loong who are under the same supervisor for supporting and encourage me throughout this project. This project could not be done without them. Suggestion and criticism from my friends have always drives me to make improvement to the project.

Last but not least, I would like to acknowledge those people who give their support directly or indirectly to the completion of this project and during the thesis writing. Once again, thank you very much.
PT326 process trainer is a self-contained process and control equipment. The crucial part that can be seen from this system is to control the temperature of a flowing air. In this project, a PT326 process trainer, which is a hot air blower system is used. This project is conducted due to this problem. The scope of work for this research include modeling and controller design of a PT326 process trainer. PID controller is designed with MATLAB software to control the purpose of maintaining the process temperature at a desired value. The simulation result aim to make a comparison of the performances of the process temperature when using Particle Swarm Algorithm and Harmonic Search Algorithm. Simulation results demonstrated that the uses of Particle Swarm Optimization tuning algorithm provides a good performance in term of overshoot, settling time and percent of steady-state error.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>ix-xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii-xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
<td></td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.1 Overview 1-2
1.2 Objectives 2-3
1.3 Problem Statement 3
1.4 Scope of Work 3
1.5 Thesis Outline 4
II LITERATURE REVIEW

2.1 PT326 Process Trainer 5-7
2.2 Description 7-9
2.3 System Identification 9
 2.3.1 Introduction of System Identification 10-12
 2.3.2 System Identification Procedures 12-13
2.4 Proportional-Integral-Derivative (PID) Controller 13-15
2.5 Ziegler-Nichols Tuning Method 15-16
2.6 Particle Swarm Optimization (PSO) Tuning Method 16-20
2.7 Harmonic Search Algorithm (HSA) Tuning Method 20
 2.7.1 Steps of Harmony Search Algorithm 20-21

III METHODOLOGY

3.1 Chapter Overview 22
3.2 Block Diagram 22-23
3.3 Method Implementation Flowchart 23-25
3.4 System Identification Process 26
 3.4.1 Input and output data 26-33
 3.4.2 Model structure selection 33-34
 3.4.3 Parameter Estimation 35-36
 3.4.4 Model validation 36
 3.4.4.1 Best fit 36-37
 3.4.4.2 Loss function 37-38
3.4.4.3 Akaike’s final prediction error (FPE)
3.4.4.4 Poles and zero plot

3.5 PID Controller Design
3.5.1 ZN-PID Controller
3.5.2 PSO-PID Controller
3.5.3 HSA-PID Controller

3.6 Evaluation of the Controller Performances

IV RESULT AND DISCUSSION

4.1 System’s Response (Without Controller)
4.2 Proportional-Integral-Derivative (PID) Controller

V CONCLUSION AND RECOMMENDATION

5.1 Conclusion
5.2 Future Works

REFERENCE
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>PT326 Process Trainer</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Basic Element of PT326 Process Trainer</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Input, output and disturbance relationships in system identification</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Flow chart System Identification Approach</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Block diagram of PID</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Bird flock</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Gbest and Pbest converge curve</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Block diagram of Hot Air Blower System using PID Controller, PSO and HSA</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flow chart of the project</td>
<td>24-25</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>System Identification Tool GUI window</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>The Import Dialog box</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>mydata icons in System Identification Tool GUI</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>The Time Plot window</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>The updated Time Plot window (after “remove means” process)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>mydatad icons added in System Identification Tool GUI</td>
<td>30</td>
</tr>
</tbody>
</table>
Figure 3.9 Selected ranges for model estimation 31
Figure 3.10 mydatade icons added in System Identification Tool GUI 31
Figure 3.11 Selected ranges for model validation 32
Figure 3.12 mydatadv icons added in System Identification Tool GUI 32
Figure 3.13 mydatade and mydatadv icons added in System Identification Tool GUI 33
Figure 3.14 Selection of linear parametric models 34
Figure 3.15 ARX model structure 34
Figure 3.16 The icons of selected model orders appeared in Model Views box 35
Figure 3.17 Measured and simulated output of ARX 233 37
Figure 3.18 ARX 233 data or model info 38
Figure 3.19 ARX 233 zero and poles plot 40
Figure 4.1 Simulink block diagram of the validated plant model (without controller) 44
Figure 4.2 The output response of the validated plant model (without controller) 44
Figure 4.3 Output responses of PID controller using Ziegler Nichols tuning method 45
Figure 4.4 Comparison of Inertia Weight using Particle Swarm Optimization (PSO) tuning method 46
Figure 4.5 Comparison number of particle using Particle Swarm Optimization (PSO) tuning method 47
Figure 4.6 Output responses of PID controller using PSO tuning method 48
Figure 4.7 Comparison number of particle using Harmonic Search Algorithm (HSA) tuning method 49
Figure 4.8 Output responses of PID controller using 50
HSA tuning method

Figure 4.9 Output response of the PID Controller 51
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Ziegler-Nichols Table</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Akaike’s Model Validity Criterion value based on ARX 233 model structure</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Updated value of K_p, K_i, and K_d using Ziegler Nichols tuning method</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Best value of K_p, K_i, and K_d using PSO tuning method</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Best value of K_p, K_i, and K_d using HSA tuning method</td>
<td>42</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The value of parameter K_p, K_i, K_d and value of the Peak time, Settling time and Percentage Overshoot using Ziegler-Nichols tuning method</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The value of parameter K_p, K_i, K_d and value of the Peak time, Settling time and Percentage Overshoot using PSO tuning method</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The value of parameter K_p, K_i, K_d and value of the Peak time, Settling time and Percentage Overshoot using HSA tuning method</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Performances of the PID controller designed using Ziegler-Nichols, PSO and HSA tuning method</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_p</td>
<td>proportional gain</td>
</tr>
<tr>
<td>K_i</td>
<td>integral gain</td>
</tr>
<tr>
<td>K_d</td>
<td>derivative gain</td>
</tr>
<tr>
<td>z</td>
<td>discrete form</td>
</tr>
<tr>
<td>e</td>
<td>noise</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>ZN</td>
<td>Ziegler-Nichos</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>HSA</td>
<td>Harmonic Search Algorithm</td>
</tr>
<tr>
<td>ARX</td>
<td>Auto Regressive with Exogenous Input</td>
</tr>
<tr>
<td>FPE</td>
<td>Akaike”s Final Error</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike”s Information Criterion</td>
</tr>
<tr>
<td>NOP</td>
<td>Number of particle for PSO tuning method</td>
</tr>
<tr>
<td>Nt</td>
<td>Number of particle for HSA tuning method</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PID Controller (Using Ziegler-Nichols tuning method)</td>
<td>58</td>
</tr>
<tr>
<td>B</td>
<td>PID Controller (Using PSO tuning method)</td>
<td>59</td>
</tr>
<tr>
<td>C</td>
<td>PID Controller (Using HSA tuning method)</td>
<td>60</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

In control system design, temperature is one of the crucial control variables like motor velocity in thermal appliance. In pharmaceutical industry, the ability to control temperature is important to ensure the quality of the product always within control. Besides, the ability to control the temperature of a flowing air at certain system is important due to the efforts of various designs. The main objective of this project is to maintain the process temperature at a given value due to the non-linear and significant time delay of the system. In this project design consists of few step of process and the process began with collection of input and output data from experimental works. The data collected is used for model estimation. AutoRegressive with Exogenous Input (ARX) model is chosen as a model structure of the system. Based on the input and output data of the system, the best fit criterion and correlation analysis of the residual is analyze to determine the adequate model for representing PT326 hot air blower system. PID controller is design for controlling and implemented the model system by simulation. Lastly is to make comparison and justification based on the controller
performance of the process temperature using Particle Swarm Optimization and Harmonic Search Algorithm.

So to achieve the highest performance of the PT326 hot air blower system, PID controller needs to be designed. The best mathematical model of the system is necessary required for the controller design so that the system is under control. Consequently, the mathematical model of the PT326 process using System Identification approach was considered in this work. System Identification Toolbox in MATLAB is used to make estimation for the parameters. Besides, it is also used to approximate the system models based on the mathematical models obtained. There are two methods in System Identification Approach that used to describes the mathematical models of the system, and the two methods which are parametric and non-parametric method. Moreover, AutoRegressive with Exogenous Input (ARX) is selected as the model structure of this project to do estimation and validation of the model system. To ensure the ARX model structure obtained either accepted or rejected, the Model Validation Criterion was used. Once the model structure was accepted and the model system was validated, the PID controller is designed to improve the output response of the system. Three different tuning methods: Ziegler-Nichols, Particle Swarm Optimization (PSO) and Harmonic Search Algorithm (HSA) are proposed in this work.

1.2 Objectives

The objectives of this project are:

1. To determine the mathematical model of the PT326 process trainer using System Identification Approach.
2. To estimate and validate the parameters of the PT326 mathematical model using ARX model structure.
3. To design PID controller for controlling the PT326 process trainer.
4. To apply PSO and Harmonic Search Algorithm in PID controller for the purpose of tuning the parameter.
5. To make a comparison and justification based on the controller performance obtained from the simulation.

1.3 Problem Statement

The development of this project is based on these problems:

1. Unknown plant model or mathematical model of the PT326 process trainer.
2. Unknown suitable parametric approach or model structure to be used to estimate the mathematical model of a particular system.
3. Undesired output response of the system.

1.4 Scope of work

The scope of work for this project consists of model identification and estimation continued by controller design of a hot air blower system (PT326 process trainer). A PT326 process trainer is the system to be modeled. Parametric approach using ARX model structure is used to estimate the mathematical model or approximated plant model. The approximated plant model is estimated using System Identification approach. PID controller is then designed to improve the output performance of the system. Besides, PSO and Harmonic Search Algorithm will be used to optimize the PID Controller in order to improve the dynamic and steady static characteristic of PT326. Lastly, the comparison study and justification is made based on the performance of the controller.
1.5 Thesis Outline

Chapter 1 is the part of introduction. In this part, introduction was included to briefly explain some important parts of the whole project, objective of project, problem statement of project and scope of work.

Chapter 2 represents the part of literature review. In this part, review on the related journal, books and internet resources will be done. This is due to study the related project in order to obtain the smallest possible value for the rise time, overshoot, settling time and steady state error by using the PID Controller.

Chapter 3 represents the methodology. In this chapter, the overall design and methods to apply in this study had been stated. The main methodology that been stressed out related to the PID Controller and data collection from the MATLAB simulation.

Chapter 4 shows the part of result and discussion. In this chapter, simulation result and discussion of this project is discussed in this chapter. The simulation results of the system performance have been observed. Besides, the implementation of PID Controller using Particle Swarm Optimization (PSO) and Harmonic Search Algorithm will be done in order to achieve the objectives. Discussion also be done discuss about the problem faced along the project.

Chapter 5 is the part of conclusion and future works. For the future recommendation, some suggestion is discussed and future improvement that possible to make also had been included. Besides, the whole projects were concluded in conclusion.
2.1 PT326 Process Trainer

The PT326 Process Trainer is a self-contained process and control equipment. It has the basic characteristic of a large plant, enabling distance or velocity lag, transfer lag. System response, proportional and two-step control to be established. In this equipment, air drawn from atmosphere by a centrifugal blower is driven past a heater grid and through a length of tubing to atmosphere again. The process consists of heating the air flowing in the tube to the desired temperature level and the purpose of the control equipment is to measure the air temperature, compare it with a value set by the operator and generate a control signal which determines the amount of electrical power supplied to a correcting element, in this case a heater mounted adjacent to the blower. The PT326 Process Trainer is shown in Figure 2.1.
To make adjusting on the mass flow of air through the tube, the opening of the throttle must be set through the setting. There are three temperature sensors which are thermistor placed at three different locations. The indication of the temperature sensors are linked to the detector terminal. Besides, the resistance of the thermistors sensor will convert to voltage through the bridge circuit of the detector and the desired temperature may be indicated by adjusting the set value knob. Additional change in the set value can be demanded by throwing the internal switch. However at external terminal, the external reference input will be provided. The difference between the positive reference input and the feedback signal is obtainable which can be applied to the heater power supply through an adjustable gain by using the proportional band knob. A proportional band of PB% corresponds to a gain factor of 100/PB. The signal at terminal „B” is available at terminal „A” after amplification by the gain factor. The switch „S” is use to apply the signal from terminal „A” directly to the heater power supply by selecting the „two-step control”. The maximum heater power will achieve when the on-off controller is at on condition and the zero heater power will obtain once the on-off controller is under off condition. The hysteresis in the on-off controller can be adjusted by using the knob marked „overlap” while the maximum heater power to be supplied can be adjusted by using the knob marked.