SUPERVISOR DECLARATION

“I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance)”

Signature :
Name : DR NOR SALIM BIN MUHAMMAD
Date :
EFFECT OF SIZE PZT ELEMENTS ON THE EXCITATION OF PHASED ARRAY TRANSDUCER IN BEAM STEERING AND BEAM FOCUSING TECHNIQUE

MUHAMMAD SHAZWAN BIN ABDUL RAZAK

A thesis submitted in partial fulfilment of the requirement for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance)

Faculty of Mechanical Engineering
Universiti Teknikal Malaysia Melaka

JUNE 2015
DECLARATION

“I hereby declare that the work in this thesis is my own except for summaries and quotation which have been duly acknowledged”

Signature : ..
Name : MUHAMMAD SHAZWAN BIN ABDUL RAZAK
Date : ..
Dedicated to my parents,

Abdul Razak bin Hussain and
Zaiton binti Ramli
My supporting siblings,

Muhammad Shamier bin Abdul Razak
Muhammad Shauqi Izham bin Abdul Razak and
Nur Hidayah binti Abdul Razak
and

My entire friends in UTeM
for their encouragement.
ACKNOWLEDGEMENT

I would like to express my gratitude and respect to my supervisor,

Dr. Nor Salim bin Muhammad

for the guidance and assistance throughout this project.

My deepest gratitude is to my parents and my siblings for always staying on my side. Their constant support, encouragement, love and patience gave me security and sustained me through my journey.

I also would like to acknowledge anyone who has supported me in anyway during my four years degree studies at

Universiti Teknikal Malaysia Melaka, UTeM.
ABSTRACT

Ultrasonic testing has widely used in industry for defect evaluation. However this technique has several limitations such as fixed beam separator and mechanical scanning. These limitations can be solved by using phased array technique which used multiple element of arrangement with time delay that can be steering of focusing. A study is being carried out to study the effect of size PZT element on the excitation of phased array transducer. Several design parameters of phased array model need to be considered such as number of elements, distance between elements, frequency, and aperture size affect the excited beam of transducer. The guided wave with different modes which is symmetrical and anti-symmetrical is used as a principle to propagate wave in large structured using a single fixed point. Simulation of aluminium plate without defect for beam steering and beam focusing with time delay is being modelled using ABAQUS software. The visualization of wave propagation on defect is observed and compared with the different model.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENT</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOL</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.0 Overview 1
1.1 Background 1
1.1.1 Ultrasonic Testing on Plate 6
1.1.2 Ultrasonic Testing on Pipe 7
1.2 Problem Statement in Ultrasonic Testing Method 9
1.2.1 Linear Beam Separation 9
1.2.2 Mechanical Scanning 10
1.2.3 Difficult Access On Testing Material 11
1.3 Advantages in Using Ultrasonic Phased Array 11
1.4 Objectives 12
1.5 Scope of Study 12
CHAPTER II LITERATURE REVIEW 13
2.0 Overview 13
2.1 Introduction of Phased Array Transducer 13
 2.1.1 Beam Focusing and Beam Steering of Phased Array 16
 2.1.2 Effect on Number and Size of Transducer 17
2.2 Guided Wave 18
 2.2.1 Modes of Lamb Wave 19
 2.2.2 Dispersion Curve of Group Velocities and Phase Velocities 19

CHAPTER III METHODOLOGY 22
3.0 Overview 22
3.1 Flowchart 23
3.2 Dispersion Curve of Group Velocity for Aluminium 24
3.3 Algorithm of Time Delay 27
 3.3.1 Time Delay of Beam Focusing 27
 3.3.2 Time Delay of Beam Steering 29
3.4 Finite Element Modelling On Defects 30
3.5 Excitation of Guided Wave on FEM 35

CHAPTER IV RESULT AND ANALYSIS 36
4.0 Overview 36
4.1 Effect of Size PZT Elements on the Excitation Guided Wave Beam Focusing Phased Array of A0 mode at 1600 mm 37
 4.1.1 The Excitation Guided Waves Phased Array of Rectangular Shape of Elements 37
 4.1.2 The Excitation Guided Waves Phased Array of Square Shape of Elements 41
 4.1.3 The Excitation Guided Waves Phased Array
CHAPTER V CONCLUSION AND RECOMMENDATION 61
5.0 Conclusion 61
5.1 Recommendation 62

REFERENCES 63

APPENDIX 66
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The dimension parameters of the pipe and other experimental conditions for guided wave inspection</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparisons of small pipe weld inspections time and conditions for manual UT, RT and phased arrays</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of the aluminium</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Proposed size of PZT elements used in simulation</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Zinc material properties</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Ultrasonic waves from transducer (a) without flaw and (b) with flaw</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Longitudinal wave</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Source: Diligent, (2003))</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Transversal wave</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Source: Diligent, (2003))</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Guided wave inspections for corrosion defect on plate</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Data presentation in ultrasonic testing (a) A-scan (b) B-scan and (c) C-scan</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Ultrasonic testing on plate using (a) contact transducer (b) immersion transducer</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Schematic diagram of guided ultrasonic wave inspections on pipe</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Beam separation (a) normal beam (b) phased array beam</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>Mechanical scanning of conventional ultrasonic transducer</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Linear array geometry and typical field of view</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(Source: Lawrence, (1998))</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Beam focusing with time delays</td>
<td>16</td>
</tr>
</tbody>
</table>
Beam steering with time delays

Grating lobe, main lobe and side lobe

Mode of guide propagation in (a) S-mode and (b) A-mode

Group velocity dispersion curve

Phase velocity dispersion curve

Flowchart of simulation

Group velocity dispersion curve

Phase velocity dispersion curve

Applied force using Tone Burst signal frequency 100kHz (4 cycles).

Centre of frequency at 100 kHz

Direction of the beam focusing phased array transducer

S0 mode array signal of beam focusing at 600 mm

Direction of the beam steering phased array transducer

Array signal of beam steering at angle -30 degrees

Plate with blind defect for (a) beam focusing and (b) beam steering

Mesh control used in modelling

Assembly of PZT element and aluminium plate in ABAQUS

Schematic diagram of element used in simulation

Direction force applied of S0 mode

Direction force applied of A0 mode

Wave interaction behaviour in z-direction for A0 mode with element height at 6mm

Time waveform at receiver point with element height of 6 mm
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Wave interaction behaviour in z-direction for A0 mode with element height at 12 mm</td>
</tr>
<tr>
<td>4.4</td>
<td>Time waveform at receiver point with element height of 12 mm</td>
</tr>
<tr>
<td>4.5</td>
<td>Wave interaction behaviour in z-direction for A0 mode with element height at 24 mm</td>
</tr>
<tr>
<td>4.6</td>
<td>Time waveform at receiver point with element height of 24 mm</td>
</tr>
<tr>
<td>4.7</td>
<td>Time waveform for different rectangular size elements at receiver point in beam focusing</td>
</tr>
<tr>
<td>4.8</td>
<td>Wave interaction behaviour in z-direction for A0 mode with square element of 3 mm</td>
</tr>
<tr>
<td>4.9</td>
<td>Time waveform at receiver point with square elements size of 3 mm</td>
</tr>
<tr>
<td>4.10</td>
<td>Wave interaction behaviour in z-direction for A0 mode with square element of 6 mm</td>
</tr>
<tr>
<td>4.11</td>
<td>Time waveform at receiver point with square elements size of 6 mm</td>
</tr>
<tr>
<td>4.12</td>
<td>Time waveform for different square size of elements at receiver point in beam focusing</td>
</tr>
<tr>
<td>4.13</td>
<td>Wave interaction behaviour in z-direction for A0 mode with distance of element at $1/4 \lambda$</td>
</tr>
<tr>
<td>4.14</td>
<td>Time waveform at receiver point with distance between elements at $1/4 \lambda$</td>
</tr>
<tr>
<td>4.15</td>
<td>Wave interaction behaviour in z-direction for A0 mode with distance of element at $3/4 \lambda$</td>
</tr>
<tr>
<td>4.16</td>
<td>Time waveform at receiver point with distance between elements at $3/4 \lambda$</td>
</tr>
<tr>
<td>4.17</td>
<td>Wave interaction behaviour in z-direction for A0 mode with distance of element at $5/4 \lambda$</td>
</tr>
<tr>
<td>4.18</td>
<td>Time waveform at receiver point with distance between elements at $5/4 \lambda$</td>
</tr>
<tr>
<td>4.19</td>
<td>Time waveform for different distance between elements</td>
</tr>
</tbody>
</table>
at receiver point in beam focusing

4.20 Wave interaction behaviour in z-direction for A0 mode with element height at 6mm

4.21 Time waveform at receiver point with element height of 6 mm

4.22 Wave interaction behaviour in z-direction for A0 mode with element height at 12 mm

4.23 Time waveform at receiver point with element height of 12 mm

4.24 Wave interaction behaviour in z-direction for A0 mode with element height at 24 mm

4.25 Time waveform at receiver point with element height of 24 mm

4.26 Time waveform for different rectangular size elements at receiver point in beam steering

4.27 Wave interaction behaviour in z-direction for A0 mode with square element of 3 mm

4.28 Time waveform at receiver point with square elements size of 3 mm

4.29 Wave interaction behaviour in z-direction for A0 mode with square element of 6 mm

4.30 Time waveform at receiver point with square elements size of 6 mm

4.31 Time waveform for square size of elements at receiver point in beam steering

4.32 Wave interaction behaviour in z-direction for A0 mode with distance of element at 1/4 λ

4.33 Time waveform at receiver point with distance between elements at 1/4 λ

4.34 Wave interaction behaviour in z-direction for A0 mode with distance of element at 3/4 λ

4.35 Time waveform at receiver point with distance between elements at 3/4 λ
4.36 Wave interaction behaviour in z-direction for A0 mode with distance of element at $5/4 \lambda$

4.37 Time waveform at receiver point with distance between elements at $5/4 \lambda$

4.38 Time waveform for different distance between elements at receiver point in beam steering
LIST OF SYMBOL

\[d = \text{Element width, m} \]
\[c = \text{Material wave speed, m/s} \]
\[\omega = \text{Angular velocity, rad/s} \]
\[k = \text{Wave number} \]
\[C_l = \text{Bulk longitudinal velocities, m/s} \]
\[C_T = \text{Shear velocities, m/s} \]
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MATLAB Coding for Beam Focusing</td>
<td>66</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Coding for Beam Steering</td>
<td>69</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.0 OVERVIEW

This chapter covers the introduction of this project that involved the project background, problem statement, objectives of the project and scope of study.

1.1 BACKGROUND

Ultrasonic testing is a versatile technique in Non-Destructive Testing (NDT) which is been used to most materials, metallic or non-metallic including various industries such as oil and gas, aerospace, forest industry and building construction. By using this ultrasonic testing, surface and internal discontinuities such as slags, inclusions, laps, seams, voids, cracks and lack of bond can be detected accurately from one side. Ultrasonic testing utilizes a high frequency acoustic wave which is varied according to the application ranging from 1 to 10 Mega Hertz (MHz) generated by piezoelectric transducer. (Baldev Raj, T. Jayakumar, and M. Thavasimuthu, 2008)
PZT elements is defined as lead zirconate titanate (Pb\((Zr(x)Ti(1-x))O_3\)) that have been widely used in piezoelectric transducer. According to (Ting hai Cheng, Xiang-dong Guo and Gang Bao, 2011), PZT elements is used to produce bending cylindrical transducer that transforms input electrical energy to output mechanical energy in ultrasonic transducer, their excitation position and excitation modes. Length and thickness of PZT elements need to consider in order enhancing the output characterization type transducer.

Pulse-echo inspection technique is most widely used for ultrasonic inspection of components. In pulse-echo inspection technique, ultrasonic sound energy is transmitted between the face of the transducer and the surface of the test component. When ultrasonic energy penetrates into a material and strike a discontinuity or flaw, part of energy will be reflected back to the probe and the remaining part propagates in the material in forward direction as shown in Figure 1.1 (a) and (b). To facilitate the transmission of ultrasonic energy between the transducer and the test component, a couplant that made from water based material is used between the transducer and the surface of the plate. (Baldev Raj, T. Jayakumar, and M. Thavasimuthu, 2008).

![Figure 1.1](image.png)

Figure 1.1: Ultrasonic waves from transducer (a) without flaw and (b) with flaw.
Ultrasonic sound wave that transmitted from a transducer can travel in longitudinal wave and transversal or shear wave. In longitudinal waves, the direction of oscillation is parallel to the direction of propagation meanwhile transversal wave is perpendicular the direction of oscillation as shown in Figure 1.2 and Figure 1.3. (Josef Krautkramer & Herbert Krautkramer, 1990)

![Figure 1.2: Longitudinal wave](Source: Diligent, (2003))

![Figure 1.3: Transversal wave](Source: Diligent, (2003))

Guided wave technique is the latest technique for non-destructive testing and material evaluation for any defects in plate and pipe. This technique has advantages since the guided waves can propagate in perpendicular direction with lower frequency ranging 10 to 100 kHz which covers for a long range inspection. The guided waves for damage monitoring in plates used pulse-echo method to evaluate the corrosion defect. This experiment used pulser or receiver system which generates an ultrasonic spikes pulse driven through the corrosion plate in the form of longitudinal waves as shown in Figure 1.4. Ultrasonic signals were taken in pulse
echo mode for the corroded plate at each level of corrosion and the readings were compared with the healthy readings. (Ramandeep Singh, Shruti Sharma & Sandeep Sharma, 2014)

In ultrasonic testing, the results can be displayed in several conditions which called A-scan, B-scan and C-scan presentation.

Figure 1.5 (a) shown A-scan that display amount of received ultrasonic energy as a time waveform. The relative amount of received energy is plotted in along the vertical axis against the time elapsed in horizontal axis. Relative discontinuity size can be estimated in A-scan by comparing the signal amplitude obtained with unknown reflector to known reflector.

Figure 1.5 (b) shown B-scan that display the cross sectional view or depth of the test material. In this B-scan presentation, the depth of reflector and its linear dimension in the scan direction can be visualized.
Figure 1.5 (c) shown C-scan presentation that visualise the image in two dimensions that from reflected ultrasound signal that provides a top view of the location and size of the test material using an automated data acquisition system.

![Diagram of ultrasonic testing data presentation]

Figure 1.5: Data presentation in ultrasonic testing (a) A-scan (b) B-scan (c) C-scan
Ultrasonic testing had been used since 1940’s applied by Firestone and Simon that developed pulsed ultrasonic testing using a pulse-echo technique. This testing is continually improved after World War II when a group of researchers from Japan develop medical diagnostic using ultrasound (History of Ultrasonic, 2014). At the same time, Nobel Laureate Luis Alvarez used phase array transmission in a rapidly-steer in “ground controlled approach”, a system to help the landing aeroplanes in Britain (Swapana Koganti & Kaapaarapu Satish Babu, 2012). A phased array consist several sets of elements that pulsed to produce sound beam by means controlled interference pattern in a desired direction. The ultrasonic phased array is widely used in medical applications that used multi-elements piezoelectric device which individually excited by electric pulse at programmed time delay (Joon Hyun Lee & Sang Woo Choi, 2000).

1.1.1 ULTRASONIC TESTING ON PLATE

Manufacturing stages of plate type nuclear fuel elements produced structural discontinuity such as cracks and bonding due to mechanical and thermal processing conditions. This discontinuity reduces the performance of the nuclear fuel during its operational life. Mucio Jose and teammates has conducted the non-destructive test using ultrasonic testing to detect bonding failures at core interface during hot rolling process. They has been used two different types of ultrasonic transducer which is contact transducer as shown in Figure 1.6(a) range in 10 MHz and 15 MHz and immersion transducer as shown in Figure 1.6(b) range from 4 MHz and 10 MHz.

The response and results by each transducer based from artificial discontinuities on the plate such as flat bottom holes with different diameter and slits with different length and width of the plate is observed. They conclude that contact transducer with high frequency and low focus transducer is more sensitive and obtain good visualization compared with immersion transducer (Mucio Jose Drumond de Brito, Wilmar Barbosa Ferraz, Donizete Anderson de Alencar and Silverio Ferreira, 2009).