MANUFACTURING COMPLEXITY CHARACTERIZATION:
CASE STUDY AT MICRO-NANO PRECISION SDN. BHD

This report submitted in accordance with requirement of the Universiti Teknikal
Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering
(Manufacturing Management) with Honours.

By

MUHAMMAD AIDIL BIN ADNAN

FACULTY OF MANUFACTURING ENGINEERING
2015
BORANG PENGESAHAN STATUS TESIS

JUDUL: MANUFACTURING COMPLEXITY CHARACTERIZATION: CASE STUDY AT MICRO-NANO PRECISION SDN. BHD

SESII PENGAJIAN: 2014/2015

Saya MUHAMMAD AIDIL BIN ADNAN

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)
 - [] SULIT (Mengandungi maklumat yang berdarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 - [] TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - ☑ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
LOT 17588, JALAN BKI 9A, TAMAN BUKIT KATIL INDAH, BUKIT KATIL, 75450 MELAKA

Disahkan oleh:

(TANDATANGAN PENYELIA)

Cop Rasmii:
Fakulti Kejuruteraan Pembaatan
Universiti Teknikal Malaysia Melaka

Tariikh: ________________

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declare this thesis entitled “Manufacturing Complexity Characterization: Case Study at Micro-Nano Precision Sdn. Bhd.” is the result of my own research except as cited in references.

Signature : ..
Author’s Name : Muhammad Aidil Bin Adnan
Date : ..
DECLARATION

I hereby, declare this thesis entitled “Manufacturing Complexity Characterization: Case Study at Micro-Nano Precision Sdn. Bhd.” is the result of my own research except as cited in references.

Signature : ...
Author’s Name : Muhammad Aidil Bin Adnan
Date : ...
APPROVAL

This Bachelor’s report submitted to the senate of UTeM and has been accepted as fulfillment of the requirement for the Degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with honours. The member of the supervisory committee is as follow:

(Signature of Supervisor)

………………………………………………………………

(Official Stamp of Supervisor)

(Signature of Co-Supervisor)

………………………………………………………………

(Official Stamp of Co-Supervisor)
ABSTRACT

Complexity has turned out to be a great challenge in the manufacturing industry through the application of documentation, process flow, standardization and manufacturing activity. This study aims to identify the type of manufacturing complexity, to characterize how the industry manages and simplifies complexity and to make recommendation for industry to improve productivity via well-managed manufacturing complexity. Micro-Nano Precision Sdn. Bhd (MNPSB) is chosen for the case study. Survey and interviews were conducted and the respondents were the management team of MNPSB. Analysis was done to explore the data in detail and the data was interpreted in Microsoft Excel 2007 to categorize manufacturing complexities into three categories consist of most complex manufacturing activity, moderate complex manufacturing activity and least complex manufacturing activity. Each category of manufacturing complexity has different factors that contribute to the problem in manufacturing activities. Most complex has problem regarding with project planning due to lack of machine capacity and production rate to support customer demand. Thus, lead to high work in progress between processes. Moderate complex occurs due to high reject rate in quality control and inspection because of pressure of meeting dateline in a very short duration. Standard of procedure skip also leads to high rejection rate. Based on the case study, least complex was found in outsourcing. This is due to no problem was found regarding manufacturing complexity. Processes involved such as purchasing process flow went smoothly and documentation in supplier assessment was organized.
ABSTRAK

DEDICATION

For my beloved parents:
Mr. Ahdenan@Adnan Bin Esa
Madam Nora Binti Hj. Ibrahim

For my PSM supervisor
Dr. Wan Hasrulnizzam B. Wan Mahmood

For my project advisor
Dr. Bong Cheng Siong

And my treasured friends
UTeM’s students
ACKNOWLEDGEMENT

Bismillahirrahmanirrahim...

In the name of Allah S.W.T, the creator of all creations, all praised to Him, the most Merciful and Most Blessing, Alhamdulillah I had completed this study successfully.

A thousand of gratitude to Dr. Wan Hasrulnizzam B. Wan Mahmood, my respectable supervisor for his advice and motivation for me to completed this study. Not also to forget Micro-Nano Precision Sdn. Bhd General Manager, Dr. Bong Cheng Siong for helping me with this project by allowing me to take the company data. Without the data, the report will not be as detail as shown in this report.

An acknowledgement with great respect to my beloved family and without their prayers, willingness and moral support this study would be difficult to complete. Last but not least, I would like to acknowledge all the Project Sarjana Muda Committee for their handwork in order to ensure the successful of this task.

Muhammad Aidil Bin Adnan
TABLE OF CONTENTS

Declaration i
Approval ii
Abstract iii
Abstrak iv
Dedication v
Acknowledgement vi
Table of Contents vii
List of Figures xi
List of Tables xiii
List of Abbreviations xiv

1.0 **INTRODUCTION** 1
1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Objective 7
1.4 Scope 7
1.5 Significance of Study 8

2.0 **LITERATURE REVIEW** 9
2.1 Complexity 9
2.1.1 Eliminate Complexity That Customers Will Not Pay For 11
2.1.2 Exploit The Complexity That Customers Will Pay For 11
2.2 Manufacturing 12
2.2.1 Main Business Operation in Manufacturing Industry 13
2.3 Manufacturing Complexity 15
2.3.1 Manufacturing System Design 16
2.3.1.1 Capacity Planning 16
2.3.1.2 Facility Layout 17
2.3.1.3 Material Selection 17
2.3.1.4 Material Handling Selection 18
2.3.1.5 Product and Service Design 18
2.3.1.6 Process Selection 19
2.3.1.7 Transportation System 19

2.3.2 Total Quality Management 20
2.3.2.1 Approval System 21
2.3.2.2 Documentation 21
2.3.2.3 Quality Control and Inspection 22
2.3.2.4 Quality Assurance 22
2.3.2.5 Standard Operation Procedure 23
2.3.2.6 Testing Equipment 23

2.3.3 Supply Chain Management 24
2.3.3.1 Logistic Management 24
2.3.3.2 Vendor Selection 25
2.3.3.3 Outsourcing 26
2.3.3.4 Make or Buy Decision 26

2.3.4 Inventory Management 26
2.3.4.1 Forecasting 27
2.3.4.2 WIP Product Handling 28
2.3.4.3 Raw Material Handling 28
2.3.4.4 Finished Good Product 29

2.3.5 Project Management 29
2.3.5.1 Project Controlling 31
2.3.5.2 Project Planning 31
2.3.5.3 Project Scheduling 32

2.3.6 Human Resources and Job Design 32
2.3.6.1 Organization Structure 33
2.3.6.2 Job Design 33

2.4 Summary 34

3.0 METHODOLOGY 35

3.1 Research Design 38
3.2 Data Collection 39
3.2.1 Questionnaire Survey 40
3.2.2 Field Observation 40
3.2.3 Interview 41
3.2.4 Document Review 42
3.3 Data Analysis 42
 3.3.1 Data Quantitative 43
 3.3.2 Data Qualitative 43
3.4 Gantt Chart 44
3.5 Summary 47

4.0 RESULT AND DISCUSSION 48
4.1 Introduction 48
4.2 Objective of The Analysis 48
4.3 Case Study Company 49
 4.3.1 Product from MNPSB 49
4.4 Preliminary Study on the Manufacturing Complexity 52
 4.4.1 Manufacturing System Design 53
 4.4.2 Quality Management System 55
 4.4.3 Supply Chain Management 57
 4.4.4 Inventory Management 59
 4.4.5 Project Management 61
 4.4.6 Human Resources and Job Design 62
4.5 Case Study #1: The Most Complex Manufacturing Activity 64
4.6 Case Study #2: The Moderate Complex Manufacturing Activity 71
 4.6.1 Work Piece 73
 4.6.2 Queue 73
 4.6.3 Buy Off 75
 4.6.4 Issue NCR (Non Conformance Report) 83
 4.6.5 Disposition 84
4.7 Case Study #3: The Least Complex Manufacturing Activity 84
 4.7.1 Purchasing Process 85
 4.7.2 New Supplier Evaluation 87
 4.7.3 Approved Supplier Assessment 88
4.8 Sequenced and Interaction between Processes 89
4.9 Solution for Case Study 91
 4.9.1 Improving the Delay of Production Due Date 91
4.9.2 Develop the QC Sampling Plan to Reduce Lateness on Inspection and Avoid Miss Check on Product

4.10 Summary

5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

5.2.1 Recommendation for The Company

5.2.2 Recommendation for Further Study

REFERENCES

APPENDIX

A Questionnaire Form of Manufacturing Complexity in Micro-Nano Precision Sdn. Bhd

B Delivery Order Paper

C Non Conformance Report

D Process Colour Code

E Purchase Request Form

F Purchase Order Form

G New Supplier Evaluation Form

H New Supplier Evaluation Form for Purchasing Section

I MNPSB Approved Supplier Monitoring Record
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Production Flow</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Drawing Quantity of Late Produce Product from June until August For Three Main Customers</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope of Study</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Design</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Cutting Tool</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Trimming Tool</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Injection Mould</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Punches and Dies</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>The Complexity and Importance in Manufacturing System Design</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Gap Mean in Manufacturing System Design</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>The Complexity and Importance in Quality Management System</td>
<td>55</td>
</tr>
<tr>
<td>4.8</td>
<td>Gap Mean in Quality Management System</td>
<td>56</td>
</tr>
<tr>
<td>4.9</td>
<td>The Complexity and Importance in Supply Chain Management</td>
<td>57</td>
</tr>
<tr>
<td>4.10</td>
<td>Gap Mean in Supply Chain Management</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>The Complexity and Importance in Inventory Management</td>
<td>59</td>
</tr>
<tr>
<td>4.12</td>
<td>Gap Mean in Inventory Management</td>
<td>59</td>
</tr>
<tr>
<td>4.13</td>
<td>The Complexity and Importance in Project Management</td>
<td>60</td>
</tr>
<tr>
<td>4.14</td>
<td>Gap Mean in Project Management</td>
<td>61</td>
</tr>
<tr>
<td>4.15</td>
<td>The Complexity and Importance in Human Resources and Job Design</td>
<td>62</td>
</tr>
<tr>
<td>4.16</td>
<td>Gap Mean in Organization Structure and Job Design</td>
<td>62</td>
</tr>
<tr>
<td>4.17</td>
<td>Production Flow</td>
<td>64</td>
</tr>
<tr>
<td>4.18</td>
<td>New Order Handling</td>
<td>65</td>
</tr>
<tr>
<td>4.19</td>
<td>Job Order Form</td>
<td>66</td>
</tr>
<tr>
<td>4.20</td>
<td>Parts with Oil has been Wrapped with Bubble Wrap Plastic</td>
<td>67</td>
</tr>
<tr>
<td>4.21</td>
<td>Product after Packing and Labelling</td>
<td>67</td>
</tr>
<tr>
<td>4.22</td>
<td>Barcode at Job Order Form</td>
<td>68</td>
</tr>
<tr>
<td>4.23</td>
<td>Material Code Number in Job Order Form</td>
<td>70</td>
</tr>
</tbody>
</table>
4.24 QC Inspection Flows
4.25 Work Piece with Drawing in a Tray
4.26 Delivered Date on Drawing Paper
4.27 Customers from Besi Apac and Ismeca Malaysia Sdn. Bhd
4.28 Example of GD&T in Drawing Paper
4.29 Roughness Value, RA in Drawing Paper
4.30 Scratch Defect
4.31 Dented Defect
4.32 Record at The Back of Drawing Paper
4.33 A De-Magnetize Machine
4.34 Treatment Code in Drawing Paper
4.35 Purchasing Process Flow
4.36 New Supplier Evaluation
4.37 Approved Supplier Assessment
4.38 Sequence and Interaction Between Processes
4.39 Down Set Punch B
4.40 Down Set Punch B Job Order Form
4.41 The Drawing for Down Set Punch B
4.42 Bottom Dies
4.43 Bottom Dies Drawing
4.44 Process Flow for Bottom Dies at Drawing Paper
LIST OF TABLE

1.1 Total Reject from June until August for Three Main Customer 6

2.1 Key Philosophies in TQM 20

3.1 Difference Between Primary and Secondary Data 38
3.2 Gantt Chart of The Study 45

4.1 Overview Datacon Standardized Materials 69
4.2 Gauge Identification and Measuring Specification 74
4.3 Permissible Deviations for Linear Dimensions Except for Broken Edges 75
4.4 Permissible Deviations for Broken Edges (External Radii and Chamfer Edges) 75
4.5 Permissible Deviations for Angular Dimensions 75
4.6 Symbols and Tolerance Characteristics 77
4.7 Grade Numbers of Roughness Values RA 77
4.8 Treatment Code Number 81
4.9 Drawing Standard Thickness 82
4.10 Suppliers for QC Department from January until July 2014 85
4.11 Total Order Production and Total Order from Customer 92
4.12 Total Order to Subcontractor 93
4.13 Subcontractor Assessment Checking 94
4.14 Process Code with Types of Machine 97
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/A</td>
<td>Clear Anodize</td>
</tr>
<tr>
<td>CLM</td>
<td>Council Logistic Management</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>EDM</td>
<td>Electrical Discharge Machining</td>
</tr>
<tr>
<td>EN</td>
<td>Electroless Nickel</td>
</tr>
<tr>
<td>GD&T</td>
<td>Geometrical Diameter and Tolerance</td>
</tr>
<tr>
<td>GM</td>
<td>General Motor</td>
</tr>
<tr>
<td>HOD</td>
<td>Head of Department</td>
</tr>
<tr>
<td>HR</td>
<td>Human Resources</td>
</tr>
<tr>
<td>MNPSB</td>
<td>Micro-Nano Precision Sdn. Bhd</td>
</tr>
<tr>
<td>MNPPG</td>
<td>Micro-Nano Precision Penang Sdn. Bhd</td>
</tr>
<tr>
<td>NCR</td>
<td>Non Conformance Report</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>PG</td>
<td>Profile Grinding</td>
</tr>
<tr>
<td>PIC</td>
<td>Person in Charge</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>RA</td>
<td>Roughness of a Surface</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard of Procedure</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in Progress</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This chapter provides the background, objectives, scope and importance of the study. Besides, it briefly information about manufacturing complexity in Micro-Nano Precision Sdn. Bhd.

1.1 Background of Study

At present, manufacturing complexity is become multifaceted and has converted a new great challenge for industry. Manufacturing complexity occurred in every area of manufacturing activities such as manufacturing system design, total quality management, supply chain management, inventory management, project management, human resources and job design spreading across the organization silently without noticed and can be triggered as the malfunction of an manufacturing element. The mapping of interdependence between and among those elements, and measuring the metrics of the elements and their interrelationships, if elements are missing or defective, not properly interfacing or misaligned, or not performing correctly, then it is considered manufacturing complexity occurred.

The understanding about manufacturing complexity is essential to control the non-linear behavioursystem of production system to create a competitive, predictive and productivity manufacturing system. Behaviour of the system and issues are unpredictable such as behavior of machine and human can increase manufacturing complexity that comes with complicated issues in manufacturing activities. Unpredictable behavior of manufacturing system can cause lack of information and variety in aspects of manufacturing process, system and operation. Thus more
opportunities and information for the product, system or process will behave in
unpredicted manners while the systems operate, managing, designing and
anticipating resulting consequences facing difficulty because of manufacturing
complexity. Research needed for implementation of translating manufacturing
complexity into competitive advantages.

1.2 Problem Statement

Micro-Nano Precision Sdn. Bhd (MNPSB) is a tool fabrication company and an
original equipment manufacturer which fabricate product designed by customer.
Fabricated tools in the company such as trim and form, molding, cavity bar,
precision punches and tools, degate tools, die inserts, die sets, core and cavity
injection mold for plastic industry, jig and fixtures, automotive parts and machining
part. The company fabricate many types of tool consist of variety of design and each
types of tools was made through different process. The flow of production indicated
in Figure 1.1 starts with customer order and receiving of product drawing through e-
mail. Price quotation of product is determined concerned of the process involved,
material sourcing and delivery requirement. Order decision making based by
machine capacity and the capability of the company to produce the product. Material
purchasing implemented as the order accepted and product start to fabricate by
determined process. In production has internal inspection after each process to
control the quality of product while in progress. Person in charge has to monitor the
product for the product need to complete on time and in good quality. The
completion of product need to go through QC department for final checking and the
rejected part need to rework or dispose based on the quality of product. The good
quality product is packing and labeling and send for the delivery.
Pre observation has determined MNPSB has problem in fabricating product on time. The production took more time as expected to fabricate a product as shown in Figure 1.2. Figure 1.2 show drawing quantity of the product that late on due date based by three main customers from June 2014 until August 2014 and these three customer give more profit to company. Total late outputs for customer 1 are 290 drawings, for
customers 2 are 46 drawings and for customers 3 are 161 drawings. Each drawing has different quantity of tools and product for each customer are different in design and made by different process which in conventional machine or automatic machine. The machine such as wire cut machine, grinding, CNC grinding, profile grinding, EDM machine, CNC milling, CNC turning and conventional turning are the machines involved in fabricated the tools.

![Figure 1.2: Drawing Quantity of Late Product Produced from June until August for Three Main Customers](image)

The problem found because of capacity planning in MNPSB and the reason due to lacking in determine the changeability of capacity levels by when and how much and deal with key work centre and all individual resources. The problem lead to the failure in forecast product families and individual product (Ceryan and Koren, 2009). It is critical for MNPSB to plan capacity requirement planning and determining when and by how much the capacity levels should change such as in circumstance of when customer demand more than machine capacity.

Managers and person in charge cannot organize sequence of processes appropriately because three main customers given more priority than other customers contribute to time waste also for other customers. The rework of rejected product is put on hold in order to process a much urgent products ordered by the main customers contribute to
the increasing of pending work in progress product but the product from main customer still late on due date. Process operators skip the product inspection in work in progress because many inspection tools lost inside the machine department and can increase the rework rate and consistently increasing the time waste for production indirectly. This problem is strictly need serious attention to solve the waiting waste on meeting the production dateline.

MNPSB have high product reject as shown in Table 1.1. Table 1.1 shows total reject for the process involved in production for three main customers from June 2014 until August 2014. Rejected product can be found before the process, while in process, after process and after QC inspection. There are two kind of inspection in MNPSB which are internal process inspection and QC inspection. Each process has different rate of producing reject and the reject consume of machine problem or human error operating the machine. Program reject occurs when programmer wrote inaccurate program in the automatic machine lead to the defect on the product. Assembly reject happened when the installation between tools parts is unmatched and will scratch the product. Total reject of 182 pieces in three month is high for MNPSB because the company is a precision company which takes quality seriously.

Table 1.1: Total Reject from June until August for Three Main Customers

<table>
<thead>
<tr>
<th>Process</th>
<th>Total Rejects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire cut</td>
<td>61</td>
</tr>
<tr>
<td>Small grinding</td>
<td>15</td>
</tr>
<tr>
<td>Big grinding</td>
<td>9</td>
</tr>
<tr>
<td>CNC grinding</td>
<td>7</td>
</tr>
<tr>
<td>Profile grinding</td>
<td>4</td>
</tr>
<tr>
<td>EDM</td>
<td>8</td>
</tr>
<tr>
<td>CNC turning</td>
<td>45</td>
</tr>
<tr>
<td>Conventional turning</td>
<td>14</td>
</tr>
<tr>
<td>CNC milling</td>
<td>12</td>
</tr>
<tr>
<td>Program</td>
<td>4</td>
</tr>
<tr>
<td>Assembly</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>182</td>
</tr>
</tbody>
</table>
Problem detected in MNPSB is quality control and inspection because inspection is failed conform to requirements, fitness of purpose, degree of preference, measure of requirement of promises and degree of excellence and controlling all this things to meet specification and standard because QC staff skip the standard of operation in checking the product. This was due to chasing the due date while the quantity of product is too many and the tools for checking are difficult to find because of missing inspection tools in QC. The inspection tool is not positioned in appropriate place make the checking work difficult. QC staff also use sampling plan for checking but it is forbidden to use sampling plan because the MNPSB is a precision company which require the checking for all tools without skipping any of it. The purpose of quality control and inspection is to check and control the quality of product for use or purpose at the most economical level in aspect of design, manufacture and assembly to ensure procedures and controls at various stages is effective (Mohammed et al. 2013). The problem needs serious study to determine the solution for high reject in MNPSB such as make the QC staff follow the SOP of checking without affecting the time of the production because the total of reject related to the dateline of the production. More rejected product need a lot of rework which means more time wasted on the production which leads to the failure of the company on chasing the due date of the product.
1.3 Objective

i. To identify the types of manufacturing complexity.

ii. To characterize the industrial approach in managing manufacturing complexity in Micro-Nano Precision Sdn. Bhd.

iii. To make recommendation for industry to improve productivity via well-managed manufacturing complexity.

1.4 Scope

This study is conducted in Micro-Nano Precision Sdn. Bhd (MNPSB). It focuses more on study of manufacturing complexity in the aspect of quality; manufacturing system design, inventory management; supply chain and project management. Figure 1.3 shows the general view for scope of the study. For data collection, observation, interview, and questionnaire are used. The duration of this study is almost one year which started on July 2014 and ended on April 2015. The person involved in this study are HR executive, general manager, QC senior engineer, supply chain manager, senior technical manager, production manager, QC HOD and machining HOD. The result can be used as a reference for complexity study. The result may not applicable for other industry which have different business operation.