Faculty of Mechanical Engineering

MODELLING, SIMULATION AND CONTROL OF
A SERIES HYBRID ELECTRIC VEHICLE

Mohd Sabirin Bin Rahmat

Master of Science in Mechanical Engineering

2015
MODELLING, SIMULATION AND CONTROL OF A SERIES HYBRID ELECTRIC VEHICLE

MOHD SABIRIN BIN RAHMAT

A thesis submitted
in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015
DECLARATION

I declare that this thesis entitled “Modelling, Simulation and Control of a Series Hybrid Electric Vehicle” is the result of my own research except as cited in the references. This thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :
Name :
Date :
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature :

Supervisor Name :

Date : ...
DEDICATION

To my beloved father, mother, wife, brother, sister, lecturers, son and friends
ABSTRACT

Series hybrid electric vehicles (SHEVs) are efficiently used in many cities to reduce harmful exhaust emissions, as well as, fuel consumption. The vehicles are propelled with an electric motor that can achieve high efficiency at low speed with an internal combustion engine being operated at optimum fuel consumption for battery charging. Human interaction is being increasingly used to assist the development propulsion systems for road vehicles. The modelling of the hybrid electric powertrain for mobility is indeed challenging. The model should not only adequately simulate the vehicle longitudinal dynamics, it should also account for the load control of the propulsion system. The aims of this study are to design a control strategy for an electric motor of a SHEV longitudinal model and to assess its mobility performance. A mathematical model, for a vehicle with an internal combustion engine, was set-up to simulate its longitudinal dynamics using a high-level programming language software; i.e. Matlab Simulink. The multibody system approach was employed to model the vehicle dynamics with six degree of freedoms. Cases to investigate the inertia performance, such as sudden acceleration and braking, were conducted. The model was verified using a commercial vehicle simulation software; i.e. Car Simulation for Education (CarSimEd). The finding suggests that the model works as desired and was verified by CarSimEd. The SHEV propulsion system utilises a PMSM model to provide a driving effort to propel the vehicle. The SHEV operates at high efficiency when the model had applied a control strategy for the PMSM model to track a desired torque. The gain scheduling controller was selected for the motor due to its effectiveness provide a drive torque in various driving conditions. The performance for the control strategy was tested using the sine, square, sawtooth and step inputs. The results indicate that the controller for motor control is sufficiently efficient to track various types of the desired inputs. The SHEV was set up by integrating the vehicle longitudinal model and the electric motor model. Longitudinal tests were performed; i.e. sudden acceleration and braking, tracking road gradient and unbounded motion. The findings suggest that the SHEV model is suitable for use in the preliminary assessment for other types of HEVs or EVs. Simulations using the CarSimEd show similar results.
ABSTRAK

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my main supervisor, Dr. Ahmad Kamal Bin Mat Yamin, second supervisor En Fauzi Bin Ahmad and third supervisor Associate Professor Dr. Noreffendy Bin Tamaldin for their guidance, support, and constant encouragement during my research. I also would like to thank Professor Dr. Hishamuddin Jamaluddin from Universiti Teknologi Malaysia (UTM) for his advices throughout this research. I gratefully acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for providing the financial support throughout my study.

I would like to take this opportunity to thank my colleagues at the Faculty of Mechanical Engineering, UTeM, Abdurahman Dwijotomo, Vimal Rau A/L Aparow, Mohd Zaini Bin Jamaludin, Zaharudin Bin Sariman, Harbirafidi Bin Ramli and Mad Nasir Bin Ngadiman for their outstanding collaboration for being a very good sharing partner during my research. Thanks also to my other colleagues at Taman Tasik and Bukit Beruang for providing an enjoyable study environment.

Finally, my deepest grateful and thanks go to my parents, Hj Rahmat Bin Mohd Zain and Hjh Siti Hawa Binti Daud, my lovely wife and son, Nur Diyana Binti Hussein and Muhammad Afif Bin Mohd Sabirin, my dear siblings, Mohd Kisti Bin Rahmat, Md Mujahid Bin Rahmat, Farahdiba Binti Rahmat, Abdul Moquiti Binti Rahmat, Fazilah Binti Rahmat and Sahrimah Binti Rahmat, my dear parent in law, Hussein Bin Ithnin and Azizah Binti Sarijan. Their continuous prays and moral supports have been brought me here.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xiv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>xv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.0 Introduction 1
 1.1 Problem Statement 2
 1.2 Research Background 3
 1.3 Aims and Objectives 6
 1.4 Methodology 7
 1.5 Thesis Structure 9

2. **LITERATURE REVIEW**
 2.0 Introduction 11
 2.1 Electric Vehicle 14
 2.2 Hybrid Electric Vehicle 15
 2.3 Configuration of Hybrid Electric Vehicle 17
 2.3.1 Parallel Type 17
 2.3.2 Series-Parallel Type 18
 2.3.3 Series Type 20
 2.4 Electric Motors 20
 2.5 Control Strategies 22
 2.5.1 PID Controller 23
 2.5.2 Gain Scheduling Controller 25
 2.6 Summary 26

3. **VEHICLE LONGITUDINAL MODEL**
 3.0 Introduction 28
 3.1 Modeling Approach 28
 3.2 Vehicle Traction Model 29
 3.3 Vehicle Body Frame Equation of Motion 31
 3.4 Drag Forces 33
 3.5 Tractive Properties of the Tire and Road Interface 34
 3.6 Wheel Dynamic Equations 38
 3.7 Engine Dynamics 40
 3.8 Engine Model 41
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Tyre parameter</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameter engine model</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>6-DOF Parameter</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Electric machine parameter</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>PID controller parameter</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Root mean square for the control strategies</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow Chart of Research</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Drive train conceptual for Electric Vehicle</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Various types of Electric Vehicle</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Vehicle layout with one to four electric motor Powertrain with</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>torque-vectoring</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Architecture drive train of parallel configuration</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Drivetrain Layout of series-parallel configuration</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Series hybrid electric vehicle configuration</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Permanent magnet characteristic</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>PMSM with different rotor</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>2D-schematic diagram of the four-wheel traction model</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Load distribution fron and rear wheel</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Total force of the vehicle</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Longitudinal slip ratio</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Slip characteristics</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Pacejka tyre model</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Free body diagram of a wheel</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Wheel dynamic</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>Engine dynamic model</td>
<td>41</td>
</tr>
</tbody>
</table>
3.10 Mass air flow in intake manifold
3.11 Throttle function
3.12 Pressure influence
3.13 Mass of air entering intake manifold
3.14 Mass flow rate air leaving intake manifold
3.15 Effective fuel time
3.16 Rotational dynamic of engine
3.17 Torque production
3.18 Automatic transmission gearbox shift logic
3.19 Vehicle Longitudinal Model
3.20 Interface of the CarSimEd software
3.21 Verification of the vehicle speed between Simulation and CarSimEd
3.22 Fuel rate of the engine
3.23 Sudden acceleration and braking
4.1 Motor axis and stationary frame
4.2 PMSM model in Matlab Simulink Software
4.3 Gain Scheduling control structure
4.4 Response of torque tracking control of PMSM using PID controller
4.5 Response of torque tracking control of PMSM using Gain Scheduling controller
5.1 Power train block diagram
5.2 SHEV block diagram
5.3 Comparison of the power output engine and alternator
5.4 Control structure of the electric motor
5.5 Characteristic of pedal accelerator
| 5.6 | Simulink diagram for characterization pedal accelerator | 80 |
| 5.7 | Verification of the vehicle speed between SHEV and CarSimEd | 83 |
| 5.8 | Unbounded throttle motion speed graph | 83 |
| 5.9 | Vehicle test on various gradients | 84 |
| 5.10 | Sudden braking test | 85 |
| 5.11 | Response of electric motor torque | 86 |
| 5.12 | Effectiveness of motor torque during unbounded motion | 86 |
| 5.13 | State of charge | 87 |
| 5.14 | DC bus voltage | 88 |
| 5.15 | Electric motor speed | 88 |
| 5.16 | Three phase currents i_a, i_b, and i_c | 89 |
| 5.17 | Fuel rate of engine | 90 |
LIST OF SYMBOLS

\(F_x \) - Forces acting in the direction of a movement on x-axis
\(F_{tr} \) - Resistance forces that acting in the direction of a movement on the z-axis
\(M \) - Lumped mass
\(V \) - Linear velocity
\(\omega_f \) - Front angular velocity
\(\omega_r \) - Rear angular velocity
\(R_f \) - Front rolling radius
\(R_r \) - Rear rolling radius
\(I_f \) - Front wheel moment inertia
\(I_r \) - Rear wheel moment inertia
\(\mu_f \) - Coefficient of friction front wheel tyre
\(\mu_r \) - Coefficient of friction rear wheel tyre
\(\theta \) - Incline road degree
\(F_z \) - Normal force
\(F_{x_{\text{total}}} \) - Total force in X- direction acting on the vehicle body
\(F_d \) - Drag force
\(F_a \) - Aerodynamic force
\(F_r \) - Resistance force
\(C_r \) - Rolling resistance coefficient
\(A \) - Frontal area of vehicle
\(C_d \) - Aerodynamic drag coefficient
\(\rho \) - Density of air
\(B \) - Distance from front axle to center of gravity
\(C \) - Distance from rear axle to center of gravity
\(L \) - Wheelbase
\(C_g \) - Center of gravity
\(H \) - Height of vehicle to ground
\(\mu \) - Coefficient of force transfer
\(R \) - Rolling radius
\(\lambda_f \) - Front wheel longitudinal slip
\(\lambda_r \) - Rear wheel longitudinal slip
\(j \) - Right or left
\(T_{bf} \) - Front wheel braking torque
\(T_{br} \) - Rear wheel braking torque
\(T_{af} \) - Front wheel throttling torque
\(T_{ar} \) - Rear wheel throttling torque
\(\tau_{rf} \) - Front wheel reaction torque
\(\tau_{rr} \) - Rear wheel reaction torque
\(C_{ff} \) - Front wheel viscous friction coefficient
\(C_{fr} \) - Rear wheel viscous friction coefficient
\(\tau_{es} \) - Throttle lags
\(\mu_e \) - Energy transfer coefficient
\(T_{MAX} \) - Maximum torque
\(\mu_t \) - Throttle setting
\(\eta_g \) - Current gear ratio
η_f - Final gear ratio

\dot{m}_a - Mass rate of air in intake manifold

\dot{m}_{ai} - Mass rate of air entering intake manifold

\dot{m}_{ao} - Mass rate of air leaving intake manifold

MAX - Maximum flow rate

TC - Throttling characteristic

PRI - Normalized pressure function

α - Throttle angle

P_m - Intake manifold pressure

P_{atm} - Atmospheric pressure

V_m - Intake manifold volume

ω_e - Engine angular velocity

η_{vol} - Volumetric efficiency

\dot{m}_{fi} - Fuel rate entering combustion chamber

\dot{m}_{fc} - Command fuel rate

T_f - Effective fueling time constant

β - Desired air/fuel ratio

I_e - Effective inertia of the engine

T_i - Indicated engine torque

T_f - Engine friction torque

T_a - Accessories torque

Δt_{it} - Intake to torque production delay

Δt_{st} - Spark to torque production delay

C_T - Maximum torque production capacity of the engine

A/F - Actual air/fuel ratio
M_a - Molar mass

R - Entropy

T_m - Manifold Temperature

MTB - Minimum spark advanced from top dead center

P_b - Brake pressure

K_c - Simple pressure gain

u_b - Brake setting

T_{bs} - Brake time lags
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI</td>
<td>Air/fuel ratio influence</td>
</tr>
<tr>
<td>SI</td>
<td>Spark influence</td>
</tr>
<tr>
<td>TDC</td>
<td>Top dead center</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid electric vehicle</td>
</tr>
<tr>
<td>PMSM</td>
<td>Permanent Magnet Synchronous Motor</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>CarSimEd</td>
<td>Car Simulation for Education</td>
</tr>
<tr>
<td>SHEV</td>
<td>Series hybrid electric vehicle</td>
</tr>
<tr>
<td>IM</td>
<td>Induction motor</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journals

Conferences

Mohd Sabirin Rahmat, Fauzi Ahmad, Muhd Ridzuan Mansor, Ahmad Kamal Mat Yamin, Noreffendy Tamaldin and Vimal Rau Aparow, 2014. Design and Development of

Article

1.0 Introduction

In a hybrid electric vehicle (HEV), two or more power sources work together to deliver power that greatly surpasses any single source working alone. Through the design, it is possible to improve their dynamics characteristics such as acceleration, emission, fuel efficiency and total cost of ownership. Of these characteristics, the one to see the greatest improvement will depend on the design of the system and the control strategy utilised.

In a conventional vehicle, the powertrain generally consists of an internal combustion engine (ICE) and a multi-geared mechanical transmission. Normally, the engines used are either spark ignition (SI) gasoline or compression ignition (CI) diesel. As an automotive power plant, the ICE alone had proven itself to be suitable for many decades. However, in recent times, with declining fuel supplies and increasing environmental awareness of the general public, it is apparent that the vehicle demands alternatives power plants.

Fuel cell has recently shown up on the future powertrain roadmap to be alternates power trains. Fuel cells are as much as 20 years away from widespread commercial viability since high costs, poor cold start performance and hydrogen storage issues all remain unsolved (Helmolt & Ulberle, 2007). Batteries are much closer to becoming a viable replacement on their own; with recharge time, longevity and cost being the main
issues (Bosschea et al., 2006). Since no new technology is readily available to completely usurp the engine, the best course of action is to find suitable ways of making better use of them. Hybridising ICE with batteries could potentially be a reasonable method for this purpose.

In this research, a hybrid electric vehicle based on the series drive train layout was investigated and virtually developed. Six degrees of freedom (6-DOF) vehicle longitudinal model was designed to evaluate the performance of a vehicle in longitudinal or forward direction. The vehicle model consists of a tyre, transmission, brake, engine, electric powertrain and vehicle dynamic. The study includes the human interaction to provide real time driver input which are the throttle and brake during simulation operations. In order to control the electric motor, Gain Scheduling control method was utilised in this study. This controller is able to deliver enhanced performance and response of the electric motor to drive the vehicle.

1.1 Problem Statement

The intention of this research was to design a control strategy for an electric motor, of a SHEV longitudinal model and to assess the mobility performance of the vehicle using real time driver input. A control strategy for the electric motor was developed to achieve an optimum operation at low and high speed. The vehicle longitudinal model was set up for SHEV simulation development to assess the mobility performance.

The development of the control strategy was challenging as to achieve the optimum performance of the electric motor. The selection of proper control strategies for the electric motor was according to the capability and adaptability of the controller to achieve optimum performance. In this study, the Gain Scheduling was designed to control the
motor, while the effectiveness of this controller was assessed in torque tracking control; thus, the results were compared with the PID controller.

It is challenging integrated mechanical and electrical components i.e vehicle longitudinal model and the electric motor model. The two components connected along a single path (series) in the powertrain system. The ICE and alternator were connected to recharge the battery, while the electric motor and transmission were incorporated to drive the vehicle.

1.2 Research Background

Significant studies on HEV were established in the late 1970s, in the USA, as a reaction to the oil crisis (Trummel & Burke, 1983). Since then, there were numerous advances in technology in the areas of power electronic devices, control strategies and battery technology. At the same time, the cost associated with deploying such technology had continuously decreased.

However, to develop vehicles in cost effective ways, the assessment through simulation methods using simulation tools (i.e. Matlab Simulink software) should be performed in the preliminary stage. Butler et al. (1997) identified a new simulation tool, Versatile-Elph, for the development of the HEV. The tool facilitated in-depth studies of any type of hybrid or total configurations through visual programming. The V-Elph was compatible with the Matlab Simulink software to simulate the vehicles. Simulation studies were performed to illustrate the applicability of V-Elph to the HEV design.

In a similar research, Senger et al. (1998) made improvements on the simulation tool to simulate HEV using ADVISOR. The study was specific to series hybrid electric vehicles and the induction motor was utilised to propel the vehicle. The basic equation of the solid-body motion (Newton’s second law) was applied to assess the performance of the