Faculty of Manufacturing Engineering

EFFECTS OF Ag ON TiO$_2$ DIP-COATING ON UNGLAZED CERAMIC SUBSTRATES FOR ANTI-MICROBIAL COATING

NurHamizah Binti Ahmad Rusli

Master of Science in Manufacturing Engineering

2015
EFFECTS OF Ag ON TiO_2 DIP-COATING ON UNGLAZED CERAMIC SUBSTRATES FOR ANTI-MICROBIAL COATING

NURHAMIZAH BINTI AHMAD RUSLI

A thesis submitted
in fulfillment of the requirement for degree of Master of Science
in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015
DECLARATION

I declare that this thesis entitle “Effects of Ag on TiO$_2$ dip-coating on unglazed ceramic substrates for anti-microbial coating” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : NurHamizah Binti Ahmad Rusli
Date : ..

© Universiti Teknikal Malaysia Melaka
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature : ..
Supervisor Name : AP. Dr Zulkifli Bin Mohd Rosli
Date : ..
Ag-TiO$_2$ coating has been of interest for the purpose of antimicrobial application because silver (Ag) is well-known as antimicrobial agent and TiO$_2$ possess as self-cleaning agent. In this research, it is aims to investigate the antimicrobial performance of Ag-TiO$_2$ coating on unglazed ceramic substrate where the effects of additives and number of layers on the characteristic of Ag-TiO$_2$ coating were investigated. The effect of PEG 2000 and Degussa P25 as additives on the characteristic of Ag-TiO$_2$ coating was reported. The TiO$_2$ coatings were produced via sol gel method using titanium tetraisopropoxide as a precursor from solutions that contains additive and without additive. Seven layers of TiO$_2$ coating were deposited on unglazed ceramic substrate produced from waste glass. All coatings were deposited using dip coating technique and were sintered at 500ºC. The TiO$_2$ coating was then immersed in an Ag nanoparticles solution before dried at 90º C in an oven to form Ag-TiO$_2$ coating. Besides, the effects of number of layers on Ag-TiO$_2$ coating with additive (Degussa P25) were characterized at five, seven and ten layers using dip coating technique. TiO$_2$ coating at different layers was then sintered at 500ºC before immersed in Ag nanoparticle solution. All coatings were evaluated using GAXRD and SEM analysis to characterized crystalline phase and coatings (surface morphology and thickness), respectively. Furthermore, Ag-TiO$_2$ coating with two concentrations of silver nanoparticles (50 ppm and 1000 ppm) were prepared and antimicrobial analysis according to McFarland standard against E.coli, S.aerues, Fungus and MRSA were carried out and zone of inhibition are measured. Ag-TiO$_2$ coating with additive (Degussa P25) shows anatase phases and homogeneous coating (morphology and Ag distribution) with the highest thickness (8.80 µm) which gives advantages to the coating for antimicrobial application as compared to others (without additive and with additive-PEG 2000). Besides, Ag-TiO$_2$ coating with Degussa P25 at 10 layers shows the best result where the coating exists in anatase phases and homogenous coating structure with the highest coating thickness (11.80 µm) compared to 5 layers (5.85 µm) and 7 layers (8.80 µm). As a result, Ag-TiO$_2$ coating with Degussa P25 as an additive with 10 layers at high concentration of Ag (1000 ppm) showed good performance in inhibiting E.coli growth on unglazed ceramic with a zone of inhibition of 8 mm.
Salutan Ag-TiO₂ telah menjadi perhatian untuk penggunaan aplikasi antimikrob kerana perak (Ag) dikenali sebagai agen antimikrob dan TiO₂ mempunyai agen pembersihan diri. Dalam kajian ini, menjadi tujuan utama untuk menyelidik kebolehupayaan salutan Ag-TiO₂ ke atas substrat seramik tanpa licau iaitu kesan bahan tambahan dan bilangan lapisan keat dan pencirian salutan Ag-TiO₂ telah dikaji. Kesaran PEG 2000 dan Degussa P25 sebagai bahan tambahan terhadap perincian lapisan Ag-TiO₂ dilaporkan. Lapisan TiO₂ dihasilkan melalui kaedah sol gel menggunakan titanium tetraisopropoxide sebagai pemangkin dari larutan yang mengandungi bahan tambahan dan tanpa bahan tambahan. Tuju lima lapisan salutan TiO₂ didepositkan menggunakan teknik salutan celupan dan dibakar pada 500°C. Salutan TiO₂ kemudian direndam dalam larutan nanopartikel Ag sebelum di keringkan pada 90°C didalam pemanas untuk membentuk salutan Ag-TiO₂. Kemudian, kesan nombor lapisan terhadap salutan Ag-TiO₂ dengan bahan penambah (Degussa P25) diperincikan pada 5, 7 dan 10 lapisan menggunakan teknik salutan celupan. Salutan TiO₂ pada lapisan berbeza kemudian dibakar pada 500°C sebelum direndam dalam larutan nanopartikel Ag. Kesemua salutan dinilai menggunakan analisa GAXRD dan SEM untuk diperincikan fasa kristal dan salutan (morfologi permukaan dan ketebalan), masing-masing. Tambahan pula, salutan Ag-TiO₂ dengan dua kepekatan partikel nano perak (50 ppm dan 1000 ppm) telah disediakan dan analisa antimikrob berdasarkan kepada piawaian McFarland menentang E.coli, A.aerues, Kulat dan MRSA dijalankan dan zon perencatan diukur. Salutan Ag-TiO₂ dengan bahan tambahan (Degussa P25) menunjukkan fasa anatase dan salutan yang seragam (morfologi dan taburan perak) dengan ketebalan yang tertinggi (8.80 µm) yang memberi kelebihan kepada salutan berbanding yang lain (tanpa bahan tambahan dan dengan bahan tambahan PEG 2000). Selain itu, salutan Ag-TiO₂ dengan Degussa P25 pada lapisan ke 10 menunjukkan hasil salutan yang terbaik iaitu salutan menghasilkan fasa anatase dan keseragaman struktur salutan dengan ketebalan yang tertinggi (11.80 µm) berbanding 5 lapisan (5.85 µm) dan 7 lapisan (8.80 µm). Sebagai kesimpulan, salutan Ag-TiO₂ dengan bahan tambahan Degussa P25 dengan 10 lapisan pada kepekatan Ag yang tinggi (1000 ppm) menunjukkan kebolehupayaan dalam menghalang pertumbuhan E.coli ke atas seramik tanpa licau dengan zon perencatan pada 8 mm.
ACKNOWLEDGEMENTS

Thanks to Allah SWT for giving this opportunity to make my dream success in completing the study in master. First of all, I would like to give my respect to my supervisor, AP. Dr Zulkifli Bin Mohd Rosli and AP. Dr Jariah Binti Mohamad Juoi who always give me full of motivation, support, knowledge, inspiration and kindness during this study. Also, I would like to thank to my parents, my siblings and my roommate during study at UTEM since Diploma, Degree and Master. And to the FKP technicians, En Azhar at SEM and EDX lab, En Hairul Hisham at GAXRD lab, En Sharman at ceramic lab, En Asari and En Hanafiah as a dip coater builder. To those who are my grammar proved and language teachers who are AP. Dr Zulkifli Bin Mohd Rosli, AP. Dr Jariah Mohamad Juoi, Miss Fatimah, Miss Murhaniza, Miss Syida, Miss Nabila, my uncle Dr Fauzi and his wife Miss Salina.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Background of study
1.2 Problem statement
1.3 Objectives
1.4 Significance of Research

2. LITERATURE REVIEW

2.1 Introduction
2.2 TiO$_2$ Coating

2.2.1 Photocatalysis Properties

2.3 AgTiO$_2$ Coating

2.3.1 Antimicrobial Performance

2.3.2 Deposition of AgTiO$_2$ Coating

2.3.2.1 Sol Gel Method

2.3.2.1.1 Catalyst
2.3.2.1.2 Degussa P25 (Additive)
2.3.2.1.3 PEG 2000 (Additive)

2.3.2.2 Dip Coating Technique

2.3.2.2.1 Effect of Layers on AgTiO$_2$ coating

3. METHODOLOGY

3.1 Introduction
3.2 Materials and Apparatus
3.3 Preparation of Ag-TiO$_2$ coating

3.3.1 Preparation of TiO$_2$ solution

3.3.1.1 TiO$_2$ solution without additive

3.3.1.2 TiO$_2$ solution with additive

3.3.2 Deposition of Ag-TiO$_2$ coating

3.3.2.1 Substrate cleaning

3.3.2.2 Dip coating of ceramic substrate on TiO$_2$ solution
3.3.2.3 Sintering
3.3.2.4 Dip coating in Ag nanoparticle

3.4 Characterization Analyses
3.4.1 X-ray Diffraction (XRD)
3.4.2 Scanning Electron Microscope (SEM)
3.4.3 Electron Dispersive X-Ray (EDX)

3.5 Antimicrobial Analyses
3.5.1 Antimicrobial and Antifungal tests on silver nanoparticle (Ag)
3.5.2 Antimicrobial activity on Ag-TiO$_2$ coating

4 RESULTS AND DISCUSSIONS
4.1 Introduction
4.2 The ceramic substrate
 4.2.1 Phase analysis
 4.2.2 SEM and EDX analysis
4.3 Ag-TiO$_2$ coating without additive at 7 layer
 4.3.1 Phase analysis
 4.3.2 SEM and EDX analysis
 4.3.1.1 Surface morphology
 4.3.1.2 Cross section
4.4 Ag-TiO$_2$ coating with additive (PEG 2000) at 7 layers
 4.4.1 Phase analysis
 4.4.2 SEM and EDX analysis
 4.4.2.1 Surface morphology
 4.4.2.2 Cross section
4.5 Ag-TiO$_2$ coating with additive (Degussa P25) at 7 layers
 4.5.1 Phase analysis
 4.5.2 SEM and EDX analysis
 4.5.2.1 Surface morphology
 4.5.2.2 Cross section
4.6 Ag-TiO$_2$ coating with additive (Degussa P25) at 5 layers
 4.6.1 Phase analysis
 4.6.2 SEM and EDX analysis
 4.6.2.1 Surface morphology
 4.6.2.2 Cross section
4.7 Ag-TiO$_2$ coating with additive (Degussa P25) at 10 layers
 4.7.1 Phase analysis of Ag-TiO$_2$ coating
 4.7.2 SEM and EDX analysis
 4.7.2.1 Surface morphology
 4.7.2.2 Cross section
4.8 Ag-TiO$_2$ coating (Degussa P25) at Ag concentration of 50 ppm and 1000 ppm
 4.8.1 Phase analysis
 4.8.2 SEM and EDX analysis
 4.8.3 EDX Elemental mapping analysis
 4.8.4 Antimicrobial analysis
 4.8.4.1 Silver nanoparticles against E.coli, S. aerues, MRSA and Fungus.
5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Terminology used in describes the research of AgTiO$_2$</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Deposition of TiO$_2$ film via sol gel process on several substrates</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Materials and chemicals used for Ag-TiO$_2$ coating preparation</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Different composition of TiO$_2$ solution (without and with additive) deposited onto unglazed ceramic substrate</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Ag-TiO$_2$ coating with and without additive deposited on unglazed ceramic substrate</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Ag-TiO$_2$ coating with Degussa P25 at different layers</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Surface morphology of Ag-TiO$_2$ coating with SEM-EDX analysis</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Zone of inhibition image and measured for test samples on various microbes</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Antimicrobial activity of E.coli and MRSA after 24 hours on Ag-TiO$_2$ coated and uncoated samples at different silver concentrations</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic diagram phase transformation of TiO$_2$ crystallites with and without [PO$_4$]$^{3-}$ groups (Liqiang et al. 2010)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of TiO$_2$ photocatalysis: hv_1: pure TiO$_2$; hv_2: metal-doped TiO$_2$ and hv_3: nonmetal-doped TiO$_2$ (Adriana, 2008)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of photocataysis of silver ion (Ag$^+$) in titania particle (Ma et al. 2011)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>(a) AgCl nanoparticles, (b) pure silver nanoparticles (Ag^0)/Ag$^+$, (c) mixture of Ag^0 and AgCl, (d) un-doped (pure silica (SiO$_2$)) (Hilonga et al. 2012)</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical sol gel process for TiO$_2$ formation from titanium tetraisopropoxide (Nagai and Sato, 2012)</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>FESEM micrograph of TiO$_2$ coating prepared by enriched Degussa P25 after calcination process (Mojtaba and Mohammad, 2008)</td>
<td>22</td>
</tr>
</tbody>
</table>
SEM images of the surface TiO$_2$ films prepared from precursor solutions containing (a) 0g, (b) 0.5g, (c) 1.0g (d) 2.0g PEG by 10 coating cycles (Jiaguo et al. 2000)

Dip coating process (Puetz and Aegerter, 2004)

Scheme of the recombination process with the increase in the number of layers of the TiO$_2$ film (Andrea et al. 2009)

Flowchart of the Ag-TiO$_2$ coating preparation and analyses conducted in this research

Flow chart of Ag-TiO$_2$ coating preparation

Flow chart for the preparation of titanium dioxide (TiO$_2$) solution without additive

Flow chart for the preparation of titanium dioxide (TiO$_2$) solution with additive

Flowchart of Ag-TiO$_2$ coating deposition on ceramic substrates

Flow chart for cleaning ceramic substrate

Dip coater machine

The sintering cycle used for TiO$_2$ coating

The Carbolite programmable furnace used for sintering

Silver nanoparticle at concentration of (a) 1000 ppm and (b) 50 ppm

Scanning Electron Microscopy (SEM) available at faculty of manufacturing engineering, UTeM
3.12 Streptomycin standard against E. coli and zone of inhibition measured

3.13 Schematic diagram of antimicrobial testing of Ag-TiO$_2$ coated sample against E. coli and zone of inhibition measured

4.1 XRD spectrum for substrate (unglazed ceramic substrate)

4.2 GAXRD spectrum for substrate (unglazed ceramic substrate) at 4°

4.3 SEM images (surface morphology) and EDX spectrum of unglazed ceramic substrate

4.4 GAXRD of Ag-TiO$_2$ coating without additive at 7 layers and the substrate at an incident angle of 4° for comparison

4.5 SEM images (surface morphology) and EDX spectrum of Ag-TiO$_2$ coating without additive at 7 layers

4.6 EDX spots of Ag-TiO$_2$ coating without additive at 7 layers and weight percentages of element presence on the coating surface morphology

4.7 SEM images (cross section) and EDX spectrum of Ag-TiO$_2$ coating without additive at 7 layers

4.8 EDX spot of Ag-TiO$_2$ coating without additive at 7 layers and weight percentages of element presence on the coating cross section
4.9 GAXRD of Ag-TiO$_2$ coating at 7 layers (without additive and PEG 2000) and the substrate at an incident angle of 4° for comparison

4.10 SEM images (surface morphology) and EDX spectrum of Ag-TiO$_2$ coating with additive (PEG 2000) at 7 layers

4.11 EDX spot of Ag-TiO$_2$ coating with additive (PEG 2000) at 7 layers and weight percentage of element presence on the coating surface morphology

4.12 SEM image (cross section) and EDX spectrum of Ag-TiO$_2$ coating with additive (PEG 2000) at 7 layers

4.13 EDX spot of Ag-TiO$_2$ coating with additive (PEG 2000) at 7 layers and weight percentages of element presence on the coating cross section

4.14 GAXRD of Ag-TiO$_2$ coating (without additive and Degussa P25) at 7 layers and the substrate at an incident angle of 4° for comparison.

4.15 SEM images (surface morphology) and EDX spectrum of Ag-TiO$_2$ coating with additive (Degussa P25) at 7 layers

4.16 EDX spots of Ag-TiO$_2$ coating with additive (Degussa P25) at 7 layers and weight percentages of element presence on the coating surface morphology

4.17 SEM images (cross section) and EDX spectrum of Ag-TiO$_2$ coating with additive (Degussa P25) at 7 layers
4.18 EDX spots of Ag-TiO₂ coating with additive (Degussa P25) at 7 layers and weight percentages of element presence on cross section.

4.19 GAXRD pattern of Ag-TiO₂ coatings (with and without additive) at 7 layers deposited on the unglazed ceramic substrates for comparison.

4.20 GAXRD of Ag-TiO₂ coating with Degussa P25 at 5 layers at 4°

4.21 SEM images (surface morphology) and EDX spectrum of Ag-TiO₂ coating with Degussa P25 at 5 layers

4.22 EDX spots of Ag-TiO₂ coating with Degussa P25 at 5 layers and weight percentages of element presence on the coating surface morphology

4.23 SEM images (cross section) and EDX spectrum of Ag-TiO₂ coating with Degussa P25 at 5 layers

4.24 EDX spots of Ag-TiO₂ coating with Degussa P25 at 5 layers and weight percentages of element presence on the coating cross section

4.25 GAXRD of Ag-TiO₂ coating with Degussa P25 at 10 layers at 4°

4.26 SEM images (surface morphology) and EDX spectrum of Ag-TiO₂ coating with Degussa P25 at 10 layers
4.27 EDX spots of Ag-TiO₂ coating with Degussa P25 at 10 layers and weight percentages of element presence of the coating surface morphology.

4.28 SEM images (cross section) and EDX spectrum of Ag-TiO₂ coating with Degussa P25 at 10 layers.

4.29 EDX spot of Ag-TiO₂ coating with Degussa P25 at 10 layers and weight percentages of element presence on the coating cross section.

4.30 GAXRD pattern of Ag-TiO₂ coating solution with additive (Degussa P25) at different layers.

4.31 GAXRD spectra of the Ag-TiO₂ coatings at different Ag concentrations at 4º.

4.32 Elemental mapping of Ag element on the surface of Ag-TiO₂ coating at (a) 50 ppm and (b) 1000 ppm.

4.33 SEM images of Ag-TiO₂ coating with (a) 50 ppm and (b) 1000 ppm concentration of silver.

4.34 Antimicrobial analysis on the Ag-TiO₂ coating (1000 ppm) deposited on unglazed ceramic substrate against (a) MRSA and (b) E.coli.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>McFarland Standards</td>
<td>112</td>
</tr>
<tr>
<td>B</td>
<td>Zone of inhibition measured after the sample incubated at 24 hours</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AgTiO₂ Silver doped titanium dioxide
EDX Electron Dispersive X-Ray
eV Electron volt
hv Energy
GAXRD Grazing Angle X-ray Diffraction
MRSA Multi Resistant Staph Aureus
PEG Polyethylene Glycol
ppm parts per million
Degussa P25 Titanium Dioxide powder
SEM Scanning Electron Microscopy
S.Aureus Staph Aureus
TiO₂ Titanium dioxide
UV Ultraviolet radiation
XRD X-Ray Diffraction
LIST OF PUBLICATIONS

CHAPTER 1

INTRODUCTION

1.1 Background of study

Tiles materials are used widely in building construction which commonly can be categorized into two types that are glazed and unglazed. Generally, ceramic tiles do not have antibacterial protection, causing microorganism to easily grow on its surface. Therefore, antimicrobial coating that can kill, or inhibit the growth of microorganism such as bacteria is beneficial (Hochmannova and Vytrasova, 2010). In this study, Ag-TiO$_2$ coating was deposited onto unglazed ceramic tile produce from waste glasses for the purpose of antimicrobial application.

Ag-TiO$_2$ coating is been of interest for the purpose of antimicrobial application because silver (Ag) are well-known antimicrobial agent and TiO$_2$ possess self-cleaning properties under UV radiation (Xubin et al. 2010). Anatase phase of titanium dioxide is known to possess electron of the valence band that reacts enthusiastically when exposed to UV light; where it produces surface oxidation to eliminate harmful from coated surface (Mohsen and Vajiheh, 2012). The additions of silver nanoparticles (Ag) into TiO$_2$ improve the TiO$_2$ self-cleaning properties under visible light or dark environment as reported by Robert et al. (2012).
The deposition of Ag-TiO₂ coating on the unglazed ceramic substrates (produced from waste material) was carried out using sol gel method. Sol gel method offers several benefits such as homogeneity of coating, low cost and low processing temperatures compared to other method (Zhang, 2010). In this study, dip coating; a technique of evaporation-induced and self-assembled on the substrate as it is slowly withdrawn from the coating solution is utilized for the deposition of coating. Substrates were immersed into a titanium dioxide (TiO₂) sol gel and silver nanoparticles (Ag) solution to produce an antimicrobial coating.

1.2 Problem Statement

Ceramic tiles are widely manufactured in industry and generally used as construction materials for buildings. In addition, ceramic tiles have purposes such as to complete building appearances and to cover the concrete area. Nevertheless, they need a periodical cleaning process to maintain their cleanliness as well as their appearance. During utilization, walls and floors covering structure e.g. ceramic tiles are subjected to physical, chemical and biodegradation that leads to deterioration. Therefore, microorganisms can easily grow on their surfaces especially in existence of moist (Knetsch and Koole, 2011). It would spread infections and pose a threat to people or patients who have weak immune systems.

In general, Ag-TiO₂ coating possesses beneficial properties for application as antimicrobial agents. The deposition of AgTiO₂ coating on surface is explored by many researchers in order to improve efficiency of the antimicrobial under UV and visible light (Liu et al. 2008). It was observed that the performance of AgTiO₂ on antimicrobial is depending on the types of phases formed, its surface microstructure, the coating thickness and the silver presence in the deposited coating (Yu et al. 2011). Prior studies explored the
deposition of TiO₂ film on several kinds of substrates through the sol gel method such as ceramic tiles (Konkanok et al. 2008), glaze ceramic tiles (Sun et al. 2008), glass substrate (Hyeok et al. 2006), stainless steel (Kristopher et al. 2006), polymer (Piangjai et al. 2012), porous ceramic α-Al₂O₃ (Ma et al. 2009), glass fibre roving (Ubonchonlakate et al. 2012), and wood (Kandebauera and Widsten, 2009). However, limited study is carried out on the deposited of Ag-TiO₂ coating on unglazed ceramic tiles. Ceramic substrates used in this study were produced from mixture of glass waste made of transparent glass (85 wt%): ball clay (15 wt%) formed by hydraulic pressing and sintering process at 850ºC. In addition, unglazed ceramic tiles contained porosity, less smoothness and do not have antimicrobial coating. Therefore, the deposition of Ag-TiO₂ coating on unglazed ceramic substrate is carried out to look for its potential for antimicrobial application hence improves the substrates properties.

In this research, the effect of additives in TiO₂ sol gel preparation and effects of layers on the coating were evaluated in order to produce titania phases which are anatase and homogeneous coating. Moreover, the effect of silver nanoparticle (Ag) concentration was also assessed against different microbes. Later on, the antimicrobial performances of the deposited Ag-TiO₂ coating were evaluated to look at its efficiency as antimicrobial coating. This is an innovative approach in producing antimicrobial tiles that have good resistance against microbial.
1.3 Objectives

The aim of this research is to deposit Ag-TiO₂ coating on unglazed ceramic substrate for antimicrobial application. The specific objectives are:

1. To determine the effect of additive on the characteristic of Ag-TiO₂ coating.
2. To determine the effect of layers on the characteristic of Ag-TiO₂ coating deposited on unglazed ceramic substrate.
3. To evaluate the antimicrobial activities of the Ag-TiO₂ coating deposited on unglazed ceramic substrate through Gram positive (E.coli) and Gram negative (MRSA) microbes.

1.4 Significance of Research

The outcome of this research will contribute to the development of bacteria prevention in both indoor and outdoor humidity conditions such as in toilets and roofing tiles on buildings. Furthermore, ceramic coated with antimicrobials coating are particularly useful in an environment that requires a high level of hygiene. Moreover, result from this research will be able to contribute towards enhanced deposition of Ag-TiO₂ coating by identifying the suitable additives and number of layers for better antimicrobial performance.