

Faculty of Information Technology and Communication

NEIGHBOUR PIXEL COLOR CORRELATIVITY ON IMAGE STEGANALYSIS

Alaa Abdulhussein Jabbar

Doctor of Philosophy

2015

NEIGHBOUR PIXEL COLOR CORRELATIVITY ON IMAGE STEGANALYSIS

ALAA ABDULHUSSEIN JABBAR

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information Technology and Communication

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declare that this thesis entitled "Neighbour Pixel Color Correlativity on Image

Steganalysis" is the result of my own research except as cited in the references. The

thesis has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Name : Alaa Abdulhussein Jabbar

Date :

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature :

Supervisor Name : SHAHRIN BIN SAHIB @ SAHIBUDDIN

Date :

DEDICATION

To my beloved family: Mother, Father, Wife and Brothers.

ABSTRACT

Steganalysis is science of discovering presence of secretively embedded data within the potential carriers. Since images are one of the most commonly used digital media on networks, they grab less attention than other digital media types. As a result, images are very appropriate cover for concealing presence of secret data transmission. Insertion of external data degrades the natural color correlativity among the pixels. Statistical steganalysis is an effective approach for discovering the generated anamolies through embedding process in content of images. Various statistical steganalysis techniques have been designed to discover presence of embedding artifacts and anomalies. However, the current practices are not efficient enough for detection of steganography. To overcome the problem, this research proposes a novel statistical steganalysis technique which efficienctly detects data embedding. Since this method statistically examines the suspicious carriers then it has more capability in distinguishing effects of new steganographic techniques. Color correlativity among image pixels varies based on image content and data embedding degrades this natural correlativity. This research classifies images in four image themes and then studies their behaviors after data embedding in different embedding ratios. The proposed method examines color correlativity of pixels of the given image with the neighbor pixels and then compares the results with the extracted color correlativity behavioral patterns. The most similar color correlativity behavioral pattern determines image theme of the analyzed image and its embedding ratio. Efficiency evaluation of the designed color correlativity statistical steganalysis method shows outstanding efficiency ehancement in comparison with the current practices. The designed technique efficiently determines both image theme and embedding ratio. The efficiency dramatically increases in detecting either of image theme or estimating message length.

ABSTRAK

Steganalisis adalah suatu bidang sains dalam mengenal pasti data rahsia yang tersembunyi disebalik media tersurat. Memandangkan imej adalah digital media biasa digunakan dalam talian rangkaian, ianya mudah terlepas pandang berbanding media lain. Ini menjadikan imej sebagai media yang sesuai untuk menyembunyikan kehadiran saluran data rahsia. Kemasukan data luar secara amnya akan menjejaskan keaslian corak hubung-kait warna antara piksel imej. Steganalysis statistik merupakan kaedah yang berkesan bagi mengesan kehadiran data asing yang terhasil semasa proses penyembunyian data rahsia dalam isi kandungan imej. Pelbagai teknik steganalysis statistik telah dicipta bagi mengesan kehadiran data tersembunyi dan barangan asing dalam sesuatu imej. Namun, amalan masa kini masih lagi kurang efisien bagi mengesan data rahsia stegano. Bagi mengatasi masalah ini, penyelidikan ini mencadangkan teknik steganalysis statistik baru yang lebih berkesan dalam mengesan data rahsia stegano tersembunyi. Memandangkan kaedah ini memeriksa imej media pembawa yang diragui, maka ianya lebih dalam mengenalpasti kesan berkeupayaan biasan teknik stegano Kesalinghubungan antara warna piksel imej adalah pelbagai bergantung kepada isi kandungan imej dan penyembunyian data merungkaikan lagi keaslian hubungkait antara warna piksel. Penyelidikan ini akan menkelaskan imej kepada empat(4) tema dan membuat kajian tentang kesan sampingan dari kehadiran data rahsia pada nisbah yang berbeza. Kaedah ini akan memeriksa hubungkait antara warna piksel dengan piksel berjiranan dan dibandingkan dengan hubungkait antara corak warna piksel asli. Corak hubungkait antara warna piksel yang terdekat akan menentukan tema imej dan nisbah penyembunyian yang sesuai. Penilaian keberkesanan kaedah steganalisis hubungkait statistik antara warna piksel yang direka akan menunjukkan peningkatan berbanding amalan semasa. Kaedah baru yang diperkenalkan dan dianjurkan akan menentukan tema imej dan nisbah penyembunyian data. Peningkatan keberkesanan dapat dilihat dalam mengenalpasti tema imej atau menjangka berapa panjangnya mesej.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Professor Dr. Shahrin Bin Sahib @ Sahibuddin Dean of ICT faculty of Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Senior Lecturer Dr. Mazdak Zamani Senior Lecturer in Advanced Informatics School of Universiti of Teknology Malaysia (UTM AIS), co-supervisor of this project for his advice and suggestions.

Special thanks to all my peers, beloved father, mother, wife, and siblings for their moral support in completing this degree. Lastly thank you to everyone who has been to the crucial parts of realization of this project.

TABLE OF CONTENTS

				PAGE
DEC	CLAR	ATION		
APF	ROVA	_		
DEI	DICAT	ION		
ABS	STRAC	ZT .		i
ABS	STRAI			ii
ACI	KNOW	LEDGEMENT		iii
TAI	BLE O	F CONTENTS		iv
LIS	T OF	TABLES		viii
LIS	T OF 1	FIGURES		xiv
LIS	T OF	ABBREVIATIONS		xix
LIS	T OF	APPENDICES		XX
CHA	APTE	t		
1.	INT	RODUCTION		1
	1.0	Data Hiding Background		1
	1.1	Problem background		4
	1.2	Problem statement		5
	1.3	Research questions		6
	1.4	Research objectives		8
	1.5	Terminologu justification		8
	1.6	Scope of study		9
	1.7	Significance of study		10
	1.8 1.9	Research contribution Thesis organization		11 12
	1.10	<u> </u>		14
2.	LIT	ERATURE REVIEW		15
	2.1	History of steganography and watern	narking	16
	2.2	Steganography and watermarking de	finitions in CIA triangle	18
		2.2.1 Compression ratio	C	18
		2.2.2 Multiple watermarks		18
		2.2.3 Success rate and embedding of	complexity	18
		2.2.4 Detection complexity	1	18
		2.2.5 Secret key		19
		2.2.6 Statistical invisibility		19
		2.2.7 Secrecy		20
		2.2.8 Computational cost		21
		2 2 9 Redundancy		21

2.3	Import	ant stegac	ography measurements	23
	2.3.1	Capacity	T.	23
	2.3.2	Robustne	ess	24
	2.3.3	Imperce	ptibility	24
	2.3.4	Security		25
2.4	Stegan	ography t	types	28
	2.4.1	Fragile S	Steganography	30
	2.4.2	Robust s	teganography	31
2.5	Stegan	ography t	techniques	32
	2.5.1	Binary-f	ile technique	32
	2.5.2	Text steg	ganography techniques	34
		2.5.2.1	Line shift coding protocol	34
		2.5.2.2	Word Shift coding protocol	35
		2.5.2.3	Feature coding protocol	35
		2.5.2.4	White spectrum manipulation	36
		2.5.2.5	Text content	36
	2.5.3	XML		36
	2.5.4	Image St	teganography techniques	38
		2.5.4.1	Least Significant Bit (LSB)	38
		2.5.4.2	Direct Cosine Transformation	40
		2.5.4.3	Wavelet Transformation	42
	2.5.5	Audio da	ata hiding	45
		2.5.5.1	Spread spectrum	45
		2.5.5.2	MIDI	45
		2.5.5.3	MP3	46
	2.5.6	Video		48
	2.5.7	DNA		49
	2.5.8	Hybrid s	teganography	49
2.6	Stegan	alysis and	d steganalysis attacks	51
2.7	Crypto	graphy		53
2.8	Review	v of the re	elated works	56
	2.8.1	Review of algorithm	of the related steganography and watermarking m	56
	2.8.2	.2 Review of the integration of steganography and cryptography algorithms		57
	2.8.3	Review o	of the related image steganalysis algorithms	58
2.9	Introdu	action to r	research methodology	64
2.10	Summary		67	

3.	RES	SEARC	CH METHODOLOGY	68
	3.1	Resea	rch design	68
		3.1.1	Objective 1: An exploralary study on pixel correlativity	68
		3.1.2	Objective 2: An extraction on pixel correlativity behavior	69
		3.1.3	Objective 3: Image them detaction according to pixel correlativity	69
		3.1.4	Objective 4: Evaluation of the steganalysis method	69
	3.2	Resea	arch procedures and activities	70
		3.2.1	Determining optimized analysis border	70
		3.2.2	Extracting color correlativity behavioral pattern	71
		3.2.3	Scoring similarity of color correlativity analysis results with color correlativity behavioral patterns	72
		3.2.4	Tool development for color correlativity analysis and steganalysis	74
		3.2.5	Sampling and efficiency evaluation	74
	3.3	Summ	nary	77
4.			ND NEIGHBOR PIXEL COLOR CORRELATIVITY CAL STEGANALYSIS METHOD	78
	4.1	Color	correlativity analysis of pixels	78
		4.1.1	Pixel color (AND) correlativity analysis	81
		4.1.2	Channel color (OR) correlativity analysis	85
		4.1.3	Color correlativity patterns	89
		4.1.4	Purifying color correlativity analysis results by standard deviation for generating color correlativity behavioral patterns	89
		4.1.5	Source of dataset images	92
		4.1.6	Determining layer examination threshold	93
		4.1.7	Pattern matching system	94
	4.2	Image	e themes	98
		4.2.1	Wide Flat Region	99
		4.2.2	Wide Smooth Region	104
		4.2.3	Partial smooth region images	108
		4.2.4	Edgy images	112
	4.3	Deter	mining efficient boundary of neighbor layer analysis	118
		4.3.1	Optimized layer for AND color correlativity steganalysis	121
		4.3.2	Optimized layer for OR color correlativity steganalysis	125
	4.4	Sumn	nary	129
5.			CAL ANALYSIS AND COLOR CORRELATIVITY	130

	5.1	Statistics and extracted color correlativity behavioral patterns of primary dataset original images	131
	5.2	Statistics and extracted color correlativity behavioral patterns of embedded wide flat region images	135
	5.3	Statistics and extracted color correlativity behavioral patterns of embedded wide smooth region images	146
	5.4	Statistics and extracted color correlativity behavioral patterns of embedded partial smooth region images	157
	5.5	Statistics and extracted color correlativity behavioral patterns of embedded edgy images	168
	5.6	Summary	179
6.	CO	ALUATION OF THE COMPOUND NEIGHBOR PIXEL LOR CORRELATIVITY STATISTICAL STEGANALYSIS THOD	180
	6.1	Primary dataset steganalysis results	181
		6.1.1 Theme-based steganalysis results	182
		6.1.2 Blind steganalysis results	184
		6.1.3 Steganalysis performance evaluation on edgy images of primary dataset	
	6.2	Secondary dataset steganalysis results	187
		6.2.1 Theme-based steganalysis results	188
		6.2.2 Blind steganalysis results6.2.3 Steganalysis performance evaluation on edgy images of secondary dataset	189 190
	6.3	Embedding ratio determination	191
		6.3.1 Embedding ratio determination accuracy of Theme-based steganalysis	192
		6.3.2 Embedding ratio determination accuracy of blind steganalysis	195
	6.4	Image theme detection	200
	6.5	Efficiency comparison of color correlativity statistical steganalysis algorithm and related image steganalysis algorithms of literature review	203
	6.6	Summary	205
7.	CO	NTRIBUTION AND CONCLUSION	206
	7.1	Research objectives	206
	7.2	Conclusion	207
	7.3	Contributions	210
	7.4	Future works	211
	7.5	Summary	213
REF	EREN	NCES	214
APP	PPENDICES 22		

LIST OF TABLES

TABLE	TITLE	PAGE
2.1: Comparison	of steganography, watermarking and cryptographic properties	22
2.2: Sample of fr	agile watermarking algorithm for content authenticating (Aloma	ari,
R., and Al-Ja	aber 2004)	30
2.3: Sample of in	nage LSB steganography algorithm	40
2.4: Drawbacks of	of spatial domain and DCT base domain steganography methods	S
(Cheddad, A	, Condell, A. J., Curran, K., Kevitt 2010)	41
2.5: Performance	e of typical image steganographic methods	43
2.6: Evaluation o	of the Image Steganography techniques	44
2.7: Comparison	of image steganography algorithms	45
2.8: Summary an	d evaluation of Audio steganography Methods	47
2.9: Comparison	of various steganography techniques	48
2.10: Hybrid steg	ganography algorithm	50
2.11: Hybrid ext	raction and detection steganography algorithm	51
2.12: Steganalysi	s attack types	52
3.1: Structure of	correlativity behavioral pattern for layer I and analysis	
value of X		72
4.3: Structure of	correlativity behavioral pattern for 3 neighbor layers	92
4.4: Color correla	ativity steganalysis results of a sample image	96
4.5: Color correla	ativity behavioral pattern of 4-bits embedded wide flat region	
images		96
4.6: Similarity ev	valuation scoring details based on tables 4.4 and 4.5 values	97
4.7: AND and Ol	R pixels' color correlativity analysis of wide flat region images	
in 5 layers		102
4.8: AND and O	R pixels' color correlativity analysis of wide smooth region	
images in 5	layers	106
4.9: AND and O	R pixels' color correlativity analysis of partial smooth region	
images in 5 l	layers	110

4.10:AND and OR pixels' color correlativity analysis of edgy images in 5 layer	114
4.11: Average values of AND pixels' color correlativity analysis of original copie	es
of the four image themes from one to fifth layer	117
4.12: Average values of OR pixels' color correlativity analysis of original copies	
of the four image themes from one to fifth layer	117
4.13: Number of pixels in each neighbor layer and load of required process for	
each layer	119
4.14: Original and projection values of AND color correlativity analysis of origin	nal
images	121
4.15: Original and projection distance values between layers for AND correlativity	ty
analysis	123
4.16: Average distance and process percentage between AND analysis values of	
every two neighbour layers	123
4.17: Percent of correlated and unrelated AND analysis of pixels for each layer	125
4.18: Original and projection values of OR color correlativity analysis of original	
images	126
4.19: Original and projection distance values between layers for OR correlativity	
analysis	127
4.20: Average distance and process percentage between OR analysis values of ev	ery
two neighbour layers	127
4.21: Percent of correlated and unrelated OR analysis of pixels for each layer	129
5.1: Statistical analysis of color correlativity analysis of primary dataset original	
wide flat region images	132
5.2: Extracted color correlativity behavioral pattern of original wide flat region	
images	132
5.3: Statistical analysis of color correlativity analysis of primary dataset original	wide
smooth region images	133
5.4: Extracted color correlativity behavioral pattern of original wide smooth region	n
images	133
5.5: Statistical analysis of color correlativity analysis of primary dataset original	
partial smooth region images	134
5.6: Extracted color correlativity behavioral pattern of original partial smooth	
region images	134

5.7: Statistical analysis of color correlativity analysis of primary dataset original	
edgy images	135
5.8: Extracted color correlativity behavioral pattern of original edgy images	135
5.9: Statistical analysis of color correlativity analysis of primary dataset 1-bit	
embedded wide flat region images	137
5.10: Extracted color correlativity behavioral pattern of 1-bit embedded wide flat	t
region images	138
5.11: Statistical analysis of color correlativity analysis of primary dataset 2-bits	
embedded wide flat region images	139
5.12: Extracted color correlativity behavioral pattern of 2-bits embedded wide fla	at
region images	140
5.13: Statistical analysis of color correlativity analysis of primary dataset 3-bits	
embedded wide flat region images	142
5.14: Extracted color correlativity behavioral pattern of 3-bits embedded wide flat	
region images	142
5.15: Statistical analysis of color correlativity analysis of primary dataset 4-bits	
embedded wide flat region images	144
5.16: Extracted color correlativity behavioral pattern of 4-bits embedded wide flat	
region images	144
5.17: Statistical analysis of color correlativity analysis of primary dataset 5-bits	
embedded wide flat region images	146
5.18: Extracted color correlativity behavioral pattern of 5-bits embedded wide flat	
region images	146
5.19: Statistical analysis of color correlativity analysis of primary dataset 1-bit	
embedded wide smooth region images	148
5.20: Extracted color correlativity behavioral pattern of 1-bit embedded wide	
smooth region images	149
5.21: Statistical analysis of color correlativity analysis of primary dataset 2-bits	
embedded wide smooth region images	151
5.22: Extracted color correlativity behavioral pattern of 2-bits embedded wide	
smooth region images	151
5.23: Statistical analysis of color correlativity analysis of primary dataset 3-bits	
embedded wide smooth region images	153

5.24: Extracted color correlativity behavioral pattern of 3-bits embedded wide	
smooth region images	153
5.25: Statistical analysis of color correlativity analysis of primary dataset 4-bits	
embedded wide smooth region images	155
5.26: Extracted color correlativity behavioral pattern of 4-bits embedded wide	
smooth region images	155
5.27: Statistical analysis of color correlativity analysis of primary dataset 5-bits	
embedded wide smooth region images	157
5.28: Extracted color correlativity behavioral pattern of 5-bits embedded wide	
smooth region images	157
5.29: Statistical analysis of color correlativity analysis of primary dataset 1-bit	
embedded partial smooth region images	159
5.30: Extracted color correlativity behavioral pattern of 1-bit embedded partial	
smooth region images	160
5.31: Statistical analysis of color correlativity analysis of primary dataset 2-bits	
embedded partial smooth region images	161
5.32: Extracted color correlativity behavioral pattern of 2-bits embedded partial	
smooth region images	162
5.33: Statistical analysis of color correlativity analysis of primary dataset 3-bits	
embedded partial smooth region images	164
5.34: Extracted color correlativity behavioral pattern of 3-bits embedded partial	
smooth region images	164
5.35: Statistical analysis of color correlativity analysis of primary dataset 4-bits	
embedded partial smooth region images	166
5.36: Extracted color correlativity behavioral pattern of 4-bits embedded partial	
smooth region images	166
5.37: Statistical analysis of color correlativity analysis of primary dataset 5-bits	
embedded partial smooth region images	168
5.38: Extracted color correlativity behavioral pattern of 5-bits embedded partial	
smooth region images	168
5.39: Statistical analysis of color correlativity analysis of primary dataset 1-bit	
embedded edgy region images	170

5.40: Extracted color correlativity behavioral pattern of 1-bit embedded edgy	
region images	171
5. 41: Extracted color correlativity behavioral pattern of 1-bits embedded edgy	
region images	173
5.42: Extracted color correlativity behavioral pattern of 2-bits embedded edgy	
region images	173
5.43: Statistical analysis of color correlativity analysis of primary dataset 3-bits	
embedded edgy region images	175
5.44: Extracted color correlativity behavioral pattern of 3-bits embedded edgy	
region images	175
5.45: Statistical analysis of color correlativity analysis of primary dataset 4-bit	S
embedded edgy region images	177
5.46: Extracted color correlativity behavioral pattern of 4-bits embedded edgy	
region images	177
5.47: Statistical analysis of color correlativity analysis of primary dataset 5-bits	
embedded edgy region images	179
5.48: Extracted color correlativity behavioral pattern of 5-bits embedded edgy	
region images	179
6.1: Neighbor pixel color correlativity analysis values of a sample wide flat	
region image	183
6.2: Matching score values calculated based on table 6.1 neighbor pixel color	
correlativity values and wide flat region color correlativity behavioral	
patterns	183
6.3: Descending sorted order of calculated wide flat region images matching	
scores	183
6.4: Meaning of the blind steganalysis identifier values	185
6.5: Neighbor pixel color correlativity analysis values of a sample given image	
for blind analysis	185
6.6: Descending sorted order of match color correlativity behavioral patterns	
based on color correlativity analysis results of table 6.5	186
6.A Theme-based steganalysis performance on edgy images of primary image	
database	187
6 B Blind steganalysis performance on edgy images of primary image database	187

6.C Theme-based steganalysis performance on edgy images of secondary image	
database	190
6.D Blind steganalysis performance on edgy images of secondary image databas	e190
6.7: Embedding ratio determination accuracy of theme-based steganalysis of	
primary dataset images	192
6.8: Embedding ratio determination accuracy of theme-based steganalysis of	
secondary dataset images	193
6.9: Difference of accuracy of embedding ratio determination of theme-based	
steganalysis between primary and secondary datasets	193
6.10: Embedding ratio determination accuracy of blind steganalysis of primary	
dataset images	196
6.11: Embedding ratio determination accuracy of blind steganalysis of seconda	ry
dataset images	197
6.12: Difference of accuracy of embedding ratio determination of blind	
steganalysis between primary and secondary datasets	198
6.13: Image theme detection accuracy of compound color correlativity	
steganalysis of primary dataset images	201
6.14: Image theme detection accuracy of compound color correlativity	
steganalysis of secondary dataset images	201
6.15: Difference of accuracy of image theme detection of compound color	
correlativity steganalysis between primary and secondary datasets	202

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.3: Classification of data	hiding techniques	29
2.4: Steganography data e	embedding diagram	32
2.5: Steganography data e	extraction diagram	32
2.6: Binary file steganogra	aphy	33
2.7: Process of embedding	g information in a document	34
2.8: Example of word shi	fting steganography technique	35
2.9: Illustration of first me	ethod of using XML tags for data hiding	37
2.10: Illustration of secon	d method of using XML tags for data hiding	37
2.11: Illustration of eleme	ent arrangement steganography	37
2.12: LSB steganography		38
2.13: Result of 1 bit (left)) and 4 bits (right) embedding in a cover image	39
2.15: Hash function		55
2.16: Digital signing of a	document	55
2.13: Histogram coefficie	nt translation difference efficiency evaluation results	60
2.14: Support vector regre	ession steganalysis efficiency evaluation results	61
2.15: Rate distortion curv	e steganalysis efficiency evaluation results	61
2.16: Efficiency evaluation	on results of neighborhood information steganalysis of	1-bit
and 2-bits stego imag	jes	62
2.17: Efficiency evaluation	on results of adjacency pixel bits structure steganalysis	63
2.18: Efficiency evaluation	on results of difference distributions statistical modeling	1g
steganalysis		63
2.18: Illustration of neigh	bor layer meaning	65
3.1: Scoring method illus	stration in comparison of percentage of color correlative	vity of
each analyzed layer v	with relevant color correlativity behavioral pattern	73
3.2: Research flowchart		75

3.3: Steps and procedures of running research	76
4.1: Illustration of Neighbor Layer Concept	80
4.2: Pixel analysis area	81
4.3: AND pixel correlativity analysis illustration	84
4.4: OR pixel correlativity analysis illustration	88
4.5: A plot of bell shaped distribution of data from mean point where each band ha	ıs
width of one standard deviation	90
4.6: Illustration of color correlativity comparison scoring system	95
4.7: Sample of images with big flat regions	100
4.8: Illustration of analysis of AND color correlativity in original wide flat region	
images	103
4.9: Illustration of analysis of OR color correlativity in original wide flat region	
images	104
4.10: Sample of images with wide smooth regions	105
4.11: Illustration of analysis of AND color correlativity in original wide smooth	
region images	107
4.12: Illustration of analysis of OR color correlativity in original wide smooth	
region images	108
4.13: Sample of images with partial smooth regions	109
4.14: Illustration of analysis of AND color correlativity in original partial smooth	
region images	111
4.15: Illustration of analysis of OR color correlativity in original partial smooth	
region images	112
4.16: Sample of edgy images	113
4.17: Illustration of analysis of AND color correlativity in edgy images	115
4.18: Illustration of analysis of OR color correlativity in original edgy images	116
4.21: AND pixel color correlativity analysis of original images of primary dataset i	n
five layers	119
4.22: OR pixel color correlativity analysis of original images of primary dataset	
in five layers	120
4.23: Projection of AND correlativity analysis tracks	122
4.24: AND-analysis distance and analysis percentage among the layers	123
4.25: Projection of OR correlativity analysis tracks	126

4.26: OR-analysis distance and analysis percentage among the layers	127
5.1: Scattering depiction of AND color correlativity analysis of 1-bit embedded	
primary dataset wide flat region images	136
5.2: Scattering depiction of OR color correlativity analysis of 1-bit embedded	
primary dataset wide flat region images	137
5.3: Scattering depiction of AND color correlativity analysis of 2-bits embedded	
primary dataset wide flat region images	138
5.4: Scattering depiction of OR color correlativity analysis of 2-bits embedded	
primary dataset wide flat region images	139
5.5: Scattering depiction of AND color correlativity analysis of 3-bits embedded	
primary dataset wide flat region images	141
5.6: Scattering depiction of OR color correlativity analysis of 3-bits embedded	
primary dataset wide flat region images	141
5.7: Scattering depiction of AND color correlativity analysis of 4-bits embedded	
primary dataset wide flat region images	143
5.8: Scattering depiction of OR color correlativity analysis of 4-bits embedded	
primary dataset wide flat region images	143
5.9: Scattering depiction of AND color correlativity analysis of 5-bits embedded	
primary dataset wide flat region images	145
5.10: Scattering depiction of OR color correlativity analysis of 5-bits embedded	
primary dataset wide flat region images	145
5.11: Scattering depiction of AND color correlativity analysis of 1-bit embedded	
primary dataset wide smooth region images	147
5.12: Scattering depiction of OR color correlativity analysis of 1-bit embedded	
primary dataset wide smooth region images	148
5.13: Scattering depiction of AND color correlativity analysis of 2-bits embedded	
primary dataset wide smooth region images	150
5.14: Scattering depiction of OR color correlativity analysis of 2-bits embedded	
primary dataset wide smooth region images	150
5.15: Scattering depiction of AND color correlativity analysis of 3-bits embedded	
primary dataset wide smooth region images	152
5.16: Scattering depiction of OR color correlativity analysis of 3-bits embedded	
nrimary dataset wide smooth region images	152

5.17: Scattering depiction of AND color correlativity analysis of 4-bits embedded	
primary dataset wide smooth region images	154
5.18: Scattering depiction of OR color correlativity analysis of 4-bits embedded	
primary dataset wide smooth region images	154
5.19: Scattering depiction of AND color correlativity analysis of 5-bits embedded	
primary dataset wide smooth region images	156
5.20: Scattering depiction of OR color correlativity analysis of 5-bits embedded	
primary dataset wide smooth region images	156
5.21: Scattering depiction of AND color correlativity analysis of 1-bit embedded	
primary dataset partial smooth region images	158
5.22: Scattering depiction of OR color correlativity analysis of 1-bit embedded	
primary dataset partial smooth region images	159
5.23: Scattering depiction of AND color correlativity analysis of 2-bits embedded	
primary dataset partial smooth region images	160
5.24: Scattering depiction of OR color correlativity analysis of 2-bits embedded	
primary dataset partial smooth region images	161
5.25: Scattering depiction of AND color correlativity analysis of 3-bits embedded	
primary dataset partial smooth region images	163
5.26: Scattering depiction of OR color correlativity analysis of 3-bits embedded	
primary dataset partial smooth region images	163
5.27: Scattering depiction of AND color correlativity analysis of 4-bits embedded	
primary dataset partial smooth region images	165
5.28: Scattering depiction of OR color correlativity analysis of 4-bits embedded	
primary dataset partial smooth region images	165
5.29: Scattering depiction of AND color correlativity analysis of 5-bits embedded	
primary dataset partial smooth region images	167
5.30: Scattering depiction of OR color correlativity analysis of 5-bits embedded	
primary dataset partial smooth region images	167
5.31: Scattering depiction of AND color correlativity analysis of 1-bit embedded	
primary dataset edgy images	169
5.32: Scattering depiction of OR color correlativity analysis of 1-bit embedded	
primary dataset edgy images	170

5.33: Scattering depiction of AND color correlativity analysis of 2-bits en	nbedded
primary dataset edgy images	172
5.34: Scattering depiction of OR color correlativity analysis of 2-bits emb	edded
primary dataset edgy images	172
5.36: Scattering depiction of AND color correlativity analysis of 3-bits en	nbedded
primary dataset edgy images	174
5.37: Scattering depiction of AND color correlativity analysis of 4-bits en	nbedded
primary dataset edgy images	176
5.38: Scattering depiction of OR color correlativity analysis of 4-bits emb	edded
primary dataset edgy images	176
5.39: Scattering depiction of AND color correlativity analysis of 5-bits en	nbedded
primary dataset edgy images	178
5.40: Scattering depiction of OR color correlativity analysis of 5-bits emb	edded
primary dataset edgy images	178
6.1: Illustration of accuracy of embedding ratio determination of theme-based	ased
steganalysis on primary and secondary datasets	194
6.2: Illustration of accuracy of embedding ratio determination of theme-based	ased
steganalysis with 1 bit accepted tolerance on primary and secondary of	datasets 195
6.3: Illustration of accuracy of photo theme and embedding ratio determin	nation
of blind steganalysis on primary and secondary datasets	198
6.4: Illustration of accuracy of embedding ratio determination of blind	
steganalysis on primary and secondary datasets	199
6.5: Illustration of accuracy of photo theme detection of primary and seco	ndary
datasets	202

LIST OF ABBREVIATIONS

D/A - Digital to Analogue

A/D - Analogue to Digital

AES - Advanced Encryption System

ASCII - American Standard Code for Information Interchange

CA - Certificate Authority

CIA - Confidentiality, Integrity, Availability

DCT - Direct Cosine Transformation

DCT - Discrete Contourlet Transform

DES - Data Encryption Standard

ERR - Equal Error Rate

IQM - Image Quality Measures

KMA - Known Message Attack

KOA - Known Original Attack

LSB - Least Significant Bit

PC - Program Change

PDF - Probability Density Function

PRNG - Pseudo-Random Number Generator

PSNR - Peak Signal to Noise Ratio

QIM - Quantization Index Modulation

RGB - Red,Green,Blue

ROC - Receiver operating characteristics

SVM - Support Vector Machine

TMDE - Total Minimal Decision Error

WOA - Watermarked Only Attack

XML - Extensible Markup Language