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ABSTRACT

A micro-perforated panel (MPP) absorber has been known widely as an alternative absorber

to the conventional fibrous type acoustic material. The MPP system is arranged with dis-

tance from a rigid wall to provide an air gap layer. Several theoretical approaches to predict

the sound absorption of the MPP have been published. In particular for the double MPPs,

approximate expression for the air gap impedance is used which yields deviation in the re-

sult when it is compared with the experiment. In this study, wave propagation technique is

proposed to represent the behaviour of sound incident and reflected in the MPP system. The

motion of the MPP is also included in the model. The proposed models provide an attractive

technique to predict the sound absorption as well as the transmission and reflection. The

MPP can be set to be a solid panel by adjusting the impedance of the holes to infinity and

the solid panel can be turned into a rigid wall by setting the panel impedance to infinity.

The model can be applied for the single MPP and multi-layer MPPs; a stand-alone system

without rigid wall as well as the system backed with a rigid wall. The results for the MPP

system backed by a rigid wall then is compared with experimental data. It is found that the

result from the wave propagation technique has a better good agreement with the experiment

at higher frequency.
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ABSTRAK

Penyerap panel bertebuk mikro (MPP) telah dikenali secara meluas sebagai sistem peny-

erap suara alternatif kepada bahan akustik konvensional dari jenis serat. Sistem MPP dis-

usun pada jarak tertentu dari dinding untuk menghasilkan lapisan ruang udara. Beberapa

pendekatan secara teori untuk meramalkan penyerapan bunyi bagi MPP telah diterbitkan.

Persamaan anggaran untuk impedans ruang udara digunakan, khususnya bagi dua lapisan

MPP yang menghasilkan sisihan di antara teori dan eksperimen. Dalam kajian ini, teknik

perambatan gelombang dicadangkan bagi menerangkan tingkah laku bunyi langsung dan

pantulan bunyi dalam sistem MPP. Pergerakan MPP juga disertakan ke dalam model. Model

yang dicadangkan menyediakan satu teknik yang menarik untuk meramalkan penyerapan

bunyi serta penghantaran dan pantulan. MPP juga boleh disesuaikan menjadi panel yang

kukuh dengan mengubah suai impedans pada lubang sehingga menjadi tak terhingga dan

panel yang kukuh ini boleh ditukar menjadi dinding pegun dengan menetapkan impedans

panel juga kepada nilai tak terhingga. Model ini boleh diaplikasi bagi sistem MPP tunggal

dan sistem MPP banyak lapisan; sistem yang berdiri sendiri samada dengan atau tanpa

dinding pegun. Hasil untuk MPP dengan dinding pegun kemudian dibandingkan kepada

data eksperimen. Didapati bahawa model perambatan gelombang mencapai persetujuan

yang baik dengan eksperimen pada frekuensi tinggi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the background of the study and the past research works con-

cerning the sound absorbers. This is started by introducing the type of sound absorbers and

the potential of natural fibers as alternative sound absorber materials which are more envi-

ronmentally friendly. Employment of micro-perforated panel (MPP) as the newest method

of sound absorber is also presented.

1.2 Background

Good acoustic performance is important in buildings such as classrooms, health care

facilities, auditoriums and concert halls. In classrooms, the ability to hear and understand

what is being said is vital for learning. When acoustical performance in classroom is poor,

this will affect speech understanding, attention, concentration and eventually academic achieve-

ment. The characteristic of auditorium contributes greatly to the perceived sound of speech.

It is hard to understand speech when echoes are too strong. People tend to slow down their

speech, talk louder and try to pronounce words more precisely in an effort to make the

received speech intelligible. The same applies to concert halls where great acoustic perfor-

mance is important to provide an enjoyable auditory experience.

To maintain good acoustic quality in a room due to late reflections which cause the

echos and high reverberation time, the surfaces of walls or ceiling in general, are covered by

absorptive layers. Commonly, the materials are made from synthetic chemical substances



which are known to not only have negative impacts concerning their risk on pollution, health

and fire hazards, but also contribute to CO2 pollution in their fabrication that can triggers

global warming. Figure 1.1 shows the global warming potential caused by synthetic and

natural fiber materials. It can be seen that the synthetic material, such as foamglass has

higher global warming potential compared to the natural fibers such as coconut fibers.

Euronoise 2006, Tampere, Finland Francesco Asdrubali
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production, transport, construction, operating and management, de-construction and disposal, 
recycling and reuse have therefore to be taken into account. 

For designers and decision-makers, LCA analysis results are available as “ecoprofiles”; 
among these the most known are Ecoinvent, BRE Eco-profiles and Eco-indicator. 

Ecoinvent [3] is a Swiss LCA database which takes into account the following impact 
assessment results: Cumulated Energy Demand (CED) and Non-Renewable Energy (NRE) 
fraction, Global Warming Potential (GWP) and Acidification Power (AP). A comparison 
based on the Ecoinvent database between the environmental impacts of some traditional and 
natural sound insulation materials from cradle to gate is shown in Fig. 1 [4]: cellulose, flax 
and sheep wool have the lowest impacts on the considered categories. 
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Fig. 1. Ecoinvent. Comparison of environmental impacts of traditional and natural materials. [4] Figure 1.1 Comparison of global warming potential of conventional and natural ma-
terials (Asdrubali, 2006).

These issues have attracted attention of researchers for new absorptive materials which

are more enviromental friendly. Several studies are therefore focused in investigating natural

fibers to be employed as sound absorber. The natural fibers give more advantages than

synthetic ones as they are renewable and available in abundance amount in certain countries.

The next sections first discuss the type of sound absorbers in practice followed by the concept

of green and sustainable acoustic absorbers.

1.3 Type of sound absorbers

Sound absorbers can be considered as porous absorber, volume absorbers and panel

absorbers. Generally, porous absorbers are most effective at mid to high frequencies, while

2



panel and volume absorbers are most effective at lower frequencies.

1.3.1 Porous absorber

Porous absorbers are often used for the purpose of absorbing sound due to their ability

to absorb most of the sound energy striking them. Common examples are mineral wools,

fiberglass, open cell foams, acoustic tiles, carpets and curtains.

Based on their microscopic configurations, porous absorbing materials can be classi-

fied as cellular, fibrous or granular. Their main types, typical microscopic arrangements and

physical models are shown in Figure 1.2.

Figure 1.2 Type of porous sound absorbing materials (Arenas and Crocker, 2013).

When sound wave propagates in a porous absorber, the movement of air motion in-

duced by sound wave through narrow constrictions produces losses of momentum. This due

to viscous friction and the direction of flow changes as the sound waves through the irregular

3



pores. This account for most significant at high frequency losses (Long, 2005). At low fre-

quencies, more significant absorption due to thermal conduction from the air to the absorber

material (Cox and D’Antonio, 2009).

1.3.2 Helmholtz resonator

Helmholtz resonator is widely used to achieve absorption at low frequency. This type

of sound absorber was invented by German physicist Hermann von Helmholtz (1821-1894).

Resembling a spring system with damping to provide absorption at the resonant frequency

of the system. A simple Helmholtz resonator is illustrated in Figure 1.3 which consists of

an enclosed volume V , having a small neck of area A (opening at one end) which length L.

The principle is that the air in the neck acts like a fluctuating mass and the air in the cavity

acts like a spring (Vigran, 2008). The sound energy is ’consumed’ to vibrate the mass-spring

system and thus the optimum energy absorbed by resonator is at the resonant frequency.

A

L

V

R

Figure 1.3 Diagram of a Helmholtz resonator.
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