DESIGN AND DEVELOPMENT OF CUSTOMIZED DRINKING BOTTLE CAP FOR SME

This report is submitted in accordance with the requirement of Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor of Manufacturing Engineering Technology (Product Design) with Honours

by

YONG CHIN YI
B071210114
920227-06-5776

FACULTY OF ENGINEERING TECHNOLOGY
2015
TAJUK: Design and Development of Customized Drinking Bottle Cap for SME.

SESU PENGAJIANAN: 2015/16 Semester 1

Saya YONG CHIN YI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TERHAD (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

✓ TIDAK TERHAD

Alamat Tetap:
64, Taman Raub Jaya 5,
27600 Raub,
Pahang,

Tarikh: 25/1/2016

Disahkan oleh:

Cop Rasaki:

ENG HASSAN BIN ATTAN
Juruta Pengajian Kanan
Fakulti Teknologi Kejuruteraan
Universiti Teknikal Malaysia Melaka

Tarih: 25/1/2016

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebah dan temnok laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this report entitled "Design and development of customized drinking bottle cap for SME" is the results of my own research except as cited in references.

Signature: [Signature]
Name: [Name]
Date: [Date]

© Universiti Teknologi Malaysia Melaka
APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Product Design) with Honors. The member of the supervisory is as follow:

[Signature]

(M.S. ABDULLAH BIN ATTA)

Fakultas Teknologi Kajian Kerja

(Faculty of Technology Design)

(Participant of Malaysia Melaka)

(Participant of Malaysia Melaka)

(Workbook of Malaysia Melaka)

(Project Supervisor)

[Signature]

(M.S. ABDULLAH BIN ATTA)

Fakultas Teknologi Kajian Kerja

(Faculty of Technology Design)

(Participant of Malaysia Melaka)

(Participant of Malaysia Melaka)

(Workbook of Malaysia Melaka)

(Project Co-supervisor)
ABSTRACT

The title of this project is ‘Design and development of customized drinking bottle for Small-Medium Enterprises (SME)’. The purpose of this project is to improve the injection mould inserts bottle cap in the lab from two cavities to four cavities and to fasten the processing time for injection of bottle cap. Besides that, this project also purposely wants to fabricate prototype of injection mould inserts for new design bottle cap by using rapid prototyping. In the first part, an introduction of this project was presented. It includes the background of this project, problem statements, objectives, scope, and report organizations. Next, research and literature review regarding to the topic of this project were done. All the research and literature review conducted from journals, articles, books, websites and etc. All the important information get form the research such as plastic injection moulding, patents, and reverse engineering were as the guideline and helped to accomplish this project successfully. In the next step, the methodology was identified. The project was planned with the aid of the Gantt chart and process flow chart. The measurement of the existing injection mould inserts for drinking bottle cap was conducted. Moving on, this project was continued with mould flow simulation analysis to analyse the result of the injection moulding processing time. In the last stage, conclusion of this project was made. The conclusion was the summary of this project. It also including the achievement, significance and problem faced during implementation of project. Lastly, there was some recommendation for the future work.
ABSTRAK

DEDICATIONS

To my parents,

Yong Swee Chuan and Chang Siew Foong

for raising me become who I am today.
ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Engr. Hassan bin Attan for giving me an opportunity working under his supervision throughout this project. Furthermore, I would like to thanks my co-supervisor Mr. Mohd Kamal bin Musa for giving me a helping hand along this project so that I can accomplish my project successfully. This project would not be completed under the time frame without their supervision and guidance.

Moreover, I would like to express thank to the Assistant Engineer Mr. Basri bin Bidin and Mr. Zulkifli bin Jantan. Thanks for all the advices and guidance during my laboratory session. I am very appreciate their alimentation to make my project can run smoothly.

Special thanks to my course mates and friends to had been providing me remarkable ideas to improve this project. Last but not least, I would like to thank my family who gave me physical, emotional and financial support throughout the project.
TABLE OF CONTENTS

DECLARATION ... iv
APPROVAL .. v
ABSTRACT .. vi
ABSTRAK .. vii
DEDICATIONS ... viii
ACKNOWLEDGMENTS ... ix
TABLE OF CONTENTS .. x
LIST OF FIGURES .. xv
LIST OF TABLE .. xvii
LIST OF SYMBOLS AND ABBREVIATIONS ... xviii

CHAPTER 1: INTRODUCTION ... 1
1.0 Introduction ... 1
1.1 Background ... 1
1.2 Problem Statement ... 2
1.3 Objectives .. 2
1.4 Scope .. 2
1.5 Report Organization .. 3

CHAPTER 2: LITERATURE REVIEW ... 4
2.0 Introduction ... 4
2.1 The Mould Development Process .. 4
2.6 Software in Reverse Engineering ... 30
 2.6.1 SOLIDWORKS .. 30
 2.6.2 CATIA ... 31
 2.6.3 Autodesk Moldflow .. 31
2.7 Patents Search ... 32
2.8 Summary ... 35

CHAPTER 3: METHODOLOGY ... 36
 3.0 Introduction ... 36
 3.1 Process Planning ... 36
 3.2 Process Flow ... 38
 3.2.1 Literature Review and Research .. 39
 3.2.2 Reverse Engineering on Existing Drinking Bottle Cap 39
 3.2.3 Conceptual Design and Sketches .. 43
 3.2.4 Generate CAD Drawings ... 43
 3.2.5 Analyse the Design ... 44
 3.2.6 Fabrication of Prototype ... 44
 3.2.7 Summary ... 44

CHAPTER 4: RESULTS AND DISCUSSION .. 45
 4.0 Introduction ... 45
 4.1 Conceptual Design .. 46
 4.2 Concept Screening .. 48
 4.3 Design of Drinking Bottle Cap .. 49
 4.4 Gate, Runner and Sprue Layout ... 52
4.5 Core and Cavity Design ...54
4.6 Moldflow Simulation Analysis ..55
 4.6.1 Mesh Type ...55
 4.6.2 Gate Location Analysis ...55
 4.6.3 Parameter Setting ...56
 4.6.4 Simulation Analysis Results ...58
4.7 Comparison of Mould Flow Simulation Analysis Results between Four
 Cavities Mould and Two Cavities Mould ...62
 4.7.1 Discussion ...62
4.8 Fabrication of Prototype ..64
4.9 Summary ..67

CHAPTER 5: CONCLUSION ...68
 5.0 Introduction ..68
 5.1 Summary of Project ...68
 5.2 Achievement of Project Objectives ...68
 5.3 Significance of Project ...69
 5.4 Problem Faced During Project ...69
 5.5 Recommendation for Future Work ...69

APPENDIX A ...71
APPENDIX B ...72
APPENDIX C ...73
APPENDIX D ...74
APPENDIX E ...75
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Mould Development Process</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Injection Moulding Machine</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Sprue and Runner Layout for Four Cavities</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Core and Cavity in a Mould</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical Bottle Caps with Tamper-proof Ring and Stripped Thread for Simpler</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ejection (No Unscrewing Mould Required)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of Difficulties of a Typical Unscrewing Mould</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>Mould where Thread can be Stripped</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>A Two-plate Cold Runner Mould</td>
<td>13</td>
</tr>
<tr>
<td>2.9</td>
<td>A Three-plate Cold Runner Mould</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Hot Runner System Types</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>Gate Types</td>
<td>16</td>
</tr>
<tr>
<td>2.12</td>
<td>4-cavity Mould for a 4lb (PP) Margarine Tub (Courtesy: Husky)</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Standard Two-plate Mould Base</td>
<td>21</td>
</tr>
<tr>
<td>2.14</td>
<td>The Comprehensive Reverse Engineering Process Chain</td>
<td>24</td>
</tr>
<tr>
<td>2.15</td>
<td>Leader Miracle CMM (Miracle 8107)</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>The Parameter of Leader Miracle CMM</td>
<td>27</td>
</tr>
<tr>
<td>2.17</td>
<td>Manual Vernier Calliper</td>
<td>28</td>
</tr>
<tr>
<td>2.18</td>
<td>Digital Vernier Calliper</td>
<td>28</td>
</tr>
<tr>
<td>2.19</td>
<td>Zscanner 700 cX</td>
<td>30</td>
</tr>
<tr>
<td>2.20</td>
<td>MoldflowXpress</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Project Flow Chart</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Core of The Existing Mould</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Cavity of The Existing Mould</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Two-plate Cold Runner Mould</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Drawing of Existing Mould Base</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Design Concept 1</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Drawing of Existing Mould Base</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Design Concept 3</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>The Finalized Design of Drinking Bottle Cap</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>The Gate, Runner and Sprue Layout</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Exploded View of Core and Cavity</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Gate Region Locator Algorithm</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Fill Time for Two Cavities Mould</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Fill Time for Four Cavities Mould</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Time to reach ejection temperature for Two Cavities Mould</td>
<td>60</td>
</tr>
<tr>
<td>4.11</td>
<td>Time to reach ejection temperature for Four Cavities Mould</td>
<td>60</td>
</tr>
<tr>
<td>4.12</td>
<td>Time to Reach Ejection Temperature, Part for Two Cavities Mould</td>
<td>61</td>
</tr>
<tr>
<td>4.13</td>
<td>Time to Reach Ejection Temperature, Part for Four Cavities Mould</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure 4.14: UP! 3D Printer ... 64
Figure 4.15: Four Caps with Runner System Layout 65
Figure 4.16: Cavity Insert ... 65
Figure 4.17: Core Insert ... 66
Figure 4.18: Core Insert, Cavity Insert and Parts with Runners 66
LIST OF TABLE

Table 2.1: The Cavity Layout of Mould with Advantages and Disadvantages 8
Table 2.2: The Common Mould Steels, Applications and Properties.................. 17
Table 2.3: The Function of Injection Mould Elements.................................. 22
Table 2.4: Data Collection Methods of Reverse Engineering. (Kai S and Jing W.
2010). .. 25
Table 2.5: The Specification of Leader Miracle CMM (Miracle 8107). 27
Table 2.6: Summary of Drinking Bottle Cap Patents. 32
Table 3.1: Pugh’s Evaluation Method.. 37
Table 4.1: Pugh’s Evaluation Method.. 49
Table 4.2: The sequences of cap design... 50
Table 4.3: Injection Moulding Process Setting Conditions for Polypropylene 57
Table 4.4: Comparison of Mould Flow Simulation Analysis between Four Cavities
and Two Cavities Mould... 62
Table 4.5: Comparison of Mould Flow Simulation Analysis between Injection
Process by using Four Cavities and Two Cavities Mould to produce Four Caps 63
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CMM</td>
<td>Coordinate Measuring Machine</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polythene</td>
</tr>
<tr>
<td>HSM</td>
<td>Hardware Security Module</td>
</tr>
<tr>
<td>P/L</td>
<td>Parting line</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>RP</td>
<td>Rapid Prototyping</td>
</tr>
<tr>
<td>SME</td>
<td>Small-Medium Enterprises</td>
</tr>
<tr>
<td>STL</td>
<td>Standard Triangulation Language</td>
</tr>
<tr>
<td>UTeM</td>
<td>Universiti Teknikal Malaysia Melaka</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.0 Introduction

The purpose of this project is to design and develop customized drinking bottle cap for small-medium enterprises (SME) by using Computer-Aided Design (CAD) and rapid prototyping technology. In this project, design and fabrication of prototype for core and cavity of injection mould inserts for drinking bottle cap are done. There are several methods needed to complete this project such as do research relevant to drinking bottle cap, study the structure and mechanism of the mould and characteristics, and apply Reverse Engineering technology in existing drinking bottle cap and mould base. Besides, design the new bottle cap as well as the core and cavity inserts of mould by using CAD optimization and simulation. The fabrication of prototype which is the injection mould inserts for new design bottle cap is conducted by rapid prototyping.

1.1 Background

A drinking bottle cap is used to seal the top of a drinking bottle. It is normally has the name or logo of the brand of beverage on it. This project is propose to do some research on the existing drinking bottle caps in the market in order to design and develop the customized drinking bottle cap for small and medium-sized enterprises (SME). Reverse Engineering technology is conducted on existing drinking bottle cap and mould base in order to get the CAD data. From the data, the new design and optimization of drinking bottle cap is conducted by using CAD optimization and simulation. Improvement of the injection mould inserts for bottle cap in the lab of Faculty of Engineering Technology UTeM has done from two cavities to four cavities.
1.2 Problem Statement

The current injection moulds for bottle cap in the lab of Faculty of Engineering Technology UTeM only have two cavities. This cause the processing time is long with only two cavities in the mould and the productivity is low for every time injection. The capabilities of facilities in the lab need further improvement.

1.3 Objectives

The objectives of this project are:

i. To improve the injection mould inserts for bottle cap in the lab from two cavities to four cavities.

ii. To fasten the processing time for plastic injection of bottle cap and improve the productivity.

iii. To fabricate prototype of injection mould inserts for new design bottle cap.

1.4 Scope

The scope of this project includes study the functions and structures of the injection moulding and apply Reverse Engineering technology on existing drinking bottle cap and mould base. Next, design and develop the drinking bottle cap and injection mould inserts for bottle cap. Besides that, use rapid prototyping technology to produce the prototype of the caps and its injection mould inserts.
1.5 **Report Organization**

This project focuses on the design and development of customized drinking bottle cap for SME. In Chapter One, a short introduction to the project is given. It describes briefly about the background, problem statements, objectives and scope of project.

Chapter Two is relevant to the literature review which is the study on the existing bottle cap, plastic injection moulding and Reverse Engineering technology. It provides useful information as the references along this project. Next, Chapter Three is all about the methodology. The procedure and process flow to finish this project are described briefly in this chapter. It includes the process planning, Gantt chart, and process flow to accomplish this project.

Chapter Four describes briefly about the result and discussion regarding to the design of new bottle cap and the injection mould inserts for bottle cap as well as the mould flow simulation analysis. Furthermore, it is also describes about the fabrication of prototype by using rapid prototyping technology. Finally, conclusions about the project are made in Chapter Five which is the summary of this project.
CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

Nowadays, there are many plastics products manufactured by using injection moulding method no matter in the production of consumer or industrial goods. There are a few difficult choices are needed to be chosen once the product decided to be made by using injection moulding. For examples, the number of cavities, mould design, ejection method, type of machine and etc. Therefore, there is a lot of literature reviews regarding to injection moulding and reverse engineering needed to be done as the references along this project.

2.1 The Mould Development Process

In the injection moulding process, the product design and mould design are often performed concurrently in order to reduce the product development time. When designing a mould for injection moulding, some information is needed for starting the design process. A product designer may need the process variables and process parameters. Process variables are related to the part geometry, moulding material, demands on the part, lot size and delivery date. Process parameters are the number of cavities, mould dimension, injection machine model and cost estimation for mould and injected parts. David O. K, 2007 stated that a product designer have to go through the following process to fabricate a mould successfully. From the initial design, there is a review for part design and specifications, followed by developing preliminary mould design and quote. If the project is past then it will proceed to the layout design, feed system design, cooling system design, ejector system design, structural system design and machining, polishing, assembly as well as trials. If the moulding is okay, the project is come to an end or else it will return to the step that
might need to do correction and modification. Figure 2.1 shows the development process of mould.

![Mould Development Process Diagram](image)

Figure 2.1: The Mould Development Process.

2.2 Introduction of Injection Mould

A manufacturing process that produces parts by injecting plastic into mould is known as injection moulding. The materials used in injection moulding normally are thermoplastic and thermosetting polymers such as Polypropylene (PP), Polyethylene
(PE) and High Density Polythene (HDPE). A mould can be used to make products in infinite variety of shapes by injecting hot plastics into the mould. The mould is made from strong and durable metals, usually either aluminium or steel by using precision machined to form the desired part's features. All moulds must be possible to remove the product after moulding without the need to destroy the mould.

![Diagram of Injection Moulding Machine]

Figure 2.2: Injection Moulding Machine

There are many rules for designing a mould. Therefore, the designers must understand clearly about the basic of mould. This includes the mould cavity space, number of cavities, cavity shape and shrinkage.

2.2.1 Mould Cavity Space

A shape inside the mould is called as the mould cavity space. The plastic is forced into this space and it will take on the shape of the cavity space and form the desire product. Nowadays moulds are usually made from strong and durable materials such as aluminium and metal alloys. This is because of the hot plastic is injected into the cavity space with high pressure during injection moulding. Therefore, the mould must be strong enough to prevent deformation (Herbert R, 2006).
2.2.2 Number of Cavities

Single-cavity moulds are normally used for limited production part or when the part is very large. This can helps to prevent the excessive of size requirement of the injection machine.

Multi-cavity mould refers to there are more than one injected part are made in the same mould. The purpose of multi-cavity mould is to produce multiple identical parts within each mould injection cycle. The production increases in proportion to the number of cavities in mould. Thus, when the more cavities in mould, the more economic in production and the higher the profit.

For a successful multi-cavity mould, the melt conditions introduced to each of the cavities in the mould should be the same and balance. A fishbone or tree runner layout of multi-cavity mould will use less material compare to most runners. Yet, there is a disadvantage of it due to the imbalance filling of cavities when precision moulding is needed. A balanced flow to each of the cavity in multi-cavity mould will help to maximize the potential to produce parts with quality.

There is one type of mould known as family mould, which is the mould with cavities are different from each other, in order to inject different parts with the same mould. The advantage of family mould is only one mould needs to be used to make all the parts in the assembly. However, there are also some disadvantages by using family mould. In order to get a same and balance filling to all of the mould cavities with different shapes simultaneously, the runner system should be sized. There is more complicated of sizing runner system with non-uniform parts. If the cavities not designed properly, it will cause the decrease in part accuracy.

The number of cavities of a mould also depends on the available production time, machine shot size, product quality required, mould costs, shape and size of the moulding as well as the plasticizing capacities. (Anonymous, 2015)

Table 2.1 shows the cavity layout of mould. The arrangement of even number of cavities usually is arranged in a rectangular pattern whereas odd number of cavities arranged in a circular pattern. Figure 2.3 shows the sprue and runner layout for four cavities.