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Abstract. This paper presents an original method in predicting the spring-back for composite 

aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the 

previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up 

samples are fabricated on moulds with different corner angles (30o, 45o and 90o) and the effect 

on spring-back deformation are observed. Then, the FEA model that was developed in the 

previous study on flat samples is utilized. The model maintains the physical mechanisms of 

spring-back such as ply stretching and tool-part interface properties with the additional 

mechanism in the corner effect and geometrical changes in the tool, part and the tool-part 

interface components. The comparative study between the experimental data and FEA results 

show that the FEA model predicts adequately the spring-back deformation within the range of 

corner angle tested. 

1. Introduction 

In the last 30 years, composites have seen a significant rise in its implementation within the aerospace 

industry. Leading manufacturers such as Airbus have been integrating composite-made structures into 

their latest airliners, most recently with the A350 which saw more that 50% application of composite 

materials due to its higher specific stiffness compared to metals. Like any other material, composites 

induce residual stress as a result of the manufacturing process, which in this case involves curing at high 

temperatures inside an autoclave. The residual stresses will pre-stress the composite and reduce its 

overall strength. An evident consequence of this is the deviation of the final product from what was 

initially designed. This phenomenon is referred to as spring-back deformation. This issue results in 

problems during the assembly stage because of poor fit-up between the mating structures which will 
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compel the technicians to force fit the parts. Such practice increases the internal stress level of the 

structure and degrades its span life. 

There are many factors to spring-back deformation. One is the change in mechanical properties of 

the laminate during the curing process. While fibre properties remain essentially constant, the matrix 

resin properties evolve as the resin polymerizes. The correlation between the development of residual 

stresses and the resulting warpage is more pronounced during the cool-down stage as observed in an 

experiment [1] when the thermal stresses that had been accumulated during the ramp and hold stages, 

were relieved. Another source of spring-back warpage is the difference of fibre orientation between 

individual plies i.e. anisotropic lay-ups which results in in-plane stresses within the laminate. The 

severity of the warpage is more for an asymmetrical and unbalanced lay-up as discovered in another 

study [2] due to the multiple constraints that had been imposed as a result. 

Nevertheless, tool-part interaction is widely regarded as the key mechanism to initiate spring-back 

deformation [3]-[6]. As illustrated in figure 1, interfacial shear stresses will develop from the difference 

in stretching between both components during heat-up, generating a stress gradient through the part 

thickness that finally yields the spring-back warpage.  

 
  

(c) 

(b) 

(a) 

 

Figure 1. Part warpage due to tool-part interaction [6]. 

  

However, these are simply natural behaviours of laminates and are therefore difficult to control. A 

study [7] categorized the controllable parameters of spring-back deformation into intrinsic and extrinsic 

parameters whereby intrinsic relates to part geometry and material properties whereas extrinsic 

parameters are aspects of its manufacturing process. The current study investigates the corner angle 

effect which is an intrinsic parameter. A previous study [8] investigated the tool corner effect on 

laminates with dimensions 100x50 mm2 and 8 plies thickness manufactured on tools of various corner 

angles (45o, 75o, 90o, 135o and 165o) as shown in figure 2a. The results from the study showed that the 

spring-in warpage increases as the tool corner angle decreases (see figure 2b). Generally, parts produced 

on angled tools have varied corner thicknesses in relation to its other areas [9] which means that there 

is considerable inconsistency in the fibre and matrix distribution through the corner thickness. Another 

study [5] postulated that when the plies are imperfectly laid up due to curvature of the tool, there will 

be slippage between the individual plies which initiates tensile stresses in the tows close to the inner 

radius if the plies do not fully slip (see figure 2c). This hypothesis is supported by a separate study [10] 

which states that the stresses in the plies closer to the inner radius act over a smaller area due to its 

shorter circumferential length which results in a force imbalance and yields bending. 
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Figure 2. (a) (b) Spring-in warpage in function of the tool angle [8] and (c) fibre stresses 

due to corner consolidation (inset) [5]. 

 

To emphasize on the criticality of the corner effect, a study [11] managed to control the spring-back 

warpage by manipulating the corner radius of the part whereas for flat unidirectional samples, the 

proposed method is to redesign the tool [12]. For the current study, the goal is to develop a robust method 

that can accurately predict the spring-back warpage on unidirectional L-shaped laminate samples via 

Finite Element Analysis (FEA). A previous accompanying study managed to predict the spring-back 

warpage using FEA model on unidirectional flat laminates [12]. In that study, the 2 parameters that were 

crucial in yielding accurate results were the in-plane stress generated collectively by the first ply 

stretching and fibre volume fraction gradient [13] and the out-of-plane shear stress via the tool-part 

interaction [7][14]-[15]. The in-plane stresses are due to the resin polymerization that occurs during the 

cure cycle so therefore, the composite law behaviour of the FEA model was modelled in function of the 

degree of cure of the laminate. The law behaviour was obtained by integrating the elastic-linear law 

behaviour with respect to the 3 different resin polymerization stages i.e. viscous, rubbery and glassy 

[16]. Meanwhile, the tool-part interaction behaviour was modelled with a layer of solid elements 

associated with an isotropic elastic property [17]. For the L-shaped laminates, the author will develop 

the model used for the flat samples [12] and integrate the corner effect into it. Details are described in 

section 3. 

2. Materials and parameter 

The laminate composite material used in the current study is unidirectional carbon fibre IMA/M21E 

prepreg and the tool is made from S275JR carbon steel. Both materials are aerospace graded and 

manufactured as per the guidelines set by Airbus and CTRM Aero Composites Sdn. Bhd. The properties 

of the materials used are not disclosed in this paper due to it being proprietary information. The laminate 

samples were cut to a size 500x500 mm2 and laid up to a thickness of 4 plies on tools with corner angles 

of 30o, 45o and 90o (see figure 3). To ensure that the resulting warpage is established with a high degree 

of confidence, 3 samples from each tool angle were manufactured, totalling 9 overall. The specimen 

configurations are shown in table 1. 
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Corner angle = 45o 

Corner angle = 90o 

ro = 25 mm 

θ2 = 45o 

θ1 = 30o 

θ3 = 90o 

 

 

 

Figure 3. (a) S275JR carbon steel tool geometry and (b) the various corner angles. 

 

After curing, the warpage was measured using a non-contact method i.e. 3D scanner. Essentially, the 

deformed sample is positioned on a level plane with the scanner being swept through. For L-shaped 

samples, the spring-back warpage, wmax, is defined as the displacement from the initial external flange 

profile to the reference line drawn between the 2 extremities of the final flange profile (see figure 4a) 

and along the y-axis (see figure 4b). 

 
 

Initial form 

Final form 

wmax 

Fibre direction 

wmax 

  

Measured profile 

x y 

z 

Fibre direction 

x' 

z' 

 

                                                                                                                 
(b) (a) 

 

Figure 4. (a) Laminate part warpage generated from an angled tool and (b) the measured profile 

of the laminate part. 

 

A plot of the measured warpage profile for all the tool angles is provided in figure 5. The author has 

also included the warpage obtained for an 180o tool angle i.e. flat tool from the previous accompanying 

study on unidirectional flat samples [12]. The mean warpage of all the measurement points along the y-

axis profile for all 4 tool angles are calculated and tabulated in table 1. 
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Table 1. Mean warpage of the laminate part samples. 

Tool corner angle Sample size and thickness: 500x500 mm2 and 4 plies 

30o -36.9 mm 

45o -33.1 mm 

90o 

180o 

-19.6 mm 

-23.3 mm 
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Figure 5. Warpage profile along the y-axis for 

500x500 mm2 with 4 plies thickness. 

 Figure 6. Evolution of the normalized mean 

warpage in function of the tool angle. 

 

From the plotted distributed warpage data in figure 5 and the normalized warpage results in figure 6, 

acute angles (< 90o) were observed to yield higher warpages. From 30o to 90o, there is a considerable 

change in warpage even though the samples have the same dimensions (500x500 mm2 and 4 plies).  This 

highlights the additional bending initiating from the corner depending on its acuteness. However, 

beyond 90o and approaching 180o i.e. flat, the warpages are observed to be in close proximity to one 

another which indicates that the influence of the corner angle will decrease as the geometry starts to 

level. This is a logical trend given the tool geometry for all 3 angles (see figure 3b) where a lower angle 

would generate a higher in-plane stress around the corner bend due to its sharpness thus, giving more 

bending when the part stretches and contracts during autoclave processing. The difference in warpage 

between both 90o to 180o is ~4 mm and considering the possibility of an error during the warpage 

measurement, the claim that there would be no significant contribution to the warpage is true. 

3. Finite element modelling 

Considering that the current study is an extension of the previous study done on unidirectional flat 

samples [12], the methodology that formed the basis for the development of the FEA model then is 

maintained with only a few slight changes given the difference in geometry of the laminate samples. 

The additional bending initiating from the corner will be modelled as another parameter on the first ply 

i.e. coefficient thermal expansion of the corner, α11,corner. Details on the development of the FEA model 

are given below.  

3.1. Hypothesis and model characteristics  

The FEA model is based on a number of simplifying assumptions. Existing manufacturing factors e.g. 

ply stretching, fibre volume fraction gradient and resin shrinkage occur during either the ramp-up or 
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dwell period of the cure temperature cycle while the shear interaction between the tool and laminate part 

i.e. tool-part interaction is significant during the cool-down phase. Coupled with the goal of developing 

a simple and time efficient model, only the cool-down phase out of the entire curing cycle was simulated. 

Therefore, the laminate part is assumed to be fully cured by assigning linear-elastic behaviour in Abaqus. 

Besides the curing cycle, the autoclave pressure has a negligible influence on the laminate part properties 

during the cool-down step and is not included in the simulation. Thus, only thermal loading is applied 

in the simulation (initially from 180oC to 25oC at the end of the loading). 

Similar to the one for flat samples [12], the FEA model comprises of the tool, interface and laminate 

part components modelled with solid elements (see table 2 and figure 7). Also, seeing that the spring-

back warpage is symmetrical due to the orthotropic behaviour of laminate composites, the FEA model 

is reduced to a quarter of its actual size with symmetrical boundary conditions being assigned. Both the 

tool and laminate part components were assigned isotropic and orthotropic thermal-mechanical elastic 

laws, respectively while the interface properties were input in the form of a user-defined subroutine 

(VUMAT) written by FORTRAN. 

 

Table 2. Material property input for the FEA model components. 

FEA model component Material properties 

Tool As per for S275JR carbon steel 

Interface As per for polytetrafluoroethylene (PTFE) 

Laminate part 

First ply: Coefficient of thermal expansion in the longitudinal direction 

modified by the author to simulate the ply stretching effect 

 Rest of the laminate: As per for carbon fibre IMA/M21E prepreg 

 

 

 

Part half-length 

Part flange  

half-length 

20 mm 

Part 

Tool 

Symmetry 

15 mm 

Corner arc 

Corner angle 

Tool half-length 

Displacement in the 

z-direction 

Fibre direction 

x 

z 
y 

 

Interface 

1st ply of the 

laminate 

Rest of the plies 

of the laminate 

z 

x 

Symmetry 

Displacement in 

the z-direction 

Part half-length 

Tool half-length 

Tool 

y 

Deletion 

τxz,failure 

τxz 

Gxz, 

γxz 

Out-of-plane shear 

stress law behavior of 

the interface  

Fibre direction 

 

                                                                                                                 
(b) (a) 

 

Figure 7. FEA model, 500x500 mm2 (a) 3D view and (b) cross-sectional view and the out-of-plane 

shear stress law behaviour of the interface. 

 

3.2. Laminate part properties  

As mentioned earlier, ply stretching, fibre volume fraction gradient and resin shrinkage create an in-

plane stress gradient through the laminate part thickness during the curing cycle [13][18][19]. Upon 

removal from the tool, the resultant bending moment warps the laminate. Integrating all 3 phenomena 

would complicate the FEA simulation and the required material data would be difficult to obtain. The 

resin shrinkage was seen to have a minimal effect on the warpage [1]. Moreover, laminates made from 

carbon fibres and an M21 epoxy resin that has been added with a thermoplastic resin are seen to not 

exhibit any fibre volume fraction gradient effects [20]. Therefore for this study, the in-plane stress 

gradient was initiated through the ply stretching only. As the cool-down phase was only modelled, the 

iMEC-APCOMS 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 114 (2016) 012025 doi:10.1088/1757-899X/114/1/012025

6



 

 

 

 

 

 

in-plane stress created by the stretching of the laminate plies during the heat-up phase of the curing cycle 

was initiated by assigning certain longitudinal coefficients of thermal expansion (CTEs), α11, to the 

laminate part. In detail, a different longitudinal coefficient of thermal expansion was assigned to only 

the first ply that is adjacent to the tool (see figure 7b) compared to the rest of the laminate. It is assumed 

that only the closest ply to the tool bears most of the stress transfer from the tool [13]. Furthermore, the 

current study only concerns unidirectional laminates for which the spring-back warpage occurs only in 

the longitudinal direction, which is why only the CTE in that respective direction is modified. The 

properties of the rest of the laminate is maintained as per the manufacturer specifications. 

In the previous accompanying study concerning unidirectional flat laminates [12], the FEA model 

was mainly based on the assumptions made by another previous study [13] that considered the effects 

of resin shrinkage, fibre volume fraction gradient and ply stretching. In that study, the authors attributed 

80% of the laminate spring-back warpage to the in-plane stress hence why the longitudinal CTE of the 

first ply was determined first without the interface and tool components. After that only both components 

were included to integrate the tool-part interaction mechanism that accounted for the remaining 20% of 

the spring-back warpage. For L-shaped laminates, the analysis is more complex with the addition of 

another mechanism that which is the corner effect. To accommodate this, the first ply of the laminate 

was split into the corner section and the flange section (see figure 8). Both sections possess different 

longitudinal coefficients of thermal expansion due to the imperfection of the ply when laid up on the 

curved tool, which will result in both areas having different resin content leading to tensile stresses from 

ply slippage that contributes to the increase of spring-back warpage [16]. The CTE for the flange section, 

α11,flange, is maintained from the flat sample study as for the laminate part configuration 500x500 mm2 

and 4 plies with only the CTE for the corner section, α11,corner, being varied. 

 

 

 

Corner  

section 

Flange  

section 

z 

y x 
 

Figure 8. The corner section (green) and flange section (grey) of the 

first ply for a unidirectional L-shaped (30o) 500x500 mm2 with a 

thickness of 4 plies. 

 

3.3. Out-of-plane shear interface properties  

The interface component in the FEA model represents the tool-part interaction that is initiated at the 

start of the cool-down phase. The current study employs the same interfacial behavior as the 

accompanying study for flat samples [12] whereby a single layer of elements is assigned with orthotropic 

linear coupled with an out-of-plane shear stress failure criterion, τxz,failure, which will delete upon reaching 

the limit value. This interface characteristic was developed by an earlier study [21]. The interface in-

plane properties are those of the polytetrafluorethylene (PTFE) film that acts as the release agent during 

the actual manufacturing of the samples although the transverse modulus value is the same as the S275JR 

tool to avoid the laminate part component from penetrating through the tool component [22]. The 

amount of stress that is transferable from the interface to the laminate part can be tailored based on the 
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assigned values for the out-of-plane shear modulus, Gxz, and the out-of-plane shear stress failure, τxz,failure. 

With this, the laminate part warpage can be controlled. In the flat sample study [12], the FEA model 

was able to obtain accurate results when compared with experimental data using the combination of 56 

MPa and 3.8 MPa for the out-of-plane shear modulus and the out-of-plane shear stress failure, 

respectively. The current study for L-shaped samples will employ the same interface properties. 
 

3.4. Results and discussion 

Table 3 shows the comparison between the obtained FEA results and experimental data of the 

IMA/M21E unidirectional L-shaped laminate parts manufactured on tools of various angles. As 

mentioned previously, the CTE for the flange section, α11,flange, is fixed and obtained from the 

corresponding flat sample study [12] of the configuration 500x500 mm2 and 4 plies (1.86x10-5 oC-1) with 

only the CTE for the corner section, α11,corner, being varied until accuracy is achieved. The interface 

properties are fixed as per detailed in section 0. 

 

Table 3. Comparison between the FEA simulation results and the experimental data. 

Tool corner 

angle 

Longitudinal coefficient of 

thermal expansion 
Spring-back warpage 

Error deviation 

Flange Corner FEA Experimental 

30o 

1.86x10-5 oC-1 

1.97x10-4 oC-1 -37.4 mm -36.9 mm 1.27% 

45o 1.67x10-4 oC-1 -32.7 mm -33.1 mm 1.21% 

90o 4.46x10-5 oC-1 -19.8 mm -19.6 mm 1.02% 
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Figure 9. Comparison between the experimental data and the FEA simulation results of the mean 

warpage in function of the corner angle for the laminate configuration 500x500 mm2 and 4 plies 

thickness in (a) bar and (b) line formats. 
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Figure 10. Increase of the longitudinal coefficient of thermal expansion of 

the corner section to the longitudinal coefficient of thermal expansion of 

the flange section in function of the corner angle for the laminate 

configuration 500x500 mm2 and 4 plies thickness. 

 

From modifying the CTE for the corner section, α11,corner, good agreement between the predicted FEA 

results and the experimental data based on figure 9a. There is also a linear relationship (from 30o to 90o) 

in terms of the warpage (see figure 9b). Another finding from the results is the evolution of the 

longitudinal coefficient of thermal expansion of the corner section α11,corner, to the longitudinal coefficient 

of thermal expansion of the flange section, α11,flange (see figure 10). From both figure 9 and figure 10 , it 

seems that the corner effect is more significant as the corner angle becomes more acute and beyond 90o, 

the warpage plateaus. This is a similar trend observed with the normalized experimental warpage in 

figure 6. To validate the FEA model, the author implemented the same model characteristics and 

methodology to compare against the experimental result of a previous study [23] that used a different 

laminate (3900-2/T800H) angled at 45o with the dimensions of 280x50 mm2 and 8 plies (see table 4). 

Using the same approach as described in this section, the author was able to obtain a match between the 

FEA result and experimental data. Maintaining the same part dimensions, the author next tested the 

material used in the current study (IMA/M21E) and obtained a warpage value close to the one using 

3900-2/T800H. Considering that the properties of 3900-2/T800H are similar to the properties of 

IMA/M21, this FEA validation is regarded as successful. 

 

Table 4. Comparison between the FEA simulation results and the experimental data for the validation 

study. 

Tool 

corner 

angle 

Part 

thickness 

Part 

length 

Part 

width 

FEA spring-back warpage 
Experimental spring-

back warpage 

IMA/M21E 3900-2/T800H 3900-2/T800H 

45o 8 plies 280 mm 50 mm -0.45 mm -0.47 mm -0.47 mm 
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4. Conclusions and future work 
The objective of this study was to develop a predictive FEA model for the spring-back deformation of 

unidirectional IMA/M21E L-shaped laminates. The main conclusions are as follow: 

 There is significant influence of the corner effect to the overall spring-back warpage for acute 

corner angles (θn < 90o). 

 From 30o to 90o, the warpage is linear and inversely proportional to the corner angle. 

 There is good agreement between the FEA results and the experimental data. 

 The influence of the corner effect reduces as the part starts to take a more level geometry (90o 

< θn < 180o). 

 The developed process to predict the FEA warpage is workable with a previous study.  

 

This study has increased the understanding on the part design parameters affecting spring-back 

warpage of laminate composites and demonstrates the importance of how warpages are defined and 

measured on L-shaped samples. However, the conclusions drawn should be used with caution outside 

the scope of this study. There is also a need to investigate the intrinsic effects in addition to the corner 

angle i.e. part size and part thickness as the findings from these investigations will give a more definitive 

assessment on the warpage affecting L-shaped laminates. 
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