DESIGN AND MODIFICATION FOR CHILD RESTRAINT SEAT ON MOPED MOTORCYCLE

HASFARIZAL BIN FARIZAD

A thesis submitted in fulfillment of the requirements for the award of the degree of Engineering Technology

Faculty of Engineering Technology
University of Technical Malaysia Malacca

2015
I declare that this thesis entitled “Design and fabricate a child restraint system for underbone motorcycle” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : …………………………………………………
Name : HASFARIZAL BIN FARIZAD
Date : …………………………………………………

© Universiti Teknikal Malaysia Melaka
To my beloved father and mother
ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt appreciation to my respectful supervisors, Hairul Effendy Ab Maulod for providing me with an opportunity to pursue my studies for this project of my degree at Universiti Teknikal Malaysia Melaka (UTeM).

I would like to extend my gratitude to my panel Mohd Kamal Bin Musa and Muhammad Syafik Bin Jumali. Also thank you to all my members especially who have provided me with valuable suggestions and recommendations. To all members, thank you for providing assistance at various occasions throughout my study. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of their names in this limited space.

Last but not least, I would like to extend my sincere appreciation to my beloved family for their continuous support and encouragement throughout these years. I am greatly indebted to them for their infinite love and confidence towards me.
This report is submitted to faculty of Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Product Design). The member of supervisory is as follows:

…………………………………………………

(Project Supervisor: HAIRUL EFFENDY AB MAULOD)
ABSTRACT

Moped motorcycles are common in developing countries such as Malaysia. It is one of the most popular mode of transportation for lower income group. It is therefore common to see the safety consideration especially towards the pillion rider is not considered a priority. A conventional child seat restraint was acquired and its design requirements was taken into account for placement on a moped motorcycle. A child seat restraint for a conventional moped is almost non-existent and therefore modifications were needed for its suitability. The child restraint seat was simulated and analysed using a CAD software. Market survey and also product design criteria were also taken into consideration. The weight and positioning of a child pillion rider was also taken into account to increase effectiveness and safety of the child. Based on the study minimal modification was found necessary in order to safely secure the child seat restraint on a moped motorcycle. Finally the child seat restraint was placed and secured on the moped motorcycle according to the design. A full drawing of the modification and also child seat restraint design were produced to fulfill design requirements.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Approval</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Table of Content</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Abbreviations, Symbol And Nomenclature</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.0 Introduction

1.1 Project Background

1.2 Problem Statement

1.3 Objectives

1.4 Project Scope

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

2.1 Moped Motorcycle

2.2 Restraint System

2.3 Types of Child Safety Seats

2.3.1 Convertible Safety Seat

2.3.2 Types of Child Safety Seats

2.3.3 Infant-only Child Safety Seats

2.4 Rear-Facing Convertible Child Safety Seats

2.5 Forward Facing Child Safety Seats
CHAPTER 3: METHODOLOGY

3.0 Introduction 29
3.1 Project Planning 30
3.2 Product Planning and Identifying Customer Needs (initial survey) 31
 3.2.1 Project Feature 31
 3.2.2 Source 31
3.3 Data Collected 32
3.4 Concept 33
 3.4.1 Customer Needs 34
 3.4.2 Customer Requirement 35
 3.4.3 House of Quality 36
3.5 Sketching 38
3.6 Concept Screening 41
3.7 Concept Selection 43
 3.7.1 System Level Design 43
3.8 Materials 44
 3.8.1 Material for Component 44
 3.8.1.1 Materials Selection 44
3.9 Product Specification 45
 3.9.1 Technical Specification 45
3.10 Bill of Material 46
CHAPTER 4: RESULT AND DISCUSSION

4.0 Introduction 54
4.1 Questionnaire Result 54
4.2 3D CAD Drawing 60
4.3 Bill of Material (BOM) – For Part 61
4.4 Product Comparison 62
4.5 Simulation Setup for Static Study of the Product 64
4.6 Simulation Result 66
 4.6.1 Stress for the Product 67
 4.6.2 The Displacement for the Product 69
 4.6.3 The Displacement For The Product 72
4.7 Ergonomic Study 74
 4.7.1 Analysis Manikin (RULA) 74
 4.7.2 Posture Studied 77
4.8 Product Setup and Modification 81
4.9 Manufacturing to Selling Cost 87

CHAPTER 5: CONCLUSION 88
5.1 Summary of Project 88
 5.1.1 Summary of Project 88
5.2 Achievement of Research Objectives 88
5.3 Significance of Project 89
5.4 Problems Faced During Project 89
5.5 Suggestion for Future Work (Recommendation) 90

REFERENCES 91

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mean height (cm), weight (kg) and prevalence of undernutrition among the Bauri caste children, aged 2-6 years</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Anthropometric failure among the Bauri children by age and category</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Data of human weight and height from 3 month to 6 years old</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Data of human weight and height</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Customer Needs</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Customer Requirement</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Engineering characteristic</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>The Design Concept</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>The Bill of Material</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Bill of Material for Part</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison product</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Reaction Force (N) at The Component X, Y and Z</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Stress Reaction on the Axis</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Strain Reaction On The Axis</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Manufacturing to Selling Cost</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 The new model Honda C50 moped 3
2.2 Variety of moped motorcycle 4
2.3 Example of rear facing 7
2.4 Example of forward facing 8
2.5 Example of combination 10
2.6 Example of booster seat 11
2.7 Child safety seat at car 11
2.8 Point at child safety seat 12
2.9 Locking clip 13
2.10 Tethering 13
2.11 Restraint system for car 14
2.12 Restraint system for superbike 15
2.13 Current design that been adapt to underbone motorcycle 16
2.14 The basic drawing dimension for child restraint system 16
2.15 Position that related to centre of gravity due to the wheel 17
2.16 Change of siting height of human 25
2.17 Manikin posture of siting using CATIA V6 26
2.18 Shielded Metal Arc welding 27
2.19 Bending 28
3.1 Flowchart for Final Year Project 30
3.2 Respondent Gender 32
3.3 Respondent Age 33
3.4 Sketch Concept 1 38
3.5 Sketch Concept 2 38
3.6 Sketch Concept 3 39
3.7 Sketch Concept 4 39
3.8 Final Sketch Concept (chosen sketch) 40
3.9 3D Design from the Concept 2 in Isometric View 47
3.10 Left View of the Product 47
3.11 Back View of the Product 48
3.12 Front View of the Product 48
3.13 Right View of the Product 48
3.14 CAD Model of the Britax-Römer Trifix Seat 50
3.15 Using CAD software to topology optimization to create a weight efficient structural layout 50
3.16 Process of the simulation using 3D model of moped (underbone) motorcycle 51
3.17 Applying the material to the studied product 51
3.18 The Model of Moped (Underbone) Motorcycle 52
4.1 Pie Chart for Respondent Who Had a Child 55
4.2 Bar Graph for Age of Respondent Child 55
4.3 Pie Chart for Safety Consideration 56
4.4 Graph for Popular Type of Child Restraint System 57
4.5 Graph for Respondent That Want to Buy the Child Restraint System for Moped Motorcycle 58
4.6 Graph for Demand Price for Child Restraint System For Moped Motorcycle 59
4.7 3D Drawing Product with Assembly 60
4.8 3D Drawing Explode Product 60
4.9 3D Drawing Product with Assembly at The Moped Motorcycle 62
4.10 Simulation Setup for the Static Study 64
4.11 Simulation Setup Continue 65
4.12 The Flow of Force Applied 66
4.13 Showing the Stress Effect on Product 67
4.14 Flow of Stress at the Child Restraint System 68
4.15 Stress Graph 69
4.16 Showing the Displacement Effect on Product 69
4.17 Flow of Displacement at The Child Restraint System 70
4.18 Displacement Graph 71
4.19 Flow of Strain at The Child Restraint System 72
4.20 Strain Graph
4.21 The considering the size of the manikin in CATIA V6
4.22 Observed Manikin from Right
4.23 Manikin RULA ANALYSIS from Right
4.24 Observed Manikin from Left
4.25 Manikin RULA ANALYSIS from Left
4.26 Shows the posture editor from the left
4.27 Shows the posture editor from the right
4.28 Shows the correct posture from the left
4.29 Shows the correct posture from the right
4.30 Shows the correct posture for user using the product from right side
4.31 Shows the correct posture for user using the product from left side
4.32 The Bracket Had Been Modify
4.33 Attached the Main Seat to The Bracket
4.34 Attached the Set of Light at The Product
4.35 Attached the Cushion and BELT
4.36 Tighten the Under Clip and Locking the Chain Together
4.37 Ready to Ride
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>SLD</td>
<td>System Level Design</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>AAP</td>
<td>American Academy of Pediatrics</td>
</tr>
<tr>
<td>V6</td>
<td>Version 6</td>
</tr>
<tr>
<td>UAS</td>
<td>Universal Anchorage System</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Centre for Health Statistics</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Introduction

In developing countries including Malaysia, motorcycles are cheap and affordable mode of transportation. It is not common to see the motorcycles being used for almost all daily activities. For lower income groups a motorcycle could be considered a lifeline and important tool for daily life. Sadly though this also one of the attributes that safety of riding and pillion rider does not take utmost precedent. (Sivasankar, K. Karmegam, M.T. Shamsul Bahri, H. Sadeghi Naeini, & S. Kulanthayan, 2014).

1.1 Project Background

Motorcycle related accidents often prove fatal due to its safety risk nature. Legislation in Malaysia regarding safety are currently based on “supply and demand” system. Accidents involving motorcycles reflects an alarming need for attention. Pillion rider are the most risk when compared to the rider due to the nature of their seating and often are not equipped when faced with risk of accident.
1.2 Problem Statement

Children when riding requires special attention since their anatomy are different than adult. Often in motorcycle-related accidents, children usually sustain lower limb injuries, which could temporarily or permanently inhibit the child’s movements. Furthermore often during the ride, children are easily tired and could doze off. Special requirements are needed to ensure their safety and comfort during pillion riding.

1.3 Objectives

The objective of the project is to;

a) To study the existing child seat restraint.
b) To design modification of child seat restraint to suit moped motorcycle placement.
c) To attach the modified child seat restraint on a moped motorcycle.

1.4 Project Scope

The project scope of the project is for the;

• Study current system of underbone motorcycle carry a child.
• Adapt current system for underbone motorcycle.
• Determine an economical and suitable system for moped motorcycle to pillion riding a child.
CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

This chapter will discuss mainly on the theory and current development in moped (underbone) motorcycle and child restraint system in transportation. This chapter will shows about the studied, product and the current research that had been found in developing child restraint system in transportation.

2.1 Moped Motorcycle

Moped motorcycles or mopeds were first developed as motorized bicycles after the end of the First World War. It was earlier just known as motorized bicycles until better development such as improved transmissions and better engine performance made the term “moped” or motor pedal being coined.
Based on the figure, there are variety of moped motorcycle that were currently in market. Some of it are being manufactured to Malaysia. The moped motorcycle are been used in Malaysia due to their affordable price and ease of use. More often we can see a young or child pillion rider clinging on to an adult at the front of the motorcycle in Malaysia. By the study, the main issues facing for the young pillion riders is that their safety is often not taken into account when they are riding on a motorcycle (Sivasankar, K. Karmegam, M.T. Shamsul Bahri, H. Sadeghi Naeini, & S. Kulanthayan, 2014).

From this statement, this project is about to designing child safety for moped motorcycles. This project is expected to improve the safety of pillion riding for small children since they are easily fatigued.
2.2 Restraint System

The restraint system is about the ergonomic features that had in the car seat for child is to supports the occupant’s body under all driving conditions, offers adequate protection and body support in the event of an accident, allows for extended sitting without fatigue by relieving stress on the body’s muscular system, provides a contour matched to the vehicle and the occupant (sports seat, comfort seat) without restricting movement and we can also founded that back pain is the most common reason for visiting the doctor, accounting for almost 50 million sick days annually in Germany. Those most affected are people engaged in repetitive physical activities, especially frequent drivers (Pediatrics, 1998).

In addition, driving for hours in a forced posture without any compensatory movement is harmful to the back. Ergonomically incorrect sitting postures (such as “swayback”) further exacerbate the negative effects. This quickly leads to abrasion of the spinal disc and to back problems.

From my study, it is stated that from the American Academy of Pediatrics (AAP) were recommends that children 2 years or older, or those younger than 2 who have outgrown the weight or height limits for their rear-facing safety seat. It also state that this situation can be restrained in the back seat of the car in a forward facing safety seat with a harness for as long as possible, up to the highest weight or height allowed by the manufacturer of the safety seat. We will need a new safety seat if we have been using an infant only child safety seat. We can still use the safety seat but will need to make a few adjustments to the shoulder straps, and reroute the vehicle seat belt or latch properly for it to be used forward facing that have been using a convertible child safety seat in the rear facing position. We must make sure to read our child's safety seat manual to learn what changes need to be made when switching the seat from rear facing to forward facing.
2.3 Types of Child Safety Seats

2.3.1 Convertible Safety Seat

The convertible child safety seat can be used in both the rear facing and forward facing positions. This type of seats must remain rear facing until our child is 2 years old or until he reaches the highest weight or height allowed by the manufacturer of his convertible safety seat (Guo SS, 1996). In this study, the idea must be modified to create the product that is suitable for child to seat at the motorcycle. Based on the convertible safety seat, the design of this product is related for the use of the average child at the age of 2 until 6 years old that is suitable for most child that been carried using the underbone motorcycle.

In addition, we can switch a convertible safety seat from the rear facing to the forward facing position, it can be used for a toddler up to 40 to 65 pounds (some seats accommodate up to 80 pounds) depending on the seat model (Guo SS, 1996)

2.3.2 Types of Child Safety Seats

There are three types of child safety seats for babies:

- Infant only Child Safety Seats
- Rear facing Convertible Child Safety Seats
- Car Beds
2.3.3 Infant-only Child Safety Seats

Infant-only safety seats are unique in that they are usually rear facing and come with a three or a five point harness. The most common type of harness is a five point, with two straps that secure the shoulders and two more that secure the hips. The straps all connect to a buckle between the legs. A less common type is a three point harness, which functions the same way but lacks the points at the hips.

Portable with a carrying handle; they can be easily removed and used as infant carriers. For most infant seats, the carrying handle should be down when our child is in the vehicle. Be sure to check our safety seat instruction manual for proper placement of the carrier's handle during travel.

2.4 Rear-Facing Convertible Child Safety Seats

A convertible child safety seat can be used in both the rear-facing and forward-facing positions. Convertible child safety seats must be used in the rear-facing position in the back seat of the car until your child is 2 years of age or until he reaches the highest weight or height limit allowed by the manufacturer of his convertible safety seat. The seat can then be turned around to face forward for toddlers.

![Example of rear facing seat](Figure 2.3: Example of rear facing)
A rear facing safety seat is the restraint system to support the child range of birth of 0 to 16 kg (Birth to 35 lb.) A rear facing child safety seat is used correctly if it is facing the rear of the vehicle. The rear facing seat is type of vehicle seat belt or Universal Anchorage System (UAS). This type of seat is not used in a position where there is a passenger front-seat air bag. The locking clip at the safety belt of the rear facing seat must be used correctly when required. When using the rear facing safety seat, we must also make sure that the chest clip is level with the child’s armpits.

The internal harness of the rear facing is used according to the manufacturer’s instructions. The internal harness should be even or slightly below the height of the child’s shoulder. Internal harness is snug. One of our fingers should fit between the child’s collar bone and internal harness.

2.5 Forward Facing Child Safety Seats

Figure 2.4: Example of forward facing

A forward facing safety seat is the restraint system to support the child range of birth of 10 kg to 18 kg (22 lb. to 40 lb). A forward facing child safety seat is used correctly if it is facing forward and in the upright position. The forward facing safety seat are also the vehicle seat belt or UAS is routed correctly through the proper guides in the back of the child safety seat. Same as the rear facing safety seat, the forward facing safety seat locking clip are also must be is used correctly when required. In addition of the forward facing safety seat type, the tether strap is hooked
to the proper tether anchor located in the vehicle. Same as the rear facing safety seat, the chest clip is level with the child’s armpits.

As the rear facing safety seat, the internal harness of forward facing are also is used according to the manufacturer’s instructions. The internal harness should be even too slightly above the child's shoulder. Internal harness is snug. One of our fingers should fit between the child’s collar bone and internal harness. We must also make sure that the internal harness should be routed according to the manufacturer’s instructions.

2.6 Car Beds

Some convertible child safety seats may not provide the best fit for smaller newborns, especially low-birth weight babies or preterm babies (those born too early). For these smaller children, car beds are a safer alternative to standard car seats.

2.7 Combination Child Seat and Belt-Positioning Booster Seat

The combination child seat and belt-positioning booster seat is the combination seat with the internal harness until our toddler weighs about 40 to 65 pounds, depending on the seat model. We can then remove the harness and convert the seat to a belt-positioning booster that works with the vehicle lap and shoulder belts. For the best protection, use a child safety seat with a full harness until our child has outgrown the weight and height limits before switching to a booster seat (Pediatrics, 1998).

The combination child seat and belt-positioning booster seat also best to low the risk of injuries for babies. This is because the babies are at greater risk of injury in crashes. This study also shows that babies spines are developing and their heads are large for their bodies. In a crash, if our child is riding forward facing, her spinal cord may stretch, which could result in serious injury or death. However, when our