DESIGN AND DEVELOPMENT OF AN RF POWER HARVESTER OPERATING IN SUBTHRESHOLD FOR BODY AREA NETWORKS

TAN PEI CHEE

This Report Is Submitted in Partial Fulfilment of Requirements for The Bachelor Degree of Electronic Engineering (Telecommunication Electronics)

Faculty of Electronics and Computer Engineering
Universiti Teknikal Malaysia Melaka

June 2016
BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : Design and Development of an RF Power Harvester Operating in Subthreshold for Body Area Networks

Sesi Pengajian : 15 / 16

Saya TAN PEI CHEE

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√):

☐ SULIT* *(Mengandungi maklumat yang berdasarkan keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD** *(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☑ TIDAK TERHAD

(TANDATANGAN PENULIS)

Diasahkan oleh:

(TANDATANGAN PENYELIDIK)

© Universiti Teknikal Malaysia Melaka
"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature : ..

Author : Tan Pei Chee

Date : 15th June 2016
“I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering Electronic Telecommunication with Honours.”

Signature

Supervisor’s Name : Dr. Wong Yan Chiew

Date : 15th June 2016
ACKNOWLEDGEMENT

At the end of my thesis, I would like to thank all those people who made this thesis possible and an unforgettable experience for me. This final year project report could not be realized without the sincere help and support from many people. I am very appreciating their help and support.

Firstly, I would like to express my deepest sense of gratitude to my supervisor, Dr. Wong Yan Chiew who offered her continuous advice and encouragement throughout this project. She is a nice lecturer who always giving her students enough space to perform and develop. I thank her for the excellent guidance and great effort she put into training me in the analog IC design field.

Next, I thankful to my friends especially BENT colleagues who give the motivation and encouragement along the way to make this thesis successful. Special thanks to my friends, Lee YouHui and Ang Wei Pin for their helping, sharing of knowledge and guidance throughout the project. I am much appreciated with the friendships as well as good advice and collaboration has been built up.

Finally, I take this opportunity to express the profound gratitude from my deep heart to my beloved parents, grandparents, and my siblings for their love and continuous support – both spiritually and materially. I am very grateful to all the people I met along the way and have contributed to the development of my project.
ABSTRACT

High power consumption and small battery size severely limit the operating time of devices in Body Area Network (BAN). Radio Frequency (RF) harvesting system can be one of the ways to solve this constraint. The function of the rectifier is to convert the ambient RF into direct current (DC) voltage. The Fully Gate Cross Couple (FGCC) rectifier, Self-Vth Cancellation (SVC) rectifier and Dynamic Threshold Voltage MOSFET (DTMOS) rectifier have been investigated in terms of rising time and output voltage. On the other hand, Schottky diode has been considered as an attractive candidate in conventional rectifier circuit due to their low forward voltage drop and fast switching speed. However, it requires high cost due to the complex fabrication process. Thus, an efficient model of Schottky diode in an integrated circuit (IC) domain is needed. In this project, Ultra-Low Power (ULP) diode has been proposed to be implemented in IC rectifier designs. The performance of ULP diode has been compared with diode-connected MOSFET based on Dickson charge pump and Villard voltage multiplier in 130nm Silterra process technology. Then, a layout of high sensitivity RF rectifier design with the size of 313mm X 214mm which is applied in BAN has been developed. Besides, a modeling and prototyping of a simple RF harvesting system have been presented. An antenna and impedance matching has been investigated. Lastly, 8 stages Dickson charge pump rectifier using diode IN5819 has been simulated, fabricated and analyzed.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENT</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>CONFIRMATION ON REPORT STATUS</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>SUPERVISOR’S CONFIRMATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.1 Project Overview 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Scope of Work 2
1.5 Project Development 3
1.6 Report Outline 3
II LITERATURE REVIEW

2.1 Overview
2.1 Overview

2.2 Body Area Network (BAN)
2.2 Body Area Network (BAN)

2.3 RF Energy Harvesting System
2.3 RF Energy Harvesting System

2.4 Rectifier
2.4 Rectifier

2.5 Operating Region of MOSFET
2.5 Operating Region of MOSFET

2.5.1 Subthreshold Region
2.5.1 Subthreshold Region

2.5.2 Linear Region
2.5.2 Linear Region

2.5.3 Saturation Region
2.5.3 Saturation Region

2.6 Design Consideration of High Quality Rectifier
2.6 Design Consideration of High Quality Rectifier

2.6.1 High Power Conversion Efficiency/High Output Voltage
2.6.1 High Power Conversion Efficiency/High Output Voltage

2.6.2 Small Circuit Size
2.6.2 Small Circuit Size

2.6.3 High Sensitivity
2.6.3 High Sensitivity

2.6.4 Low Threshold Voltage
2.6.4 Low Threshold Voltage

2.6.5 Size of Transistor
2.6.5 Size of Transistor

2.6.6 Low Leakage Current
2.6.6 Low Leakage Current

2.6.7 Faster Rise Time
2.6.7 Faster Rise Time

2.6.8 Low Ripple or Noise
2.6.8 Low Ripple or Noise

2.7 RF Rectifier Topologies Based on MOSFET
2.7 RF Rectifier Topologies Based on MOSFET

2.7.1 Fully Gate Cross Coupler (FGCC) rectifier
2.7.1 Fully Gate Cross Coupler (FGCC) rectifier

2.7.2 Self Vth Cancellation (SVC) Rectifier
2.7.2 Self Vth Cancellation (SVC) Rectifier

2.7.3 Dynamic Threshold-voltage MOSFET (DTMOS) Rectifier
2.7.3 Dynamic Threshold-voltage MOSFET (DTMOS) Rectifier

2.7.4 Comparison among Topologies
2.7.4 Comparison among Topologies

2.8 Charge Transfer Switches in Integrated Circuit (IC) Domain
2.8 Charge Transfer Switches in Integrated Circuit (IC) Domain

2.8.1 Schottky Diode
2.8.1 Schottky Diode

2.8.2 Diode-Connected PMOS Diode
2.8.2 Diode-Connected PMOS Diode

2.8.3 Ultra-Low Power (ULP) Diode
2.8.3 Ultra-Low Power (ULP) Diode

2.9 Summary
2.9 Summary
III METHODOLOGY

3.1 Overview 19
3.2 Specifications Setting 20
3.3 Schematic Design 20
3.4 Layout Design 20
3.5 Summary 20

IV COMPARISON ON THE TOPOLOGIES OF RECTIFIER

4.1 Overview 22
4.2 Circuit Construction According to Rectifier Topologies 22
4.3 Parameters Setting at Different Topologies and Technologies 23
4.4 Simulation Result and Analysis According to Rectifier Topologies 27
4.5 Summary 28

V COMPARISON ON CHARGE TRANSFER SWITCHES

5.1 Overview 29
5.2 Schematic Design of Diode-Connected PMOS and ULP Diode Applied in Villard Voltage Multiplier and Dickson Charge Pump Rectifier 31
5.2.1 Leakage Current Analysis 33
5.2.2 Transient Analysis on Output Voltage 36
5.3 Parameter Optimization in Dickson Charge Pump Rectifier using ULP diode 37
5.4 High Sensitivity Rectifier 40
VI MODELLING AND PROTOTYPING OF A SIMPLE ENERGY HARVESTING

6.1 Overview 45
6.2 Antenna 45
6.3 Impedance Matching 46
6.4 Prototype of Dickson Charge Pump Converter using Diode IN5819 47
6.5 Summary 51

V CONCLUSION

7.1 Overview 52
7.2 Project Summary 52
7.3 Future Work Suggestion 54

REFERENCES 55

APPENDIX 57
Appendix A: A Review & Analysis on High Sensitivity RF Rectifier in BAN devices 57
Appendix B: Dickson Charge Pump Rectifier using Ultra-Low Power (ULP) Diode in BAN Devices 62
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Operating region in NMOS and PMOS transistor</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Performances summary for different topologies</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Specifications setting</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameter setting for rectifier topologies in different technologies</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameter setting in Villard voltage multiplier and Dickson charge pump rectifier</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Block diagram of RF harvesting system</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Half-wave Rectification</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Full-wave Rectification</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Circuit configuration and circuit operation of FGCC rectifier</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Circuit configuration of SVC rectifier</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Circuit configuration of DTMOS rectifier</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Diode-connected PMOS diode</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Ultra-Low Power (ULP) diode</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology for the project</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>3 stages FGCC rectifier schematic design</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>3 stages SVC rectifier schematic design</td>
<td>23</td>
</tr>
<tr>
<td>4.3</td>
<td>3 stages DTMOS rectifier schematic design</td>
<td>23</td>
</tr>
<tr>
<td>4.4</td>
<td>Transient analysis on output voltage of FGCC in 90nm technology with different width of transistor</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>Transient analysis on output voltage of SVC rectifier in 90nm technology with different width of transistors</td>
<td>25</td>
</tr>
<tr>
<td>4.6</td>
<td>Transient analysis on output voltage of DTMOS in 90nm technology with different width of transistors</td>
<td>25</td>
</tr>
<tr>
<td>4.7</td>
<td>Transient analysis on output voltage of FGCC in 130nm technology with different width of transistors</td>
<td>26</td>
</tr>
<tr>
<td>4.8</td>
<td>Transient analysis on output voltage of SVC in 130nm technology with different width of transistor</td>
<td>26</td>
</tr>
</tbody>
</table>
4.9 Transient analysis on output voltage of DTMOS in 130nm technology with different width of transistor
4.10 Transient analysis on output voltage of different topologies in 90nm and 130nm technology
4.11 Output voltage versus input voltage for different topologies and technologies
5.1 Voltage doubler circuit
5.2 Villard voltage multiplier
5.3 Dickson charge pump rectifier
5.4 3 Stages Villard Voltage Multiplier Using Diode-Connected PMOS
5.5 3 Stages Villard Voltage Multiplier Using ULP diodes
5.6 3 Stages Dickson Charge Pump Using Diode-Connected PMOS
5.7 3 Stages Dickson Charge Pump Using ULP Diodes
5.8 Leakage current of each diode-connected MOSFET in Villard voltage multiplier
5.9 Leakage current of each ULP diode in Villard voltage multiplier
5.10 Leakage current of each diode-connected MOSFET in Dickson Charge Pump rectifier
5.11 Leakage current of each ULP diode in Dickson Charge Pump rectifier
5.12 Leakage Current of PMOS in diode-connected MOSFET and ULP in Dickson Charge Pump rectifier
5.13 Node Voltage of PMOS in ULP and diode-connected MOSFET in Dickson Charge Pump rectifier
5.14 Transient Analysis of Output Voltage using ULP diode and diode-connected MOSFET in Villard Voltage Multiplier and Dickson Charge Pump rectifier
5.15 Power Efficiency versus Frequency
5.16 Power Efficiency versus Length of Transistor
5.17 Power Efficiency versus Width of Transistor
5.18 Power Efficiency versus Stage Capacitance
5.19 Power Efficiency versus Load Capacitance
5.20 Power Efficiency versus Load Resistance
5.21 Power Efficiency versus Load Resistance in 650MHz
5.22 Transient Analysis on Output Voltage of Dickson Charge Pump Using ULP Diodes
5.23 Output Voltage versus Input Voltage in Dickson Charge Pump using ULP Diodes
5.24 Layout of 3 stages Dickson charge pump rectifier
5.25 Interdigitation pattern of NMOS in ABBA
5.26 Dummy which mentioned end-to-end connection applied in NMOS
5.27 Matching single transistor in layout
6.1 Simple RF energy harvesting system
6.2 Basic structure of dual band planar monopole antenna. The dashed square shows the ground plane on the back of the PCB. Metal strip lines M1, M2, and M3 are on the top of the PCB
6.3 Antenna parameter setting
6.4 Reflection coefficient S11 at 900MHz is < -20dB
6.5 Measured input impedance of 8 stages Dickson charge pump rectifier using diode IN5819
6.6 Matching network in microstrip line design
6.7 Graph of return loss for microstrip line matching network
6.8 Schematic design of 8 stages Dickson Charge pump using IN5819
6.9 Simulation result on transient analysis of rectified output voltages for different input voltages
6.10 PCB layout of 8 stages Dickson charge pump
6.11 Fabricated 8 stages Dickson charge pump rectifier using diode IN5819
6.12 Measurement setup for Dickson charger pump converter prototype
6.13 Measured output voltage versus Vrms in the frequencies setting of 1MHz, 4MHz, and 10MHz.
6.14 Output power for different source frequencies for
R = 1KΩ and Cload = 470μF
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>BAN</td>
<td>Body Area Network</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>PCE</td>
<td>Power Conversion Efficiency</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>DRC</td>
<td>Design Rule Checking</td>
</tr>
<tr>
<td>LVS</td>
<td>Layout Versus Schematic</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>FGCC</td>
<td>Fully Gate Cross Coupler</td>
</tr>
<tr>
<td>SVC</td>
<td>Self Vth Cancellation</td>
</tr>
<tr>
<td>DTMOS</td>
<td>Dynamic Threshold-voltage MOSFET</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ULP</td>
<td>Ultra Low Power</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>LIP</td>
<td>Low Input Power</td>
</tr>
<tr>
<td>BCU</td>
<td>Body Central Unit</td>
</tr>
<tr>
<td>BSU</td>
<td>Body Sensor Unit</td>
</tr>
<tr>
<td>AC</td>
<td>Alternate Current</td>
</tr>
<tr>
<td>NMOS</td>
<td>N-type MOSFET</td>
</tr>
<tr>
<td>PMOS</td>
<td>P-type MOSFET</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project Overview

Body Area Network (BAN) network is a wireless network of wearable computing devices. It has tremendous potential in health monitoring systems as it eliminates the inconvenience of having wires around the patient’s body, offering more freedom of movement and comfort, enhanced monitoring, and the administration of at-home treatment [1]. By using this BAN network, patient’s health can be monitored anywhere in real time without the need of wired devices. However, high power consumption and small battery size restrict the operating time of the devices in BAN. Hence, the sensors are severely energy constrained. Thus, the demand of battery-free applications raises the interest in Radio Frequency (RF) energy harvesting. RF energy harvesting can be one of the ways to solve this energy constraint. The rectifier which function to convert the RF signal into a Direct Current (DC) voltage in the power harvester has been focused. However, the ambient RF signal is usually too low and caused the traditional rectifier unable to operate. The threshold voltage of transistor also will affect the performance of rectifiers such as output voltage, current and power consumption. In order for rectifier to work with very low input power, all the transistors of rectifier should operate in the sub-threshold region. Therefore, an improved high power conversion efficiency (PCE) and low voltage operation capability RF rectifier design will be presented. Synopsys simulator will be used in designing the Complementary Metal-Oxide Semiconductor (CMOS) rectifier. A high sensitivity RF rectifier design which applied in BAN is expected to be developed.
1.2 Problem Statement

RF energy is a widely available energy source due to continuous broadcasting from radio sources like mobile phones, television broadcast stations, and others. However, the ambient RF power signal is usually too weak [2] and it is not able to turn on the traditional rectifiers to operate. It is usually lower than the threshold voltage of the transistor. But it should not being wasted and can be used to power up the low power consumption BAN devices. Besides, the threshold voltage of the transistors also affects the performance of PCE. More stages used will also degrade the PCE. Not only that, the high power consumption and small battery size also severely limit the operating time of sensor devices in BAN [1]. Therefore, there is a need for high sensitivity RF rectifier design. The RF rectifier should have the ability for harvesting efficiently energy from RF sources to enable the wireless charging of low power devices in BAN. Thus, the cost for purchasing the battery can be saved since the battery replacement can be eliminated through wireless charging devices.

1.3 Objectives

The main objectives of this project are:

- To investigate the topologies of RF rectifier
- To design RF rectifier with high sensitivity
- To enhance the PCE of RF rectifier
- To develop the proposed design into a layout

1.4 Score of Project

In RF energy harvesting system could have many functional blocks. However, this project will only focus on RF rectifier. The investigation on the topologies of RF rectifiers has been performed. Besides, Synopsys simulator will be used in designing CMOS rectifier. The RF rectifier which is able to operate at low input power has to be designed and developed. The RF rectifier should be able to function at 900MHz and produce a stable DC output voltage for remote application in BAN. Lastly, the high efficiency of rectifier design is desired to produce the higher output power.
1.5 Project Development

The RF rectifier design involves a few stages where the first stage is to study and understand the operation of existing topologies and compare its simulated result by using Synopsys simulator. The second stage is to set the specifications. Then, the circuit will be designed in schematic and simulated to verify whether the design match with the specifications mentioned. If the design meets the specifications set, then proceed to the layout design, Design Rule Checking (DRC) checking, Layout Versus Schematic (LVS) checking and parasitic extraction. Next, the last verification will do to ensure the design is match with the specifications set. Lastly, the RF rectifier design was completed once the last verification meets the specifications set.

1.6 Report Outline

This thesis consists of five chapters. It explains and discusses each description and detail for each chapter.

Chapter I – Introduction
The important parts of the project have been introduced. Section 1.5 presents the project development. The scope of the project is focused on the RF rectifier.

Chapter II - Literature Review
The important terms such as BAN, RF harvesting system, rectifier, operating region of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) transistor and design consideration of high-quality rectifier have been described. Section 2.7 presents the RF rectifier topologies based on MOSFET which are Fully Gate Cross Coupler (FGCC) rectifier, Self Vth Cancellation (SVC) rectifier and Dynamic Threshold-voltage MOSFET (DTMOS) rectifier. Their specifications, advantages, disadvantages, circuit design and operation have been reviewed. Charge transfer switches in Integrated Circuit (IC) domain have been studied in Section 2.8. It includes Schottky diode, diode-connected diode and Ultra-Low Power (ULP) diode.

Chapter III – Methodology
The methodology shows the process of circuit design has been developed in Section 3.1. The Synopsys software used in design the CMOS rectifier. The specifications have been set in Section 3.2. Section 3.3 mentions that the schematic designs have been
simulated in order to achieve the specification set. Lastly, the layout design included DRC checking, LVS checking, and parasitic extraction were discussed in Section 3.4.

Chapter IV – Comparison on RF Rectifier Based on MOSFET
The overview of this chapter has been presented in Section 4.1. Section 4.3 shows the schematic design of FGCC, SVC, and DTMOS rectifier while Section 4.3 shows the parameter setting at 90nm and 130nm technology for RF rectifier topologies. The optimization on the width of transistors has been carried out. The simulation result and analysis in term of rise time and the output voltage of RF rectifiers have been reviewed in Section 4.4.

Chapter V – Comparison on Charge Transfer Switches in IC Domain
The voltage multiplier rectifier topologies include Villard voltage multiplier and Dickson charge pump rectifier have been reviewed in Section 5.2. Section 5.3 shows the schematic design of Villard voltage multiplier and Dickson charge pump rectifier applied with the charge transfer switches. Their simulation result in term of leakage current and output voltage have been presented in Section 5.3.1 and 5.3.2 respectively. Section 5.4 presents the parameters optimization in the Dickson charge pump using ULP diode. The high sensitivity rectifier shows in Section 5.5 and proceeds to a layout designed in Section 5.6.

Chapter VI – Modeling and Prototyping of A Simple RF Harvesting System
A block diagram of RF energy harvesting has been reviewed in Section 6.1. Section 6.2 shows a dual-band planar antenna design which operates in 900MHz and 1900MHz. Then, microstrip single stub matching network has been investigated in Section 6.3. Lastly, 8 stages of Dickson Charge Pump using diode IN5819 has been simulated and then fabricated in a Printed Circuit Board (PCB) as shown in Section 6.4. The simulated and measured results obtained have been analyzed and discussed.

Chapter VII – Conclusion and Recommendation
A high sensitivity RF rectifier design which applied in BAN is presented. The result and analysis for the whole project were concluded in Section 7.1. The future works have been discussed and suggested in Section 7.2.

Next, the thesis has contributed some technical papers which to be published as shown in the Appendix part.
CHAPTER 2

LITERATURE REVIEW

2.1 Overview

In this chapter, it includes the reviews on BAN, RF harvesting system, rectifier, operating region of MOSFET transistor, characteristics of the high-quality rectifier. Besides, the topologies such as Fully Gate Cross Coupler (FGCC) rectifier, Self Vth Cancellation (SVC) rectifier and Dynamic Threshold-voltage MOSFET (DTMOS) rectifier have been reviewed. The charge transfer switches in IC domain such as Schottky diode, diode-connected MOSFET, and ULP diode have been studied.

2.2 Body Area Network (BAN)

BAN is a wireless communication between multiple Body Sensor Units (BSUs) and a single Body Central Unit (BCU) around body [3]. The BCU can be a cell phone while BSUs can be a pedometer, pacemaker, pulse oximeter and etc. The BSUs work as health monitoring sensor to collect the biological information of patient continuously. These data will be collected and saved in a local BSU memory then only send to the BCU through an RF communication channel. Then, BCU will process these data and communicate with a doctor via cell phone or Wi-Fi network [1]. In this way, patient’s health can be monitored anywhere in real time without the need of wired devices. However, the high power consumption and small battery size severely restricts the operating time of the BSUs and cause the sensors severely energy constrained. Thus, the demand for battery-free applications raises the interest in RF energy harvesting since energy harvesting from an external source from RF is one of the ways to solve this energy constraint.
2.3 RF Energy Harvesting

RF energy harvest is one of the popular types of power harvesting. The goal of an RF energy harvester is to convert the ambient RF energy sources into a stable DC power. A block diagram of RF harvesting system shown in Figure 2.1 [4]. It consists of the power source, impedance matching, rectifier, regulator circuit, and load. The power source is generally an antenna were used to capture the ambient RF signal while the impedance matching circuit is required to ensure the maximum RF energy is transferred from the source to load. In another word, it is used to match the impedance of antenna and rectifier in order to reduce the loss in the system. Next, the rectifier circuits convert the received RF signal voltage into a stable output DC voltage. When the output voltage of rectifier is not stable, a regulator circuit is a function to provide a smooth, stable and ripple free DC voltage. Lastly, the load is where the produced power is delivered to related applications or devices.

\[\begin{array}{cccc}
\text{Power Source} & \text{Impedance Matching} & \text{Rectifier} & \text{Regulator Circuit} & \text{Load} \\
\end{array}\]

Figure 2.1: Block diagram of RF harvesting system

The rapid expansion of sensor network requires a reliable power supply to replace the battery. However, the battery technology still in the slow progress to catch up with the latest electronic devices especially in nanometer (nm) technology where existing batteries are not fixed for such miniaturization[4]. With the RF harvesting system, the battery could be replaced by RF power harvesting devices to provide an independent energy source. Therefore, the need of battery could be eliminated and it is able to save on the operation and maintenance cost. Thus, this alternative source of energy has brought lots of attention for development.

2.4 Rectifier

A rectifier is also known as RF to DC converter which necessary to provide a stable power supply with the required voltage level [5]. The rectification occurs in both half-wave and full wave rectifier as shown in Figure 2.2 and Figure 2.3. The half-wave rectification allows either the positive or negative half of the alternating current (AC) signal to pass through and block the other half. While the full-wave rectification
converts both polarities of the alternate current (AC) input waveform to pulsating DC. Thus, a higher average output voltage is able to produce. However, more ripple will be produced in half-wave rectifier compared to full-wave rectifiers. Therefore, much more filtering is needed to eliminate harmonics of the AC frequency from the output in half-wave rectification process.

In conventional rectifier circuit, Schottky diodes were considered as an attractive candidate to perform the charge transfer task due to their low forward voltage drop and fast switching speed [6]. However, Schottky diodes are not properly modeled in all CMOS technologies which restrict their usefulness in low-cost applications where high integration levels are desired [7]. Therefore, recently most researchers have been working towards finding solutions to the forward voltage drop and leakage current mentioned in CMOS technology. Besides, the previous rectifier focused on maximizing the PCE and output power rather than sensitivity [8]. Since the available power supplies to the rectifier block is too low for traditional rectifiers to operate. Therefore, plenty of new and improved high sensitivity rectifier topologies for low input power (LIP) used were researched. Besides, the efficient model of Schottky diode in an integrated circuit (IC) domain also been investigated. In order for rectifier to work with very low input power, all the transistors in rectifier should operate in the sub-threshold region.