DESIGN OF ANTENNA WITH HARMONIC SUPPRESSION FOR RF ENERGY SCAVENGING

MANIMEGALAI A/P RENGASAMMY

The Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Telecommunication Electronics)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

July 2016
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

Tajuk Projek : DESIGN OF ANTENNA WITH HARMONIC SUPPRESSION FOR RF ENERGY SCAVENGING

Sesi Pengajian : 1 5 / 1 6

Saya MANIMEGALAI A/P RENGASAMMY

mengaku membentuk Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√) :

☐ SULIT* *(Mengandungi maklumat yang berdasarkan keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD** *(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh:

[Signature]

(TANDATANGAN PENULIS)

Tarikh : 8/6/2016

© Universiti Teknikal Malaysia Melaka
"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature : ____________________________
Author : Manimegalai P P Rengasamy
Date : 8/6/2016
"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Electronic Telecommunication) with Honours."

Signature: [Signature]

Supervisor’s Name: DR. ZAHRI ADHA AIN ZAKARIA

Date: [Date]
To my lovely father and mother
ACKNOWLEDGEMENT

I wish to express sincere gratitude to my dedicated supervisor PM. DR. Zahriladha Bin Zakaria for his valuable guidance and ideas throughout progress of project. His continuous guidance highly contributed to success of the project.

Special thanks to my parents for their constant encouragement and financial support throughout my undergraduate study. Their consistent support is one of primary reasons of my success.

Besides that, I would like to thank to my fellow friends who gave me crucial assistance and fruitful suggestions during research discussion. My heartiest thank you wishes extended to all parties who supported me in both direct and indirect manner throughout progress of the project.

Thank you.
ABSTRACT

The array antenna is required in RF energy scavenging as it provide high gain during signal reception from surrounding sources. Most antennas used in energy scavenging technology deliver a low gain value. In fact, the range of RF power transfer limited. An antenna array is designed to make energy harvesting technology improvement. Advantages of microstrip patch antennas such as low weight, low profile, and low cost made them as perfect choice for communication system engineering. The antenna array was specifically designed for WLAN applications which operate at frequencies of 2.45 GHz. In order to analyze and optimize the performance of the antenna, CST Studio Suite software was utilized. The designed antenna then tested in laboratory.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>REPORT STATUS VERIFICATION FORM</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>STUDENT’S VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>SUPERVISOR’S VERIFICATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Objective 2
1.3 Problem Statement 3
1.4 Scope of Work 4
1.5 Methodology 4
2 LITERATURE REVIEW

2.1 Introduction 6
2.2 Critical Literature Review 6
2.3 Introduction to Energy Harvesting 8
2.4 Antenna Theory 9
2.5 Antenna Properties 9
 2.5.1 Antenna Gain 10
 2.5.2 Radiation Pattern 10
 2.5.3 Directivity 10
 2.5.4 Antenna Efficiency 10
 2.5.5 Impedance 11
 2.5.6 Return Loss 11
 2.5.7 Voltage Standing Wave Ratio (VSWR) 11
 2.5.8 Bandwidth 12
 2.5.9 Polarization 12
 2.5.9.1 Circular Polarization 12
 2.5.9.2 Circularly Polarized Microstrip Patch Antenna 13
 2.6 Microstrip Patch Antenna Theory 14
 2.6.1 Dielectric Substrate 15
 2.6.2 Ground 16
 2.7 Feed Techniques 16
 2.7.1 Coaxial Feeding 16
 2.7.2 Microstrip Feeding 17
 2.7.3 Proximity Coupled Feed 19
 2.7.4 Aperture Coupled Feeding 19
 2.8 Advantages and Disadvantages of Microstrip Antenna 20
 2.9 Defected Ground Structures (DGS) 21
 2.9.1 Harmonics Reduction using DGS 22
 2.10 Method of Analysis 22
3 METHODOLOGY

3.1 Introduction 24
3.2 Antenna Specifications 27
3.3 Antenna Design 27
 3.3.1 Rectangular Patch Antenna 27
3.4 Design Parameter of Rectangular Array Antenna 30
3.5 Feeding of Array Patch Antenna 33
3.6 Fabrication Process 34
3.7 Measurement of the Antenna 36
 3.7.1 Return Loss 36
 3.7.2 Gain 37
 3.7.3 Radiation Pattern 38

4 RESULTS AND DISCUSSION

4.1 Introduction 40
4.2 Simulation Result for Antenna 41
 4.2.1 Harmonic Suppression 41
 4.2.2 Return Loss 41
 4.2.3 Gain 43
 4.2.4 Radiation Pattern and Directivity 43
 4.2.5 Impedance Matching 45
4.3 Measurement Result of an Antenna 45
 4.3.1 Return Loss 45
 4.3.2 Gain 47
 4.3.3 Radiation Pattern 48
4.4 Conclusion 48

5 CONCLUSION AND RECOMMENDATION

5.1 Introduction 49
5.2 Conclusion 49
5.3 Recommendation 50

REFERENCES 51
LIST OF FIGURE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Block Diagram of the RF Energy Scavenging System</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow Chart of the Project</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Circular Polarization</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of Microstrip Patch Antenna</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Common Shape of Microstrip Patch Elements</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Coaxial Feeding</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Direct Microstrip Feed Line</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Inset Microstrip Feed Line</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Gap-Coupled Microstrip Feed Line</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Proximity Coupled Microstrip Feeding</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Aperture Coupled Microstrip Feed</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Equivalent Circuit of a DGS Element</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of the Project</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>The CST Studio with Options</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>The Design Structure of Array Antenna for Front View</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Bottom View of Air Gap</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>The Design Structure of T-Shaped DGS at ground</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>The Structure of the Slot</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Coaxial Port of Feeding</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>The Prototype of Array Antenna</td>
<td>35</td>
</tr>
</tbody>
</table>
3.9 The Connection of array antenna and Vector Network Analyzer

3.10 The Connection of Antenna Vector Signal Generator and Spectrum Analyzer

3.11 The Connection of Antenna with Work Station And Field Fox Network Analyzer

4.1 With and Without using of DGS

4.2 Return Loss

4.3 Bandwidth Range

4.4 Realized Gain

4.5 Radiation Pattern in Polar

4.6 The Directivity of the Antenna

4.7 The impedance Matching of the Antenna

4.8 Return Loss of Measurement of Antenna

4.9 Comparison of Simulation and Measurement

4.10 The Radiation Pattern of Measurement
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summarize of Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>The Design Characteristic of Antenna</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Antenna Dimension</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>T-Shaped DGS Dimension</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>The Dimension of the Slot</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Probe Feeding Dimension</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

RF - Radio Frequency
DC - Direct Current
AC - Alternative Current
CST - Computer Simulation Technology
DGS - Defected Ground Structures
FR - Flame Retardant
CPW - Coplanar Waveguide
GSM - Global System for Mobile Communication
MEMS - Micro-electromechanical systems
RL - Return Loss
VSWR - Voltage Standing Wave Ratio
MICs - Microwave Integrated Circuits
MWS - Microwave Studio
VNA - Vector Network Analyzer
CHAPTER 1

INTRODUCTION

1.1 Background of Study

This chapter will focus on the description of the overall project. Energy scavenging is a process of capturing signal from several sources such as RF source, solar energy or piezoelectric. The RF generator transmitting the radio frequency (RF) which is picked up by a microstrip antenna in the receiver section [1]. This RF energy scavenging system is a combination of an antenna receiver and rectifier which able to receive and then convert electromagnetic waves into DC signal. This system consist of an antenna, impedance matching circuit, rectifier, and load resistance. Figure 1.1 shows the block diagram of RF energy scavenging system.
Figure 1.1 : Block Diagram of the RF Energy Scavenging System

The receive antenna collects electromagnetic waves from surrounding sources. In order to provide same efficiency level, the antenna has been used to transfer surrounding energy to receiver. The receive antenna responsible to induce AC current. The frequency at receive antenna is 2.45GHz. The matching network matches the impedance of antenna to the impedance of the rectifier. The DC filter convert AC to allow DC current passing to the load which is placed at the output port to measure the power. The project represents design of antenna with defected ground structure (DGS) to use for harmonic suppression. CST Studio Suite software has been used to design the antenna.

1.2 Objective

The objective of this project is to design an antenna for RF energy harvesting scavenging system that operates at frequency of 2.45GHz. The antenna was analyzed by using CST Studio Suite software. The design of the antenna with defected ground structure (DGS) is expected to suppress higher order harmonics.
1.3 Problem Statement

Recently, the usage of electronic devices such as mobile phone and sensor network is becoming wider. These kind of devices do not have a longer energy of battery. As the usage of electronic devices increase, the energy of battery also increase. Energy harvesting is used to provide unlimited energy of battery as a replacement. Moreover, the project is green technology based as the RF power obtained from the surroundings sources. This system is best solution who undergoes problem for developing wireless broadcasting and communications system generation with free energy.

The combination of curvature slots and notch-loaded with open stub and insert feed initiate harmonic suppression up to third order. However this method contributes rise in weight and cost at the same time system efficiency and performance are reduced [2]. Therefore, array antenna is used to provide good performances in terms of gain, radiation pattern, bandwidth, return loss and system efficiency. Microstrip patch antenna has been chosen for the purpose as it is light weighted and inexpensive.
1.4 Scope of Work

The implementation of this project cover design of the antenna at frequency of 2.45GHz along with design of DGS for RF energy scavenging system with harmonic suppression. This project require understanding on concept of array antenna and relevant techniques. Firstly, all related journals were collected for literature review before design antenna. Design of antenna for single patch then followed by 2x2 rectangular patch. The design was simulated using CST Studio Suite. Once design process completed, antenna fabricated using FR4 board. After done with fabrication process, antenna subjected to testing, analysis and measurement procedures. Finally, the result obtained from the fabricated antenna was compared with the simulation result. The antenna evaluated in term of parameters such as gain, return loss and radiation pattern.

1.5 Methodology

The project is started by research on literature review on antenna and theories on RF energy scavenging system. Then, physical layout for the design antenna constructed by calculating the parameters with microstrip formula. A simulation was done using the CST Studio Suite software. The performances of the design antenna was optimized by some antenna characteristics such as a resonance frequency, return loss, bandwidth, gain, and directivity, radiation efficiency and impedance matching. After completing design process, the antenna was fabricated. The antenna was tested, measured, analyzed and optimized for result loss, bandwidth, realized gain and directivity of an antenna. Then, result of simulation and measurement value compared to justify whether its specification meets the requirement. Figure 1.2 shows the flow chart of the project.
Figure 1.2: Flow Chart of the Project
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discusses about the design of microstrip patch antenna at 2.45GHz and feed modeling techniques. This chapter also elaborates about basic antenna parameters which will show the performance of the antenna.

2.2 Critical Literature Review

As a start, do some research and literature review by finding several journals related to the topic of RF energy harvesting scavenging system. Some information that found to be related with the project has been collected. From the collected data some information was summarized in Table 2.1.
Table 2.1: Summarize of Literature Review

<table>
<thead>
<tr>
<th>Journal</th>
<th>Application(Hz)</th>
<th>Technique</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>2.45GHz</td>
<td>Two dc-recombined rectifiers and a cross-slot coupled square patch antenna fed by a microstrip line.</td>
<td>The co-localized dual circularly polarized properties of the antenna avoid the well-known 3 dB. A very low ripple of the output dc voltage and the global conversion efficiency.</td>
</tr>
<tr>
<td>[2]</td>
<td>2.45GHz</td>
<td>Notch-loaded and curvature slots at the antenna patch together with an open stub and inset feed transmission line</td>
<td>The proposed patch antenna is able to suppress the unwanted harmonics up to third order.</td>
</tr>
<tr>
<td>[3]</td>
<td>2.45GHz</td>
<td>Square patch antenna array 3x3 designed with a circular polarization using an inclined slot at the center.</td>
<td>The array will permit to increase the efficiency of the RF-DC conversion system, by increasing the gain and directly increasing the received power at the input of the rectenna.</td>
</tr>
<tr>
<td>[4]</td>
<td>Range of 2GHz-10GHz</td>
<td>A CPW-fed circular slot antenna with a slot on a ground conductor</td>
<td>Second and higher rejection bands are integer-multiple of the first band.</td>
</tr>
</tbody>
</table>
2.3 Introduction to Energy Harvesting

Energy harvesting is the process of collecting energy from the surrounding resources. To run a device the energy harvesting is used to convert external resources into electrical signal. Some energy harvesting can be convert from a motion signal into electric energy such as wind turbine, water turbine, ocean waves and others. In few past days, there are several new ways establish to harvest the energy by using vibration energy, resonant frequency, magnetic, and microwave. Some of companies and researchers encouraging to bring upcoming ideas to develop the battery lifespan mostly for wireless devices. The size of batteries increases while the environmental pollution also will be increased. The energy harvesting with using of RF which will capture the sources and stored the energy from the ambient sources, hence it will useful for mobiles devices and also the miniature electronic devices. There are several types such as energy harvesting, power harvesting, and...

<table>
<thead>
<tr>
<th>Reference</th>
<th>Frequency</th>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>2.45GHz and 5.8GHz</td>
<td>Circularly polarized microstrip rectenna operating on C-band $\lambda=4$ microstrip lines and open stubs</td>
<td>The truncated-corner patch antenna achieves the harmonics suppression characteristic by a microstrip feedline</td>
</tr>
<tr>
<td>[6]</td>
<td>2.45GHz</td>
<td>3×3 circular polarized antenna array an inclined slot at the center</td>
<td>The design provides a high directivity of its receiving Antenna and also the good radiation efficiency which can reach more than 98% at the operating frequency.</td>
</tr>
<tr>
<td>[7]</td>
<td>2.4GHz</td>
<td>Wideband system</td>
<td>Two systems enable to harvest RF power at 900MHz GSM band (single frequency) and at 900MHz GSM (2.4 GHz Wi-Fi bands).</td>
</tr>
</tbody>
</table>