

INFLUENCE OF GOLD SILVER PLATING THICKNESS ON PALLADIUM COATED COPPER WIRE ON STITCH BONDING

TEY SOCK CHIEN

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

2016

C Universiti Teknikal Malaysia Melaka

Faculty of Manufacturing Engineering

INFLUENCE OF GOLD SILVER PLATING THICKNESS ON PALLADIUM COATED COPPER WIRE ON STITCH BONDING

Tey Sock Chien

Master of Science in Manufacturing Engineering

2016

INFLUENCE OF GOLD SILVER PLATING THICKNESS ON PALLADIUM COATED COPPER WIRE ON STITCH BONDING

TEY SOCK CHIEN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Influence of Gold Silver Plating Thickness on Palladium Coated Copper Wire on Stitch Bonding" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved family, lecturers and friends.

ABSTRACT

Low cost, high reliable and robust semiconductor packages are required in order for semiconductor manufacturer to stay competitive in the industry. This requires a stable manufacturing process that able to maintain high production yield, reduce customer reject and scrap cost. Currently, combination of Ni/Pd/AuAg preplated Cu alloy leadframe and Palladium coated copper (PCC) wire is used in the wire bonding process of semiconductor package due to its robustness package performances. Nevertheless, studies on the influence of plating layer thickness of roughened preplated leadframe to the stitch bonding strength of the PCC wire is still lacking and not well understood. The purpose of the current study is to investigate the effect of thickness of AuAg plating (i.e. the top plating layer) of the preplated leadframe on the PCC stitch wire bonding. Regression and ANOVA analysis showed AuAg plating's thickness of preplated leadframe was the predominant factor on the stitch bonding strength of PCC wire bonding. The bonding force is the second dominant force, followed by the bonding time. However, the DoE results shows AuAg plating thickness has no significant influence (P value >0.05) on the frequency of machine stoppages (i.e. caused by 'no tail' and 'nonstick on lead' failure on PCC wire stitch bond). Stitch pull strength of PCC wire bonding on the preplated leadframe increased from 10.10 gram-force to 11.20 gram-force, when the AuAg plating's thickness increased from 7.0 to 35.2 nm. Cross-sectional view micrographs of all the stitch bond samples showed failure mode at stitch bond heel, implied the mechanical failure caused by stitch pull test, may be initiated by crack located at the mechanical deformed wire regions (i.e. stitch bond heel). Lower deformation on bond heel observed with thicker AuAg thickness. This is verified by stitch bond thickness data that exhibited thicker stitch bond heel thicknesses when stitch bonding was performed on leadframe with larger AuAg thickness. Stitch remains' length increases with larger AuAg thickness because the resulted thicker stitch heels able to withstand higher stitch pull strength, thus elongated further before break up. Thus, both design of experiments and microstructure analysis results supported the stitch pull strength results as function of AuAg plating thickness. Stitch bonding between PCC wire and leadframe was formed through interdiffusion involving Pd species from PCC wire and Au and Ag species from AuAg plating at the bonding interface. Bonded sample with larger AuAg plating thickness exhibited wider interdiffusion zone, thus further strengthened the stitch bond shear strength. This later prevents shear failure at stitch bond interface during stitch pull test. Higher stitch bond strength further strengthens the package reliability. Thus, it enables semiconductor package application extend into automotive industry like power, safety and engine control applications.

ABSTRAK

Pakej semikonduktor yang berkos rendah, diyakini dan tahan lasak adalah diperlukan agar pengeluar dan pembuat semikonduktor kekal bersaing di dalam industri ini. Process pembuatan yang stabil serta berupaya mengekalkan prestasi pengeluaran yang bermutu tinggi amat diperlukan bagi mengurangkan barangan ditolak pelanggan dan kos sisa. Kini, kombinasi diantara 'leadframe' bersadur Ni/Pd/AuAg dan wayar Cu bersadur Pd (PCC) digunakan di dalam process jalinan antara wayar dan permukaan 'leadframe'. Ini disebabkan prestasi dan keupayaan tahan lasak pakej. Walaubagaimanapun, kajian ke atas kesan ketebalan lapisan saduran bagi 'leadframe' pra-sadur dan permukaan 'leadframe' yang dikasarkan, berserta kekuatan lekatan jalinan wayar PCC masih lagi berkurangan dan tidak difahami sepenuhnya. Tujuan kajian ini ialah menyiasat kesan ketebalan saduran AuAg (lapisan teratas saduran) pada 'leadframe' pra-sadur keatas lekatan jalinan wayar PCC. Keputusan analisis Regresi dan ANOVA menunjukkan ketebalan saduran AuAg bagi 'leadframe' pra-sadur adalah faktor utama kepada kekuatan lekatan jalinan wayar PCC. Daya lekatan adalah faktor dominasi kedua, diikuti dengan masa lekatan. Menurut keputusan DOE yang dijalankan, pengaruh ketebalan saduran AuAg boleh diabaikan dan tidak memudaratkan keatas kekerapan penghentian mesin (i.e disebabkan oleh 'no tail' dan 'nonstick on lead' pada lekatan jalinan wayar PCC). Berdasarkan ujian tarikan keatas lekatan wayar, Kekuatan lekatan jalinan wayar PCC keatas 'leadframe' pra-sadur, meningkat dari 10.10 gram-daya ke 11.20 gram-daya dan berkadar langsung dengan ketebalan lapisan AuAg yang meningkat dari 7.0 nm ke 35.2nm. Pandangan keratan rentas micrograf bagi semua sampel lekatan jahitan menunjukkan mod kegagalan pada tumit. Lapisan AuAg yang tebal memberikan kesan kusyen yang lebih besar terhadap penyahbentukan tumit dawai semasa process ikatan jahitan. Ini disahkan oleh data jahitan ikatan yang menunjukkan tumit bon jahitan yang tebal dengan ketebalan AuAg yang lebih tinggi. Baki ikatan jahitan didapati juga meningkat dengan ketebalan AuAg yang semakin tinggi. Ini adalah kerana ketebalan ikatan jahitan tumit yang tinggi mampu menampung daya tarikan ikatan jahitan yang lebih kuat, menyebabkan tumit ikatan jahitan terus memanjang sebelum putus. Oleh itu, kedua-dua keputusan eksperimen dan analisis mikrostruktur menyokong keputusan kekuatan tarikan ikatan jahitan sebagai fungsi ketebalan saduran AuAg. Ikatan jahitan antara wayar PCC dan 'leadframe' dibentuk melalui interdiffusion yang melibatkan spesies Pd dari wayar PCC dan Au serta Ag spesies dari penyaduran AuAg atas 'leadframe'. Sampel ikatan dengan lapisan AuAg yang lebih tebal mempamerkan lapisan zon interdiffusion yang lebih luas, seterusnya mengukuhkan lagi kekuatan ikatan jahitan serta mencegah kegagalan ricih semasa ujian tarikan ikatan jahitan.Ikatan jahitan yang tinggi dapat mengukuhkan kebolehpercayaan pakej. Oleh itu, pakej semikonduktor dapat dilanjutkan ke industri automotif seperti aplikasi di kawalan kuasa, keselamatan dan bahagian enjin.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my greatest gratitude to my supervisor Dr. Lau Kok Tee from the Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his supervision, support and dedication towards the completion of this thesis. Furthermore I would like to express my sincere acknowledgement to Dr. Mohd Edeeorozey Abd Manaf, co-supervisor of this project for his advice and suggestion throughout the research activities. I would like to express my deepest gratitude to management of Infineon Technologies (Advanced Logic) Sdn Bhd for the financial support of the samples preparation throughout this research. Special thanks to Mr. Chong Hai Sin, my industrial supervisor and also my superior Mr Poh Yong Chern for his advice and guidance. Appreciation also given to Ms. Jolene Tan, Mr Norisham, Mr. Lee Wai Hoo, Mr. Lim Kee Guan, Mr. Yong Foo Khong, Ms. Lim Sau Chin, Mr. Siah Beng Eng, Mr. Vincent Yeo and Ms. Tan Yik Yee for the support given in the assembly process and assistance in the lab and analysis works. Special thanks to my beloved family for their moral support in completing this master degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

iii

TABLE OF CONTENTS

DEC	LAR	ATION	
APP	ROV	AL	
DED	DICA	ΓΙΟΝ	
ABS	TRA	СТ	i
ABS	TRA	ĸ	ii
ACK	KNOV	 VLEDGEMENTS	iii
TAB		DF CONTENTS	iv
LIST	Г ОF	TABLES	vii
LIST		FIGURES	iv
I ISI		ABBREVIATIONS SYMBOLS AND NOMENCI ATURES	IA VV
		PURI ICATIONS	лv viv
	I OF	I UDLICATIONS	ЛІЛ
CHA	PTE	R	
1.	INT	RODUCTION	1
	1.0	Research Background	1
	11	Problem Statement	4
	1.2	Research Objectives	5
	13	Hypothesis	5
	1.5	Scope of the Research	6
	1		0
2.	LIT	ERATURE REVIEW	7
	2.0	Introduction	7
	$\frac{-10}{21}$	Semiconductor Packaging Trend: Latest Development	7
	2.2	Structures in a Semiconductor Package	9
	$\frac{-1}{2}$	Type of Bonding Wire and its Material Properties	10
	2.0	2.3.1 Coated Copper Wires	13
	2.4	Chin Carriers	14
	2	2.4.1 Ni/Pd/Au and Ni/Pd/Au/Ag Plated Leadframe	16
		2.4.2 Nickel/Palladium/ Gold Silver alloy (NiPdAuAg) Plated	17
		Leadframe	17
		2.4.3 Ni/Pd Plated Leadframe	17
		2.4.4 Ag Plated Leadframe	17
	25	Leadframe Surface Properties and its Influence on Wire	18
	2.0	Bonding	10
		2.5.1 Plating Thickness	18
		2.5.2 Surface Roughness	19
		2.5.2 Surface Roughness	19
	2.6	Interconnection Methods	20
	$\frac{2.0}{2.7}$	Wire Bonding	20
	2.1	271 Ball Bonding	$\frac{25}{25}$
		2.7.1 During 2.7.1 1 First Ball Bond	23 27
		2.7.1.1 First Dan Donu 2.7.1.2 Second Stitch Bond	27
		2.7.1.2 Second Such Dolla 2.7.2 Wadaa Bonding	21
		2.1.2 wouge Donuing	20

	2.8	Parameters influencing Wire Bonding		
		2.8.1 Bonding Wire	29	
		2.8.2 Bonding Force	30	
		2.8.3 Ultrasonic Power	30	
		2.8.4 Bonding Temperature	31	
		2.8.5 Bonding Time	32	
		2.8.6 Bonding Gas Environment	32	
		2.8.7 Capillary Dimension and Surface Finishing	32	
		2.8.8 Other Bonding Parameters	34	
		2.8.9 Bonding Surface Cleanliness	34	
		2.8.10 Plasma Cleaning	35	
	2.9	Wire Bonding Failures	37	
		2.9.1 Cratering	37	
		2.9.2 Broken Stitch	37	
		2.9.3 Insufficient Tails Length or 'No Tail'	38	
		2.9.4 Peeling	38	
		2.9.5 First and Second Bond 'Nonsitck' Defect	39	
		2.9.6 Intermetallic Compound- Kirkendall Void	39	
	2.10	Bonding Mechanism of Copper Wire on Preplated	40	
		Leadframe		
		2.10.1 Metallurgical Systems	42	
3.	RES	EARCH METHODOLOGY	47	
	3.0	Research Methodology Overview	47	
	3.1	Design of Experiment	50	
		3.1.1 Selection of Key Factors and Level Setting	51	
		3.1.2 DoE Matrix	53	
		3.1.3 Regression Analysis	54	
		3.1.4 Analysis of Variance (ANOVA)	55	
		3.1.5 Residual Analysis	56	
	3.2	Fabrication Process of Ni/Pd/AuAg Preplated Cu Alloy	57	
	22	Wire Bonding	63	
	3.5 3.4	Characterization	64	
	5.4	3.4.1 Characterization of Palladium Coating of PCC Wire	64	
		3.4.1 Characterization of Fandulum Coaling of FCC wite 3.4.2 Preplated L and frame's Surface Poughness Massurement	64	
		3.4.2 Stitch Pull Strangth Maggurament	65	
		3.4.4 Stitch Bond Failure Mode Examination	66	
		3.4.5 Stitch Bond Interface Imaging	67	
		3.4.6 Stitch Bond Interface Elemental Profiling	67	
		5.4.0 Stiten Bold Interface Elemental Froming	07	
4.	RES	ULT AND DISCUSSION	68	
	4.1	Characterizations of Ni/Pd/AuAg Preplated Leadframe and	68	
	PCC	Bonding Wire		
		4.1.1 Surface Roughness of as-recieved Preplated Leadframe	68	
		4.1.2 Thickness of as-received Preplated Leadframe	74	
		4.1.3 Palladium's Thickness in PCC Wire	76	
	4.2	Design of Experiment: Evaluation of Factors	78	
		V		

	4.2.1	Regression Model for Stitch Pull Strength Data	80
	4.2.2	Predicted Response for 'No Tail' Failure	82
	4.2.3	Regression Analysis	84
	4.2.4	Analysis of Variance (ANOVA)	86
	4.2.5	Residual Plots	87
4.3	AuAg	Thickness Influence to Stitch Pull Strength of PCC Wire	90
	on Pre	plated Leadframe	
	4.3.1	Comparison of Stitch Bonding Strength Trend of Bare	93
		Cu Wire and PCC Wire	
4.4	Stitch	Bond Morphological Analysis	95
	4.4.1	Stitch Remains of Stitch Pull Failure Mode on different	98
		AuAg Thickness Leadframe	
4.5	Cross	Sectional Microstructure of Stitch Bond of PCC Wire on	100
	Prepla	ted Leadframe	
	4.5.1	Stitch Bond Heel Thickness	104
4.6	Micro	structure of Stitch Bonding Interface	106
4.7	Eleme	ntal Profiling of Bonding Interface	110
COI	NCLUS	SION AND RECOMMENDATIONS	115
5.1	Conclu	usion	115
5.2	Recon	nmendation	116

REFERENCES

5.

117

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Materials properties of different commonly used bonding wires	11
2.2	Comparison of common chip carriers used in the semiconductor	14
	industry	
2.3	Overview of types of interconnect and comparison	21
2.4	Comparison of different wire bonding technique	23
2.5	Summary table of bonding wire's metallurgical systems	43
3.1	Details of stitch bond sample preparations and characterizations	49
3.2	Plating thicknesses and DoE level setting of Ni/Pd/AuAg	52
	preplated Cu alloy leadframe with different AuAg thicknesses	
3.3	Input factors and level setting focus on the wire bonding	53
	parameters	
3.4	DoE Matrix generated by combination of AuAg thickness, bond	54
	force and bonding time factors	
3.5	Explanation of the term use in statistical software of regression	55
	analysis	
3.6	Term used and its definition in ANOVA analysis results	56

vii

3.7	Plating layers of Ni/Pd/AuAg preplated Cu alloy leadframes and	61
	their functions	
4.1	Regression analysis of average surface roughness of leadframe's	71
	lead finger as a function of AuAg thickness	
4.2	Summary of roughness measurement on different AuAg thickness	74
	samples	
4.3	AuAg thickness data (obtained from Haesung DS using XRF	75
	characterization) of leadframe used by the current study	
4.4	DoE matrix of stitch bonding study of PCC wire on Ni/Pd/AuAg	79
	preplated Cu alloy leadframe	
4.5	Regression analysis results which based on the DOE analysis	85
4.6	Data of stitch pull strength (unit: gf) with different AuAg	92
	thicknesses (unit: nm) of roughen preplated leadframes with	
	palladium coated copper wires	
4.7	Stitch pull strength of bare Cu and and Pd coated Cu (PCC) wire	94

bonding as function of leadframes' AuAg plating thickness

viii

LIST OF FIGURES

FIGURE	TITLE		
1.1	Comparison of schematic structure of typical resin-molded	2	
	semiconductor packages assembled using lead-free Ag-Sn (left)		
	leadframe and Ni-Pd-Au (or Ni-Pd-AuAg) (right) preplated		
	leadframe		
1.2	Cross sectional view of Ni-Pd-AuAg preplated leadframe used by	3	
	the current study (manufactured by Haesung DS Co., previously		
	known as Samsung Techwin Co.)		
2.1	Worldwide semiconductor market history and forecast from year	8	
	1992 to 2017		
2.2	Average electronics contents per car trend and forecast from year	9	
	2006- 2020		
2.3	Schematic structure of a typical semiconductor package	10	
2.4	An example of a chip carrier design	15	
2.5	Schematic diagrams of three types of interconnects	21	
2.6	Microstructural comparison of ball and wedge bond	25	
2.7	SEM images of first ball bond (left) and second stitch bond (right)	25	
2.8	Overview of ball bonding cycle	27	

2.9	Overview of wedge bonding cycles	29
2.10	Capillary dimension overview and formation of stitch bond	33
3.1	Overview of research methodology plan	48
3.2	Flow chart of DoE	51
3.3	QFP-type AuAg/Pd/Ni preplated Cu alloy leadframe	57
3.4	Flow of preplated leadframe fabrication process	58
3.5	Process flow of electroplating of Ni/Pd/AuAg plated Cu alloy	59
	leadframes	
3.6	Rough surface of as-received preplated leadframes from top view	60
	using FESEM under magnification of: (a) $2500 \times$ and (b) $10000 \times$	
3.7	FESEM image of as-received roughened preplated leadframes	60
	viewed from tilting angle of 45° under magnification of 10,000×	
3.8	Preplated leadframes structure of Ni/Pd/AuAg build up on top of	61
	copper alloy base material	
3.9	Photograph of Shinkawa wire bonder, model: UTC 3000	63
3.10	SENSOFA 3D Optical profiler	65
3.11	Stitch pull test diagram with pull hook position and pulling direction	66
4.1	Optical image of an unit of surface roughened QFP 176 pin	69
	(magnification 8×)	
4.2	Average roughness (Sa) on die paddle and lead finger of Ni/Pd/AuAg	70
	preplated Cu alloy leadframe with different AuAg thicknesses (unit:	
	nm)	

Х

- 4.3 3D optical image of surface roughness of leadframe with AuAg 72 thickness of 10.9 nm
- 4.4 3D optical image of surface roughness of leadframes with AuAg 73 thickness of 19.8 nm
- 4.5 3D optical image of surface roughness of leadframes with AuAg 73 thickness of 28.7 nm.
- 4.6 STEM-EDX profiling of cross section of sample 5 (i.e. 35 nm 76 AuAg leadframe)
- 4.7 Scanning electron microscopy image of Palladium coated copper 77 wires. Spectrum 1 and spectrum 2 indicated points taken for Pd thickness measurements
- 4.8 Pd thickness data collected along the circumference of the asreceived PCC wire. Dashed horizontal line indicates average Pd thickness value
- 4.9 Response graph of stitch bond strength versus AuAg thickness, 80 bond force and bonding time
- 4.10 Correlation plot of stitch bonding strength versus AuAg thickness 81
- 4.11 Predicted response graph of 'no tail' failure versus AuAg thickness, 82bonding force, and bonding time
- 4.12 Correlation plot of 'no tail' count versus bonding force 83
- 4.13 Contour plot of AuAg thickness and bonding force with predicted 84 stitch bonding strength and 'no tail' failure count

xi

4.14	ANOVA data for stitch pull strength data	87
4.15	Analysis of variance (ANOVA) for 'no tail' failure	87
4.16	Residual probability plots for stitch bonding strength	88
4.17	Effects pareto indicating significant factors influencing stitch	89
	bonding strength (unit: gf)	
4.18	Residual probability plots for 'no tail' failure count	89
4.19	Effects pareto showing bond force as significant factors for 'no	90
	tail' failure	
4.20	Stitch pull strength (unit: gf) of PCC wire with different AuAg	92
	thicknesses of roughen preplated leadframes	
4.21	Stitch pull strength (unit: gf) of bare copper wires with different	93
	AuAg plating thickness of roughen preplated leadframes	
4.22	Overview of stitch bond morphology of PCC wire bonding on	95
	preplated leadframe of AuAg thickness under high power scope	
	with magnification of 200x with: (a) 7.0± 0.2 nm, (b) 10.9 \pm 0.3	
	nm, (c) 19.8 \pm 1.0 nm, (d) 28.7 \pm 2.8 nm and (e) 35.2 \pm 14.9 nm	
4.23	Stitch formation and measurement definition of stitch length and	96
	stitch width	
4.24	Stitch width measurement versus AuAg thickness	96
4.25	Stitch length measurement with different AuAg thickness	97

xii

4.26	Sample comparison of stitch width and length for different AuAg	97
	thickness	
4.27	Optical images (200× magnification) of stitch pull failure mode of	99
	stitch bond on preplated leadframe with AuAg thickness: (a) 7.0	
	nm, (b) 10.9 nm, (c) 19.8 nm, (d) 28.7 nm, and (e) 35.2 nm	
4.28	Stitch remain measurement on the stitch bond	100
4.29	Stitch remains measurement with different AuAg thickness	100
4.30	Stitch bond cross section view at respective 1000× and 7000×	101
	magnifications for bonded samples with AuAg plating thicknesses	
	of 7.0 nm (a, b), 10.9 nm (c, d), 19.8 nm (e, f), 28.7 nm (g, f) and	
	35.2 nm (i, j) AuAg thickness samples	
4.31	Cross section view of stitch bond break at stitch heel in 2000x	103
	magnification with different AuAg thickness, (a) 7.0 nm, (b) 10.9	
	nm, (c) 19.8 nm, (d) 28.7 nm and (e) 35.2 nm	
4.32	Stitch heel thickness measurement	104
4.33	Stitch bond heel thickness measurement with different AuAg	106
	thickness	
4.34	Stitch bonding cross section image with AuAg thickness (a) 7.0	107
	nm, (b) 10.9 nm, (c) 19.8 nm, (d) 28.7 nm and (e) 35.2 nm taken	
	using STEM	
4.35	STEM image of stitch bonding interface with different AuAg	109
	thickness of (a) 7.0 nm, (b) 10.9 nm, (c) 19.8 nm, (d) 28.7 nm and	
	(e) 35.2 nm	

xiii

C Universiti Teknikal Malaysia Melaka

- 4.36 Cross section STEM views of stitch bonding interface on AuAg 7 112 nm thickness samples and EDX profiling on interface
- 4.37 Cross section STEM views of stitch bonding interface on AuAg 11210.9 nm thickness samples and EDX profiling on interface
- 4.38 Cross section STEM view of stitch bonding interface on AuAg 19.8 113 nm thickness Samples and EDX profiling on interface
- 4.39 Cross section STEM view of stitch bonding interface on AuAg 28.7 113nm thickness samples and EDX profiling on interface
- 4.40 Cross section STEM view of stitch bonding interface on AuAg 35.2 114 nm thickness samples and EDX profiling on interface

LIST OF ABBREVIATIONS,

SYMBOLS AND NOMENCLATURE

Ag	-	Argentum
Al	-	Aluminium
Ar	-	Argon
Au	-	Aurum
Be	-	Beryllium
BGA	-	Ball grid array
BT	-	Bismaleimide Triazine
CAGR	-	Compound annual growth rate
CN	-	Cyanide
Cr	-	Chromium
CQFP	-	Ceramic quad flat package
CSP	-	Chip scale package
Cu	-	Cuprum
DF	-	Degree of freedom
DIP	-	Dual in line package
DOE	-	Design of experiment
ECU	-	Electronic control unit
EDX	-	Energy dispersion x-ray

EFO	-	Electric flame off
ENEPIG	-	Electroless nickel electroless palladium immersion gold
FAB	-	Free air ball
FCC	-	Face center cubic
Fe	-	Ferum
FESEM	-	Field emission scanning electron microscope
FIB	-	Focus Ion Beam
FR4	-	Flame retardant 4
GAM	-	Brightness value
g/cm ³	-	gram per centimeter cube
gf	-	gram force
GPS	-	Global positioning satellite
H ₂	-	Hydrogen
HEPA	-	High efficiency particulate air
IC	-	Integrated circuits
IMC	-	Intermetallic Compound
I/O	-	Input Output
LCD	-	Liquid crystal display
L/min	-	Litre per minute
Low-k	-	Small dielectric constant
MIS	-	Molded interconnect substrate
MPa	-	Mega pascal
ms	-	milisecond
N_2	-	Nitrogen
		Δ ¥ 1

Ni	-	Nickel	
Ni-P	-	Nickel Phosphorus	
Ni-Pd-Au	-	Nickel Palladium Aurum	
Ni-Pd-AuAg	-	Nickel Palladium Aurum Argentum	
nm	-	Nanometer	
Ohm.m	-	Resistivity, Ohm meter	
Pb	-	Lead, Plumbum	
РСВ	-	Printed circuit board	
PCC	-	Palladium coated copper wire	
Pd	-	Palladium	
PGA	-	Pin grid array	
PLCC	-	Plastic leaded chip carriers	
ppm	-	Part per million	
Ra	-	Average roughness	
RMS	-	Root mean square	
QFP	-	Quad flat package	
QIL	-	Quad in line	
RoHS	-	Restriction of the use of certain hazardous substance in electrical	
		and electronic equipment	
SIP	-	Single in line	
Sn	-	Stannum, Tin	
SOIC	-	Small outline integrated circuit	
SS	-	Sum of squares	
STEM	-	Scanning transmission electron microscopy xvii	

C Universiti Teknikal Malaysia Melaka

TAB	-	Tape automated bonding
TEM	-	Transmission electron microscopy
TV	-	Television
UV	-	Ultraviolet
vol%	-	Volume percentage
XRF	-	X-ray fluorescence spectroscopy
W	-	Watt
WEEE	-	Waste electrical and electronic equipment.
WLP	-	Wafer level package
W/mK	-	Watt per meter kelvin
wt%	-	Weight percentage
Zn	-	Zinc
°C	-	Degree Celsius
μm	-	micro meter
lb./in. ²	-	pound per square inch,

xviii