Faculty of Electronic and Computer Engineering

AUTOMATED DEFORM DETECTION FOR AUTOMOTIVE BODY PANELS USING IMAGE PROCESSING TECHNIQUES

Muhammad Zuhair Bolqiah Bin Edris

Master of Science in Electronic Engineering

2016
AUTOMATED DEFORM DETECTION FOR AUTOMOTIVE BODY PANELS USING IMAGE PROCESSING TECHNIQUES

MUHAMMAD ZUAIR BOLQIAH BIN EDRIS

A thesis submitted
in fulfilment of the requirements for the degree of Master of Science
in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Automated Deformation Detection on Automotive Body Panels Using Neural Network Based Segmentation” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature :...

Name : MUHAMMAD ZUHAIR BOLQIAH BIN EDRIS

Date : ..
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in
terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature : ..
Name : ASSOC. PROF. DR. ZAHRILADHA BIN ZAKARIA
Date : ...
DEDICATION

Dedicated to ALLAH S.W.T, my beloved parents; Mr Edris Bin Yahya and Mrs Mashkurah Binti Hasbullah and the rest of my family members for your infinite and unfading love, sacrifice, patience, encouragement and support.
ABSTRACT

The demand for automotive industry has been rapidly increasing as the number of consumer increases. In order to ensure the quality of their product, the manufacturers need to minimalize any deformation that occurs to their products. Early deformation detection on the automotive body panels manufactured must be conducted in order to rectify the problem. Automated deformation detection was designed to replace manual labour and this technique is found to be more accurate and effective. This thesis proposed a method to detect the deformation that occurs on the automotive body panel surface while in assembly lines. Three-dimensional data is acquired from the body panels as an input for deformation detection system. The data is converted in two-dimensional data image by using scatter data interpolation. Gradient filtering is used to identify the gradient energy value yield from the surface by using two types of kernels. Background illumination correction is implemented in order to reduce unwanted regions in the image. The prepared images undergo segmentation stage by recognizing the deformation in each threshold value by using Artificial Neural Network. The threshold value has been assigned with range between 0.0001 until 0.2000 where the threshold value is increased by 0.0001 in iteration. The Gabors’ Wavelet is used to extract the features of the segmented candidates and as the input for the artificial neural network. A fuzzy logic decision rule is used to classify the types of deformations that have been obtained from the artificial neural network outputs. The depth of the deformation is then computed by subtracting the maximum and minimum values of the segmented candidates. Several test units were purposely built with deforms in order to test the proposed method. The mean accuracy of the NN recognition with Gabors’ Features Extraction was recorded at 99.50 %. The segmentation on flat surface was recorded with lowest accuracy percentage of 68.81 %, then followed by the car door and the curved surface with accuracy percentage recorded at 70.39 % and 79.03 % respectively. The detection accuracy percentage was found to be 100 % where all the deformed location was able to be detected.
ABSTRAK

ACKNOWLEDGMENT

First and foremost, I would like to give my highest gratitude to the Allah S.W.T for His blessings that I have now completed my Master of Science in Electronic Engineering. Special thanks also dedicated to my supervisors Associate Professor Dr. Zahriladha Bin Zakaria, Dr. Saeed Jawad and Mr. Mohd Shahril Izuan Bin Mohd Zin for their supervisions during the duration of my research. They have helped and guided me very well regarding useful informations and research techniques in order for me to complete this research project.

Special dedications also to the authority of University Teknikal Malaysia Melaka, especially to the Faculty of Electronic and Computer Engineering for the university research grant. The faculty had also provided useful and conductive facilities for me to conduct my research works.

At last, I would like to extend my gratitude to my parents; Mr. Edris Bin Yahya and Mashkurah Binti Hasbullah, my siblings, and my friends for their encouragement, love and motivations throughout my whole journey. Once again, thank you so much.
TABLE OF CONTENTS

DECLARATION i
APPROVAL
DEDICATION
ABSTRACT ii
ABSTRAK
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES viii
LIST OF APPENDICES xi
LIST OF ABBREVIATIONS xii
LIST OF SYMBOLS xiv
LIST OF PUBLICATIONS xv

CHAPTER

1. INTRODUCTION 1
 1.0 Background 1
 1.1 Problem Statement 4
 1.2 Objectives 5
 1.3 Scopes 5
 1.4 Original Contribution Presented in this Thesis 5
 1.5 Thesis Organization 6

2. LITERATURE REVIEW 8
 2.0 Introduction 8
 2.1 Automated Surface Deformation Detections 8
 2.2 Data Acquisition Methods 9
 2.2.1 Two-Dimensional Data Acquisition 10
 2.2.2 Three-Dimensional Data Acquisition 11
 2.2.2.1 Laser Depth Scanner 11
 2.2.2.2 Triangulation-Based Laser Scanner 12
 2.2.2.3 Structured Light Scanner 14
 2.3 Gabors’ Features Extractions 15
 2.3.1 Filtering in frequency domain 18
 2.4 Deformation Segmentation and Detection Methods 20
 2.5 Classification Methods 31
 2.5.1 Machine Learning Techniques 32
 2.5.1.1 Multi-layer Perceptrons Neural Network 36
 2.5.2 Surface Shape Analysis Techniques 39
 2.5.3 Fuzzy Rules Technique 44
 2.5.3.1 Mamdani Fuzzy Logic Controller 45
 2.6 Review On The Deformation And Defect Detection Methods 49
 2.7 Summary 53
3. METHODOLOGY

3.0 Introduction

3.1 Method Development

3.2 General Process Flow To Detect The Deformation

3.3 Pre-Processing

- 3.3.1 Scattered Data Interpolation
- 3.3.2 Surface Gradient Filtering
- 3.3.3 Correcting Non-Uniform Illumination
 - 3.3.3.1 Structuring Element
 - 3.3.3.2 Erosion and Dilation
 - 3.3.3.3 Opening and Closing

3.4 Deformation Detection Process

- 3.4.1 Recognition And Classification Process
- 3.4.2 Features Extraction By Using Gabor’s Wavelets
- 3.4.3 Neural Network Recognition Using Multi-Layer Perceptron
- 3.4.4 Fuzzy Logic Decision Maker

3.5 Performance Assessment Matrices

- 3.5.1 Assessment Matrices for Segmentation
- 3.5.2 Assessment Matrices for Classification
- 3.5.3 Assessment Matrices for Detection

3.6 Summary

4. RESULTS AND DISCUSSIONS

4.0 Introduction

4.1 Gabors’ Features Extraction Results

- 4.1.1 Comparison Between Classifier

4.2 Pre-processing Results

4.3 Segmentation Results

- 4.3.1 Neural Network Detection Method Results
- 4.3.2 Support Vector Machines Detection Method Results

4.4 Comparison between Proposed Method and Previous Researches

4.5 Summary

5. CONCLUSION AND RECOMMENDATION

5.0 Introduction

5.1 Conclusion

5.2 Recommendation

5.3 Future Works

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Approaches used to detect deformation on textural or surface region</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification accuracies in different Machines Learning techniques</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Confusion matrix of decision trees</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Confusion matrix of NEFCLASS</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Accuracy between classifiers</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Result of point-count descriptor on car door</td>
<td>41</td>
</tr>
<tr>
<td>2.7</td>
<td>Result of magnitude descriptor on car door</td>
<td>42</td>
</tr>
<tr>
<td>2.8</td>
<td>Results of contour classification on car door</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Summary of deformation and defect detection methods</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Example of scattered three-dimensional raw data point clouds</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>coordinates</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Confusion matrix for class A</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Confusion matrix and its derivatives of neural network for 30% of</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>samples trained</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Confusion matrix and its derivatives of support vector machines for</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>30% of samples trained</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Confusion matrix and its derivatives of neural network for 50% of</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>samples trained</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Confusion matrix and its derivatives of support vector machines for 50% of samples trained
92
4.5 Confusion matrix and its derivatives of neural network for 90% of samples trained
93
4.6 Confusion matrix and its derivatives of support vector machines for 90% of samples trained
93
4.7 The segmentation results for each threshold value
102
4.8 The segmentation based on neural network classifier result of three surface samples
104
4.9 The recognition and classification result of three surface samples
106
4.10 The segmentation based on support vector machine classifier result of three surface samples
108
4.11 The recognition and classification result of three surface samples
109
4.12 The segmentation using Gabors’ filter results of three surface samples
111
4.13 The segmentation using Laplacian of Gaussian filter results of three surface samples
113
4.14 The segmentation based using gray-level co-occurrence (GLCM) matrix results of three surface samples
115
4.15 The segmentation and detection results for car door sample
117
4.16 The segmentation and detection results for curve surface sample
117
4.17 The segmentation and detection results for flat surface sample
118
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The automotive manufacturing industries</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The body panel inspection by human workers</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic diagram of proposed deformation detection system</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Trending process flow in deformation detection system</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The set-up of camera light source and object</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>System diagram of laser-depth scanner</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>The set-up of triangulation-based laser scanner</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>The set-up of structured light scanner</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Gabors’ filter in spatial domain</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Family of Gabors’ filters</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Filtering in frequency domain method</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Visual representation of cold lap region</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Results of all resolutions on a rear mudguard</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Octree-based feature nodes grouping flowchart</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Result obtained at various levels of depths</td>
<td>27</td>
</tr>
<tr>
<td>2.13</td>
<td>Feed-Forward Artificial Neural Network</td>
<td>36</td>
</tr>
<tr>
<td>2.14</td>
<td>Result of surface shape analysis method based on octree</td>
<td>41</td>
</tr>
<tr>
<td>2.15</td>
<td>Deformation patterns in two-dimension difference curve</td>
<td>42</td>
</tr>
</tbody>
</table>
2.16 Result of surface shape analysis method based on contour analysis 43
2.17 Fuzzification 46
2.18 Rules evaluation 47
2.19 Clipping and scaling 48
2.20 Aggregation of the rule outputs 48
2.21 Defuzzification 49
2.22 The segmentation result of flight deck deformation detection using Laplacian mask filtering 50
2.23 Detection result of steel slab 50
3.1 Proposed technique process flows 57
3.2 Pre-processing flow 58
3.3 The point clouds data in three-dimensional space 60
3.4 Point cloud to mesh 61
3.5 Matrix examples 62
3.6 Result of the gridding data 63
3.7 Example of particular Delaunay Triangulation mesh 64
3.8 Example of Delaunay Triangle for three particular Points 64
3.9 Interpolation result for two types of resolution 65
3.10 Surface for three different types of surfaces 66
3.11 Energy of three samples after gradient filtering to compute the gradient 69
3.12 Examples of Structuring Elements 70
3.13 Results of background illumination correction for three types of surface 74
3.14 Gradient energy value of car door with deformation at row 268 75
3.15 Gradient energy value for car door without deformation at row 268 76
3.16 The flowchart of segmentation process
3.17 The flowchart of recognition and classification process
3.18 The Gabor's wavelets in 8 orientations with 5 different frequencies in frequency domain
3.19 The response image of the segmented data with each of Gabor's wavelet
3.20 The set of response data of segmented image
3.21 The architecture of Multi-Layer Perceptron (MLP) neural network
3.22 (a) The designed fuzzy logic block diagram (b) the fuzzy rules
3.23 Segmentation assessment indices
4.1 The false positive rate result of NN and SVM
4.2 The false negative rate result of NN and SVM
4.3 The sensitivity result of NN and SVM
4.4 The accuracy of NN and SVM
4.5 The scattered data nodes of car door
4.6 The result of interpolation of scattered data
4.7 The result of surface gradient filtering
4.8 The result of the background illumination correction
4.9 Deformation detection result by using Neural Network Classifier
4.10 Deformation detection result by using Support Vector Machine Classifier
4.11 Deformation detection result by using Gabor’s Filtering Method
4.12 Deformation detection result by using LoG Filtering Method
4.13 Deformation detection result by using GLCM Method
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>The average performance rates of each segmentation method</td>
<td>119</td>
</tr>
<tr>
<td>4.15</td>
<td>The average segmentation accuracy of each method</td>
<td>119</td>
</tr>
<tr>
<td>4.16</td>
<td>The average detection accuracy of each method</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MATLAB Codes for Scattered Data Interpolation</td>
<td>141</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Codes for Deformation Detection</td>
<td>142</td>
</tr>
<tr>
<td>C</td>
<td>MATLAB Codes for Illumination Correction</td>
<td>147</td>
</tr>
<tr>
<td>D</td>
<td>MATLAB Codes to Create Gabors’ Wavelet Series</td>
<td>148</td>
</tr>
<tr>
<td>E</td>
<td>MATLAB Codes for Gabors’ Feature Extractions</td>
<td>149</td>
</tr>
<tr>
<td>F</td>
<td>MATLAB Codes to Remove Samples Edges</td>
<td>150</td>
</tr>
<tr>
<td>G</td>
<td>MATLAB Codes for Deform Image Orientation Correction</td>
<td>151</td>
</tr>
<tr>
<td>H</td>
<td>MATLAB Codes for Neural Network Segmentation</td>
<td>152</td>
</tr>
<tr>
<td>I</td>
<td>MATLAB Codes for Support Vector Machine Segmentation</td>
<td>155</td>
</tr>
<tr>
<td>J</td>
<td>MATLAB Codes for Gabors’ Wavelet Segmentation</td>
<td>158</td>
</tr>
<tr>
<td>K</td>
<td>MATLAB Codes for Laplacian of Gaussian Segmentation</td>
<td>161</td>
</tr>
<tr>
<td>L</td>
<td>MATLAB Codes for Segmentation Analysis</td>
<td>163</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Accuracy</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>CBR</td>
<td>Case-Based Reasoning</td>
</tr>
<tr>
<td>CCD</td>
<td>Couple-Charge Device</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FNR</td>
<td>False Negative Rate</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>FPR</td>
<td>False Positive Rate</td>
</tr>
<tr>
<td>GLCM</td>
<td>Grey-Level Co-Occurrence Matrix</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphic Processing Unit</td>
</tr>
<tr>
<td>KNN</td>
<td>K-Nearest Neighbour</td>
</tr>
<tr>
<td>MA</td>
<td>Miss-classified Area</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi-Layer Perceptron</td>
</tr>
<tr>
<td>NEFCLASS</td>
<td>Neuro-Fuzzy Classification</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green And Blue</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>SIFT</td>
<td>Scaled Invariant Feature Transform</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive</td>
</tr>
<tr>
<td>TPR</td>
<td>True Positive Rate</td>
</tr>
<tr>
<td>UWT</td>
<td>Undecimated Wavelet Transform</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\approx \) - Approximation
\(\otimes \) - Convolution
\(\delta \) - Delta
\(z \) - Depth Axis
\(e \) - Epsilon
\(\nabla \) - Gradient
\(x \) - Horizontal Axis
\(I \) - Image
\(\bullet \) - Morphological Closing
\(\bigoplus \) - Morphological Dilation
\(\bigcirc \) - Morphological Erosion
\(\circ \) - Morphological Opening
\(P \) - Point
\(H \) - Structural Element
\(\Sigma \) - Sum
\(y \) - Vertical Axis
\(w \) - Weight
LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

CHAPTER 1

INTRODUCTION

1.0 Background

In automotive industries, the body panels manufacturing department plays an important role to manufacture automotive body panels such as doors, fenders, bonnet, deck lid, roof and side panels. The automotive body panels usually made from alloy because it is strong and malleable. The alloy sheet will undergo the powerful forming press by machines into the desired automotive panel shape. The heating process is involved to make the body panels more malleable. Due to the various processes involved in manufacturing automotive body panels as shown in Figure 1.1, there are possibilities that deformations will occur on the product. Therefore, at the end of this manufacturing process, the manufactured body panels will be inspected to identify the deformation that occurs on the end product.

Figure 1.1 The automotive manufacturing industries
Traditionally, the inspection process is conducted by human labours. It is conducted by rubbing on the surface of the body panel in order to determine texture deformations as shown in Figure 1.2. In this new era, the competition among manufacturers is high due to the increment of customers demand. Therefore, the production of body panels is increasing rapidly. Due to human limitation, the accuracy and effectiveness of the manufacturing process will be affected. So the quality control will not be reliable.

Figure 1.2 The body panel inspection by human workers

Automated deformation detection has been introduced to overcome this problem. Many methods were designed to guarantee the quality control in term of the accuracy of deformation detection, effectiveness and reliability. Most common deformations on the surface of the body panel are dings and dents. Before automotive body panels is assembled, the early detection must be conducted and any deformations must be identified and verified either it will be repaired or discard. The deformation detection system will notify the quality control department if there is any deformation that occurs on the surface.
The location and types of deformation are the important information to be relayed to the relevant department so that the recovery process can be done immediately.

There are various types of the deformation detection system set-up that has been designed according to the desired requirement. Figure 1.3 shows the designed deformation detection system set-up in manufacturing an automotive body panel.

![Diagram of deformation detection system](image)

Figure 1.3 Schematic diagram of proposed deformation detection system

The deformation monitoring system is an important part of the deformation detection system where the deformation detection techniques are implemented in the system. Data from the data acquisition module is the input for the systems. Many types of data acquisition methods can be used such as camera or three-dimension scanners.