Faculty of Electronic and Computer Engineering

DESIGN OF COMPACT TRI-POLARIZED ANTENNA FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) SYSTEM

Phoo Kho Shin

Master of Science in Electronic Engineering

2016
DESIGN OF COMPACT TRI-POLARIZED ANTENNA FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) SYSTEM

PHOO KHO SHIN

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Design of Compact Tri-Polarized Antenna for Multiple Input Multiple Output (MIMO) System” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...
Name : ...
Date : ..
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature : ...

Supervisor Name : ...

Date : ...
DEDICATION

To my beloved family
In recent years, wireless communication systems such as radar, navigation systems, video conferencing, medical applications, and others have been widely developed. In order to meet the miniaturization requirements of portable communication equipment, an antenna with compact size has received much attention. Regardless of the application, most of the modern wireless communication systems require high data rate and channel capacity. With these provocations, Multiple Input Multiple Output (MIMO) systems were introduced to provide efficient performance and combat multipath effects. The objective of this project was to design, simulate, and fabricate a compact tri-polarized antenna for MIMO systems with operating frequency of 2.4GHz. In this project, antennas were designed using the inverted suspended method where the FR4 substrate and copper ground plane were separated with an air gap layer. Modified L-probe fed was used for all antenna designs where the strip line was printed on the upper side of the FR4 substrate and connected to the coaxial probe for ease of fabrication. The rectangular patch was printed at the lower side of the FR4 substrate. First of all, single polarizations for linear polarized (Design A) and circular polarized antennas (Design B) were designed. Then, dual-polarized antennas (Design C) were designed. Lastly, a compact tri-polarized antenna (Design D) was designed with a combination of three different polarizations; including linear polarization (LP), left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP). All the antenna designs were simulated using Computer Simulation Technology (CST) software. Single-polarized antennas, dual-polarized antennas and tri-polarized antennas were successfully designed and achieved design specifications. Based on the simulation and measurement results, the designed antennas covered frequency of 2.4GHz with reflection coefficient below -10dB. The simulated bandwidths of the designed antenna were more than 200MHz for the broadband specification. The simulated axial ratio result was used to determine the performance of polarizations, in which the axial ratio for linear polarized was above 3dB and the axial ratio for circular polarized was below 3dB. Overall, the reflection coefficient, total efficiency, directivity, gain, axial ratio, and bandwidth of compact tri-polarized antenna showed good responses. The measurement results were almost similar to the simulation results. Therefore, this compact broadband tri-polarized antenna that is capable of performing in three different polarizations is suitable to be applied in MIMO systems that require polarization diversity.
ABSTRAK

ACKNOWLEDGEMENTS

First of all, I wish to express my deepest gratitude to my supervisor, Prof. Madya Dr. Mohamad Zoinol Abidin Bin Abd. Aziz from Faculty of Electronic and Computer Engineering (FKEKK) who has been providing me knowledge and also helping me in completing this master project. His ideas, suggestions, advices and guidance are very useful for me to complete my report. Besides, I would like to express my deepest gratitude to my co-supervisor, Prof Madya Dr. Badrul Hisham Ahmad who also from Faculty of Electronic and Computer Engineering has supporting me along the master project.

Special thanks to University Technical Malaysia Melaka (UTeM) for supporting in obtained the information and material in the development for my master project. I also thank the Ministry of Education Malaysia (MOE) for PJP/2013/FKEKK (1C) / S01129 research grant.

I would also like to express my greatest gratitude to Mr. Sufian and Mr. Imran from laboratory of Faculty of Electronic and Computer Engineering for their assistance and efforts during the measurement and fabrication in the lab.

Lastly, my thanks and appreciation also goes to all of my family, friends, and siblings who were supporting me in completing this master project either in directly or indirectly, and have aided me through the difficult and crucial time. Though I had a tough time, with the help of others, I have managed to finish my project on time. Producing this master project has truly been an informative and remarkable experience for me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Objective
1.4 Scope of Work
1.5 Contribution of Project
1.6 Overview

2. LITERATURE REVIEW

2.1 Multiple Input Multiple Output (MIMO) Wireless Communication System
2.2 Antenna Parameter
2.3 Basic Microstrip Patch Antenna
2.4 Linear Polarized Antenna
2.5 Circular Polarized Antenna
2.6 Dual-Polarized Antenna
2.7 Tri-Polarized Antenna
2.8 Summary

3. RESEARCH METHODOLOGY

3.1 Introduction
3.2 Design Specification
3.3 Linear Polarized Antenna (Design A)
3.4 Circular Polarized Antenna (Design B)
3.5 Dual-Polarized Antenna (Design C)
3.5.1 Single Port Double Rectangular Patch with Straight Strip Line (Design C1)
3.5.2 Single Port Double Rectangular Patch with Bending Strip Line (Design C2)
3.5.3 Single Port Double Rectangular Patch with Slanted Strip Line (Design C3)
3.5.4 Single Rectangular Patch with Two Ports (Design C4)
3.6 Tri-Polarized Antenna (Design D)
3.6.1 Tri-Polarized Antenna with Three Inverted Rectangular Patch (Design D1)
3.6.2 Tri-Polarized Antenna with Double Inverted Rectangular Patch (Design D2)
3.6.3 Compact Tri-Polarized Antenna with Single Inverted Rectangular Patch (Design D3)
3.7 Simulation Process
3.8 Fabrication Process
3.9 Measurement Process
3.10 Summary

4. RESULT ANALYSIS AND DISCUSSION
4.1 Introduction
4.2 Linear Polarized Antenna (Design A)
4.3 Circular Polarized Antenna (Design B)
4.4 Dual-Polarized Antenna (Design C)
4.4.1 Single Port Double Rectangular Patch with Straight Strip Line (Design C1)
4.4.2 Single Port Double Rectangular Patch with Bending Strip Line (Design C2)
4.4.3 Single Port Double Rectangular Patch with Slanted Strip Line (Design C3)
4.4.4 Single Rectangular Patch with Two Ports (Design C4)
4.4.5 Design Comparison for Dual-Polarized Antenna (Design C)
4.5 Tri-Polarized Antenna (Design D)
4.5.1 Tri-Polarized Antenna with Three Inverted Rectangular Patch (Design D1)
4.5.2 Tri-Polarized Antenna with Double Inverted Rectangular Patch (Design D2)
4.5.3 Compact Tri-Polarized Antenna with Single Inverted Rectangular Patch (Design D3)
4.5.4 Design Comparison for Tri-Polarized Antenna (Design D)
4.6 Comparisons of Overall Antenna Designs
4.7 Summary

5. CONCLUSIONS AND SUGGESTIONS
5.1 Conclusion
5.2 Future Works

REFERENCES
APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Reviews on circular polarized (CP) antenna</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Reviews on dual-polarized antenna</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Reviews on tri-polarized antenna</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Design Specifications</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimum dimension for broadband linear polarized antenna (Design A)</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison result for broadband inverted suspended linear polarized antenna with different shape of slot (Design A)</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Optimum dimension for broadband circular polarized antenna (Design B)</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison result for broadband inverted suspended circular polarized antenna with different shape of slot (Design B)</td>
<td>116</td>
</tr>
<tr>
<td>4.5</td>
<td>Optimum dimension for single port double rectangular patch with straight strip line dual-polarized antenna (Design C1)</td>
<td>118</td>
</tr>
<tr>
<td>4.6</td>
<td>Optimum dimension for single port double rectangular patch with bending strip line dual-polarized antenna (Design C2)</td>
<td>127</td>
</tr>
<tr>
<td>4.7</td>
<td>Optimum dimension for single port double rectangular patch with slanted strip line dual-polarized antenna (Design C3)</td>
<td>136</td>
</tr>
</tbody>
</table>
4.8 Optimum dimension for single rectangular patch with two ports (Design C4) 144
4.9 Comparison result for broadband inverted suspended dual-polarized antenna (Design C) 154
4.10 Optimum dimension for tri-polarized antenna with three inverted rectangular patch (Design D1) 156
4.11 Optimum dimension for tri-polarized antenna with double inverted rectangular patch (Design D2) 170
4.12 Optimum dimension for compact tri-polarized antenna with single inverted rectangular patch (Design D3) 185
4.13 Comparison result for broadband inverted suspended tri-polarized antenna (Design D) 199
4.14 Comparison of previous research design and proposed antenna design 202
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Linear polarization (a) Vertical polarization (b) Horizontal polarization</td>
</tr>
<tr>
<td>2.2</td>
<td>Inset feed rectangular patch</td>
</tr>
<tr>
<td>2.3</td>
<td>Circular polarization (a) RHCP (b) LHCP</td>
</tr>
<tr>
<td>2.4</td>
<td>Truncated corner square patch with single feed</td>
</tr>
<tr>
<td>2.5</td>
<td>Configuration of single probe-fed truncated corner microstrip antenna (a) Without U-slot (b) With U-slot</td>
</tr>
<tr>
<td>2.6</td>
<td>Circular polarization with single feed (a) Nearly Square Patch (b) LHCP (c) RHCP</td>
</tr>
<tr>
<td>2.7</td>
<td>Circular polarization for square patch with thin rectangular slot (a) RHCP (b) LHCP</td>
</tr>
<tr>
<td>2.8</td>
<td>Broadband suspended microstrip antenna with coplanar capacitive fed microstrip antenna (a) Top view of RHCP and LHCP antenna (b) Side View</td>
</tr>
<tr>
<td>2.9</td>
<td>Circular patch with two unbalance circular slot</td>
</tr>
<tr>
<td>2.10</td>
<td>Geometry of a dual-polarized aperture-coupled microstrip patch antenna with H-shaped coupling slots (a) Bottom view (b) Position of coupling slots</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.11</td>
<td>Geometry of dual-polarized antenna with circular patch fed by L-strip line (a) Top view (b) Side view</td>
</tr>
<tr>
<td>2.12</td>
<td>Three ports tri-polarized dipole antenna</td>
</tr>
<tr>
<td>2.13</td>
<td>Tri-polarized antenna with combination of disk-loaded monopole and ring patch (a) Top view (b) Prototype (c) Side view</td>
</tr>
<tr>
<td>2.14</td>
<td>Tri-polarized antenna with two dielectric substrate (a) Top view (b) Side view</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of the project</td>
</tr>
<tr>
<td>3.2</td>
<td>Inverted suspended antenna (Side View)</td>
</tr>
<tr>
<td>3.3</td>
<td>Configurations of inverted suspended linear polarized antenna with different shape of slot (a) Rectangular slot (Design A1); (b) Circular slot (Design A2); (c) Trapezoidal slot (Design A3); (d) Triangular slot (Design A4)</td>
</tr>
<tr>
<td>3.4</td>
<td>Separation of strip line from the edge slot, P for inverted suspended linear polarized antenna with rectangular slot (Design A1)</td>
</tr>
<tr>
<td>3.5</td>
<td>Parametric study on the separation of strip line from the edge of slot, P (in mm) for Design A1 (a) Reflection coefficient; (b) Axial ratio</td>
</tr>
<tr>
<td>3.6</td>
<td>Parametric study of the length of the strip line, L_f (in mm) for Design A1 (a) Reflection coefficient; (b) Axial ratio</td>
</tr>
<tr>
<td>3.7</td>
<td>Parametric study on the air gap separation, gap (in mm) for Design A1 (a) Reflection coefficient (b) Gain</td>
</tr>
</tbody>
</table>
3.8 Parametric study on the width of rectangular slot, X_l (in mm) for Design A1 (a) Reflection coefficient; (b) Gain

3.9 Parametric study of axial ratio on length of rectangular slot, Y_l (in mm) for Design A1

3.10 Parametric study for axial ratio on dimension R_p (in mm) for Design A2

3.11 Broadband inverted suspended linear polarized antenna with trapezoidal slot (Design A3)

3.12 Parametric study on the shortest length of the trapezoidal slot, W_a (in mm) for Design A3 (a) Reflection coefficient; (b) Axial ratio

3.13 Broadband inverted suspended linear polarized antenna with triangular slot (Design A4)

3.14 Parametric study on the height of triangular slot, S (in mm) of Design A4 (a) Reflection coefficient; (b) Axial ratio

3.15 Configuration of inverted suspended RHCP antenna with different shape of slot (a) Rectangular slot (Design B1); (b) Triangular slot (Design B2)

3.16 Configuration of inverted suspended LHCP antenna with different shape of slot (a) Rectangular slot (Design B3); (b) Triangular slot (Design B4)

3.17 Double circular slot on the inverted rectangular patch for inverted suspended RHCP antenna with rectangular slot (Design B1)
3.18 Parametric study of axial ratio on the separation of strip line from center of patch, \(M \) (in mm) for the LHCP antenna with rectangular slot (Design B3)

3.19 Parametric study of axial ratio on separation between two circular slots, \(B \) (in mm) for LHCP antenna with rectangular slot (Design B3)

3.20 Configuration of single port double rectangular patch dual-polarized antenna with straight strip line (Design C1)

3.21 Parametric study on length of the strip line, \(L_f \) (in mm) for Design C1 (a) Reflection coefficient; (b) Axial ratio

3.22 Parametric study on separation between inverted patches, \(D_o \) (in mm) for Design C1 (a) Reflection coefficient; (b) Gain

3.23 Configuration of single port double rectangular patch dual-polarized antenna with bent strip line (Design C2)

3.24 Parametric study on the length of strip line which bended horizontally, \(L_{fa} \) (in mm) of reflection coefficient for Design C2

3.25 Parametric study on the length of strip line which bended horizontally, \(L_{fa} \) (in mm) of axial ratio for Design C2

3.26 Parametric study on the length of vertical strip line which connected with two horizontal strip lines, \(L_{fb} \) (in mm) for Design C2 (a) Reflection coefficient; (b) Axial ratio

3.27 Configuration of single port double rectangular patch dual-polarized antenna with slanted strip line (Design C3)
3.28 Parametric study on width of slanted rectangular slot, X_i (in mm) of reflection coefficient for Design C3

3.29 Parametric study on length of slanted rectangular slot, Y_i (in mm) of axial ratio for Design C3

3.30 Separation of center from circular slot to the edge of slanted rectangular slot, K for Design C3

3.31 Parametric study on separation from center of circular slot to the edge of slanted rectangular slot, K (in mm) for Design C3
 (a) Axial ratio; (b) Directivity; (c) Gain

3.32 Configuration of single rectangular patch with two ports (Design C4)

3.33 Parametric study on separation of strip line from center of patch, M (in mm) of axial ratio for port 1 of Design C4

3.34 Configuration of tri-polarized antenna with three inverted rectangular patch (Design D1)

3.35 Configuration of tri-polarized antenna with double inverted rectangular patch (Design D2)

3.36 Configuration of compact tri-polarized antenna with single inverted rectangular patch (Design D3)

3.37 Parametric study on the separation of strip line from the center of patch, M (in mm) of axial ratio for each port of Design D3 (a) Port 1; (b) Port 2; (c) Port 3
3.38 Parametric study on the separation of strip line from the center of patch, M (in mm) of directivity for each port of Design D3 (a) Port 1; (b) Port 2; (c) Port 3

3.39 Parametric study on the separation of strip line from the center of patch, M (in mm) of gain for each port of Design D3 (a) Port 1; (b) Port 2; (c) Port 3

3.40 Linear polarized antenna with rectangular slot (Design A1) in CST (a) Front View; (b) Back View

3.41 Coaxial probe in CST environment

3.42 Flow chart of fabrication process

3.43 Prototype of antenna (a) Linear polarized antenna (Design A1); (b) RHCP antenna (Design B1)

3.44 Set up connection for reflection coefficient measurement

3.45 Measurement method of radiation pattern for AUT

3.46 Equipment connection for measurement of gain

4.1 Broadband inverted suspended linear polarized antenna with different shape of slot. (a) Rectangular slot (Design A1); (b) Circular slot (Design A2); (c) Trapezoidal slot (Design A3); (d) Triangular slot (Design A4)

4.2 Comparison of simulated and measured reflection coefficient result for linear polarized antenna. (a) Rectangular slot (Design A1); (b) Circular slot (Design A2); (c) Trapezoidal slot (Design A3); (d) Triangular slot (Design A4)
4.3 Comparison of simulated total efficiency for broadband inverted suspended linear polarized antenna with different shape of slot (Design A)

4.4 Comparison of simulated directivity for broadband inverted suspended linear polarized antenna with different shape of slot (Design A)

4.5 Comparison of simulated and measured gain for broadband inverted suspended linear polarized antenna (Design A).
(a) Simulation; (b) Measurement

4.6 Comparisons of simulated axial ratio result for broadband inverted suspended linear polarized antenna with different shape of slot (Design A)

4.7 Surface current for broadband inverted suspended linear polarized antenna with rectangular slot (Design A1) at different phases.
(a) 0° (b) 90° (c) 180° (d) 270°

4.8 Surface current for broadband inverted suspended linear polarized antenna with circular slot (Design A2) at different phases. (a) 0°
(b) 90° (c) 180° (d) 270°

4.9 Surface current for broadband inverted suspended linear polarized antenna with trapezoidal slot (Design A3) at different phases.
(a) 0° (b) 90° (c) 180° (d) 270°

4.10 Surface current for broadband inverted suspended linear polarized antenna with triangular slot (Design A4) at different phases. (a) 0°
(b) 90° (c) 180° (d) 270°
4.11 Comparisons of simulated and measured radiation pattern of broadband linear polarized antenna with different shape of slot for elevation plane at resonant frequency, 2.4GHz when Phi = 0°.
(a) Rectangular slot (Design A1); (b) Circular slot (Design A2);
(c) Trapezoidal slot (Design A3); (d) Triangular slot (Design A4)
4.12 Comparisons of simulated and measured radiation pattern of broadband linear polarized antenna with different shape of slot for elevation plane at resonant frequency, 2.4GHz when Phi = 90°.
(a) Rectangular slot (Design A1); (b) Circular slot (Design A2);
(c) Trapezoidal slot (Design A3); (d) Triangular slot (Design A4)
4.13 Broadband inverted suspended RHCP antenna with different shape of slot (a) Rectangular slot (Design B1); (b) Triangular slot (Design B2)
4.14 Broadband inverted suspended LHCP antenna with different shape of slot (a) Rectangular slot (Design B3); (b) Triangular slot (Design B4)
4.15 Comparison of simulated reflection coefficient for broadband inverted suspended circular polarized antenna with different shape of slot (Design B)
4.16 Comparison of simulated and measured reflection coefficient for RHCP with rectangular slot (Design B1) and LHCP with rectangular slot (Design B3)
4.17 Comparison of simulated total efficiency for broadband inverted suspended circular polarized antenna (Design B)
4.18 Comparison of simulated directivity for broadband inverted suspended circular polarized antenna (Design B) 104
4.19 Comparison of simulated gain for broadband inverted suspended circular polarized antenna (Design B) 105
4.20 Comparison of simulated and measured gain for broadband inverted suspended RHCP antenna with rectangular slot (Design B1) and LHCP Antenna with rectangular slot (Design B2) 105
4.21 Comparison of simulated axial ratio for broadband inverted suspended circular polarized antenna (Design B) 106
4.22 Surface current for broadband inverted suspended RHCP antenna with rectangular slot (Design B1) at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315° 108
4.23 Surface current for broadband inverted suspended RHCP antenna with triangular slot (Design B2) at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315° 109
4.24 Surface current for broadband inverted suspended LHCP antenna with rectangular slot (Design B3) at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315° 110
4.25 Surface current for broadband inverted suspended LHCP antenna with triangular slot (Design B4) at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315° 111
4.26 Comparisons of simulated and measured radiation pattern of broadband CP antenna for elevation plane at resonant frequency, 2.4GHz when Phi = 0°. (a) RHCP with rectangular slot (Design B1); (b) RHCP with triangular slot (Design B2); (c) LHCP with rectangular slot (Design B3); (d) LHCP with triangular slot (Design B4)

4.27 Comparisons of simulated and measured radiation pattern of broadband CP antenna for elevation plane at resonant frequency, 2.4GHz when Phi=90°. (a) RHCP with rectangular slot (Design B1); (b) RHCP with triangular slot (Design B2); (c) LHCP with rectangular slot (Design B3); (d) LHCP with triangular slot (Design B4)

4.28 Single port double rectangular patch with straight strip line dual polarized antenna (Design C1)

4.29 Comparison of simulated and measured reflection coefficient for Design C1

4.30 Simulated total efficiency for Design C1

4.31 Simulated directivity for Design C1

4.32 Comparison of simulated and measured gain for Design C1

4.33 Simulated axial ratio for Design C1

4.34 Surface current for Design C1 at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315°
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.35</td>
<td>Comparisons of simulated and measured radiation pattern of Design C1 for elevation plane at resonant frequency, 2.4GHz.</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>(a) Phi = 0° (b) Phi = 90°</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>Single port double rectangular patch with bending strip line dual polarized antenna (Design C2)</td>
<td>126</td>
</tr>
<tr>
<td>4.37</td>
<td>Comparison of simulated and measured reflection coefficient for Design C2</td>
<td>128</td>
</tr>
<tr>
<td>4.38</td>
<td>Simulated total efficiency for Design C2</td>
<td>129</td>
</tr>
<tr>
<td>4.39</td>
<td>Simulated directivity for Design C2</td>
<td>129</td>
</tr>
<tr>
<td>4.40</td>
<td>Comparison of simulated and measured gain for Design C2</td>
<td>130</td>
</tr>
<tr>
<td>4.41</td>
<td>Simulated axial ratio for Design C2</td>
<td>131</td>
</tr>
<tr>
<td>4.42</td>
<td>Surface current for Design C2 at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315°</td>
<td>133</td>
</tr>
<tr>
<td>4.43</td>
<td>Comparisons of simulated and measured radiation pattern of Design C2 for elevation plane at resonant frequency, 2.4GHz.</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>(a) Phi = 0° (b) Phi = 90°</td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>Single port double rectangular patch with slanted strip line dual polarized antenna (Design C3)</td>
<td>135</td>
</tr>
<tr>
<td>4.45</td>
<td>Comparison of simulated and measured reflection coefficient for Design C3</td>
<td>137</td>
</tr>
<tr>
<td>4.46</td>
<td>Simulated total efficiency for Design C3</td>
<td>138</td>
</tr>
<tr>
<td>4.47</td>
<td>Simulated directivity for Design C3</td>
<td>138</td>
</tr>
<tr>
<td>4.48</td>
<td>Comparison of simulated and measured gain for Design C3</td>
<td>139</td>
</tr>
<tr>
<td>4.49</td>
<td>Simulated axial ratio for Design C3</td>
<td>140</td>
</tr>
</tbody>
</table>
4.50 Surface current for Design C3 at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315°

4.51 Comparisons of simulated and measured radiation pattern of Design C3 for elevation plane at resonant frequency, 2.4GHz.
(a) Phi = 0° (b) Phi = 90°

4.52 Single rectangular patch with two ports (Design C4)

4.53 Comparison of simulated and measured reflection coefficient for Design C4

4.54 Simulated total efficiency for Design C4

4.55 Simulated directivity for Design C4

4.56 Comparison of simulated and measured gain for Design C4

4.57 Simulated axial ratio for Design C4

4.58 Surface current for port 1 of Design C4 at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315°

4.59 Surface current for port 2 of Design C4 at different phases. (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° (f) 225° (g) 270° (h) 315°

4.60 Comparisons of simulated and measured radiation pattern of Design C4 for elevation plane at resonant frequency, 2.4GHz when Phi = 0°. (a) Port 1 (b) Port 2

4.61 Comparisons of simulated and measured radiation pattern of Design C4 for elevation plane at resonant frequency, 2.4GHz when Phi = 90°. (a) Port 1 (b) Port 2

4.62 Tri-polarized antenna with three inverted rectangular patch (Design D1)