Faculty of Electrical Engineering

OPTIMAL SOLAR CABLE SELECTION FOR GRID-CONNECTED PHOTOVOLTAIC SYSTEMS

Ahmed Daud Mosheer

Master of Electrical Engineering
(Industrial Power)

2016
OPTIMAL SOLAR CABLE SELECTION FOR GRID-CONNECTED PHOTOVOLTAIC SYSTEMS

AHMED DAUD MOSHEER

A dissertation submitted
in partial fulfillment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Optimal Solar Cable Selection for Grid-Connected Photovoltaic Systems” is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : ..
Date : ...
I hereby declare that I have read this dissertation and in my opinion this dissertation is sufficient in terms of scope and quality for the award of Master of Electrical Engineering (Industrial Power).

Signature :.................................
Supervisor Name :.................................
Date :.................................
DEDICATION

I dedicate my dissertation work to my beloved father and mother, thank you from the bottom of my heart for your support me along my life and patronage me. I ask Allah to give you health, wellness and longevity, and keep you stalwarts to me. I love you so much.

I also dedicate this dissertation to my brothers and sisters, a lot of thanks for you; you are wonderful brothers and sisters in this world.
ABSTRACT

As a solution for the depletion of fossil fuel and its influence on the environment (i.e. CO₂), photovoltaic (PV) systems have been considered as alternative renewable energy (RE) resources. The common practice in sizing the solar cables of photovoltaic systems follows the maximum voltage drop and thermal limit constraints (i.e. maximum allowed current and maximum allowed voltage drop). Little attention has been paid on the estimation of the annual energy losses for solar cables. According to Malaysian standards, for solar cable sizing, the maximum allowed voltage drop is five percent. Though seemingly insignificant, a five percent voltage drop losses, when calculated throughout the life span of a photovoltaic system, will have a huge impact on the profitability of the PV system. This dissertation presents investigation on the annual energy losses for standard solar cables. More importantly, instead of using conventional methods that follows the maximum allowed voltage drop and maximum allowed current calculations for sizing the solar cables, this dissertation presents a method for selecting optimal solar cable capacity for grid-connected solar Photovoltaic (PV) systems. The optimization method takes into consideration the cost of losses and solar cable investment cost throughout the technical lifespan of the cable. In addition, the effects of using actual field data of different time resolution irradiation data on the calculation of energy losses, and optimal solar cable selection are presented and discussed in this dissertation. Additionally, the sensitivity of different feed-in tariff rates on optimal solar cable selection had been considered in this work. The key findings of the dissertation suggest that oversizing the solar cable for PV system plays an important role in losses reduction, and at the same time yields monetary savings in the long run. Also, the results showed that the time resolution solar radiation data has important role on optimal solar cable selection and economic calculations of PV system.
ABSTRAK

Sebagai penyelesaian kepada penyusutan bahan api fosil dan kesannya kepada alam sekitar (CO²), sistem photovoltaic (PV) telah dikenalpasti sebagai alternatif kepada sumber bahan api yang boleh diperbaharui (RE/renewable energy). Cara umum untuk penentuan saiz kabel solar sistem photovoltaic adalah berdasarkan kejatuhan voltan maksimum dan halangan had termal (arus maksimum yang dibenarkan dan kejatuhan voltan maksimum yang dibenarkan). Anggaran kehilangan tenaga dalam setahun untuk kabel solar jarang diberi perhatian sebelum ini. Berdasarkan piawaian Malaysia untuk penentuan saiz kabel solar, kejatuhan maksimum voltan yang dibenarkan adalah lima peratus sahaja. Walaupun nilai ini adalah kecil, kejatuhan sebanyak lima peratus voltan sepanjang tempoh hayat sistem photovoltaic mempunyai impak yang sangat besar ke atas faedah sistem PV. Kertas kajian ini membincangkan kajian selidik ke atas kehilangan tenaga dalam setahun untuk kabel solar yang standard. Lebih penting, selain daripada menggunakan kaedah konvensional untuk penentual saiz kabel solar, kajian ini memperkenalkan kaedah baru untuk memilih muatan optimum kabel solar untuk sistem photovoltaic (PV) yang berhubung dengan grid. Kaedah ini mengambilkira kos kehilangan dan pelaburan kabel solar sepanjang hayat teknikal kabel. Kertas kajian ini juga membincangkan kesan-kesan penggunaan data lapangan sebenar berkaitan sinaran data resolusi masa ke atas pengiraan kehilangan tenaga, dan juga pemilihan kabel solar optimum. Di samping itu, tahap sensitiviti kadar tarif kemasukan yang berlainan menunjukkan bahawa pembesaran kabel solar untuk sistem PV memainkan peranan penting dalam pengurangan kehilangan tenaga; selain penjimatan wang dalam jangka panjang. Hasil kajian juga menunjukkan sinaran data resolusi masa mempunyai peranan penting ke atas pilihan optimum kabel solar dan pengiraan ekonomi sistem PV.
ACKNOWLEDGEMENTS

First, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor Dr. Chin Kim Gan from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this dissertation.

Special thanks to my mother, beloved father and siblings for their moral support in completing this degree.

I would also like to express my greatest gratitude to my friends Ahmed Ismael Mohan, Mohammed Adnan, Haider Saad, Omar Abdul Hassan and Raed Ali Mohammed who have provided assistance at various occasions.
TABLE OF CONTENTS

DECLARATION
APPROVAL
DEDICATION
ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES ix
LIST OF APPENDICES xi
LIST OF SYMBOLS xiii
LIST OF ABBREVIATION xv
LIST OF PUBLICATION xvii

CHAPTER
1. INTRODUCTION 1
 1.1 Research Background 1
 1.2 Problem Statement 6
 1.3 Research Objective 6
 1.4 Scope of Work 7
 1.5 Chapter's Organization 7
 1.6 Achievement 8
 1.7 Summary 9

2. LITERATURE REVIEW 10
 2.1 Introduction 10
 2.2 PV Systems History and Deployment 10
 2.3 Characteristics of PV Modules 14
 2.3.1 PV Cell Technologies 18
 2.4 Types of PV Systems 19
 2.4.1 Standalone PV Systems 20
 2.4.2 Grid-Connected PV Systems 21
 2.5 Inverters 22
 2.5.1 Central Inverter 23
 2.5.2 String Inverters 24
 2.6 Photovoltaic Systems Design Considerations 25
 2.6.1 Cables Sizing 25
 2.6.2 Solar Irradiance 30
 2.6.3 Loss Factors 32
 2.6.4 Inverter Sizing 35
 2.7 Economic of PV Systems 35
 2.7.1 Payback Period 36
 2.7.2 Net Present Value (NPV) 36
 2.8 Summary 37
3. METHODOLOGY 39
 3.1 Introduction 39
 3.2 Cable Sizing According to the Standards 40
 3.3 Economic Calculations 43
 3.4 Payback Period Calculation 47
 3.5 Life Cycle Saving Calculations 47
 3.6 Net Present Value Calculations 48
 3.7 Data Collection 48
 3.8 The Tradeoff between the Investment Cost and Losses Cost 54
 3.8.1 Calculation Example 57
 3.9 Summary 58

4. RESULTS AND DISCUSSION 60
 4.1 Introduction 60
 4.2 Photovoltaic System Description 60
 4.3 Cable Sizing According to the Standards 63
 4.4 Economic Cable Section Calculations 66
 4.5 Summary 109

5. CONCLUSION AND FUTURE WORKS 111
 5.1 Introduction 111
 5.2 Research Findings 112
 5.3 Research Contribution 112
 5.4 Future Works 113

REFERENCES 115
APPENDICES 126
 APPENDIX A 126
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Development and Installation of Solar Photovoltaic Electricity in Various Countries (Hdr.undp.org, 2015).</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Renewable Energy Potential in Malaysia by 2030 (Oh, Pang and Chua, 2010).</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>(B.52-1 of IEC 60364-5-52) Conductor Section with respect to Current Capacity</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Electrical Characteristics of PV module at STC (Sharp NS-F130G5).</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Main Solar Cables Length from Combiner Boxes to the Central Inverter.</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Main Solar Cables Size According to the Standards.</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Resistance Value at 20 °C (Yr-group.cn, 2015)</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Annual Energy Loss in the Standard Main Solar Cables of Main Array A.</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>Annual Energy Loss in the Standard Main Solar Cables of Main Array B.</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array A at FiT Rate 0.5472 RM/kWh According to Each Type of Solar Radiation.</td>
<td>71</td>
</tr>
<tr>
<td>4.8</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array A at FiT Rate 0.684 RM/kWh According to Each Type of Solar Radiation.</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array A at FiT Rate 0.4104 RM/kWh According to Each Type of Solar Radiation.</td>
<td>72</td>
</tr>
<tr>
<td>4.10</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array B at FiT Rate 0.5472 RM/kWh According to Each Type of Solar Radiation.</td>
<td>73</td>
</tr>
<tr>
<td>4.11</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array B at FiT Rate 0.684 RM/kWh According to Each Type of Solar Radiation.</td>
<td>73</td>
</tr>
<tr>
<td>4.12</td>
<td>Annual Energy Loss Cost for the Main Solar Cables of Main Array B at FiT Rate 0.4104 RM/kWh According to Each Type of Solar Radiation.</td>
<td>74</td>
</tr>
<tr>
<td>4.13</td>
<td>Solar Cables Prices (Yr-group, 2015).</td>
<td>74</td>
</tr>
<tr>
<td>4.14</td>
<td>Payback Periods and Savings Over 21 Years According to One-Second Radiation at FiT 0.5472 RM/kWh. For the cable from CB1 to CI</td>
<td>78</td>
</tr>
<tr>
<td>4.15</td>
<td>Payback Periods and Savings Over 21 Years According to One-Second Radiation at FiT 0.684 RM/kWh. For the cable from CB1 to CI</td>
<td>78</td>
</tr>
</tbody>
</table>
4.16 Payback Periods and Savings Over 21 Years According to One-Second Radiation at FiT 0.4104 RM/kWh. For the cable from CB1 to CI

4.17 Payback Periods and Savings Over 21 Years According to One-Minute Radiation at FiT 0.5472 RM/kWh. For the cable from CB1 to CI

4.18 Payback Periods and Savings Over 21 Years According to One-Minute Radiation at FiT 0.684 RM/kWh. For the cable from CB1 to CI

4.19 Payback Periods and Savings Over 21 Years According to One-Minute Radiation at FiT 0.4104 RM/kWh. For the cable from CB1 to CI

4.20 Payback Periods and Savings Over 21 Years According to Five-Minute Radiation at FiT 0.5472 RM/kWh. For the cable from CB1 to CI

4.21 Payback Periods and Savings Over 21 Years According to Five-Minute Radiation at FiT 0.684 RM/kWh. For the cable from CB1 to CI

4.22 Payback Periods and Savings Over 21 Years According to Five-Minute Radiation at FiT 0.4104 RM/kWh.

4.23 Payback Periods and Savings Over 21 Years According to Half-Hour Radiation at FiT 0.5472 RM/kWh. For the cable from CB1 to CI

4.24 Payback Periods and Savings Over 21 Years According to Half-Hour Radiation at FiT 0.684 RM/kWh. For the cable from CB1 to CI

4.25 Payback Periods and Savings Over 21 Years According to Half-Hour Radiation at FiT 0.4104 RM/kWh. For the cable from CB1 to CI

4.26 Payback Periods and Savings Over 21 Years According to Hourly Radiation at FiT 0.5472 RM/kWh. For the cable from CB1 to CI

4.27 Payback Periods and Savings Over 21 Years According to Hourly Radiation at FiT 0.684 RM/kWh. For the cable from CB1 to CI

4.28 Payback Periods and Savings Over 21 Years According to Hourly Radiation at FiT 0.4104 RM/kWh. For the cable from CB1 to CI

4.29 Optimal Cable Size for the Cable that Runs From CB1 in Main Array A to CI, According to Each Type of Solar Radiation and FiT Rate.

4.30 Optimal Cables Size, Life Cycle Saving and Payback Period for the Main Solar Cables of Main Array A, According to One-Second Radiation and Each FiT Rate.

4.31 Optimal Cables Size, Life Cycle Saving and Payback Period for the Main Solar Cables of Main Array A, According to One-Minute Radiation and Each FiT Rate
4.32 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array A, According to Five-Minute Radiation and Each FiT Rate. 98

4.33 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array A, According to Half-Hour Radiation and Each FiT Rate. 99

4.34 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array A, According to Hourly Radiation and Each FiT Rate. 100

4.35 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array B, According to One-Second Radiation and Each FiT Rate. 101

4.36 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array B, According to One-Minute Radiation and Each FiT Rate. 102

4.37 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array B, According to Five-Minute Radiation and Each FiT Rate. 103

4.38 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array B, According to Half-Hour Radiation and Each FiT Rate. 104

4.39 Optimal Cables Size, Life Cycle Savings and Payback Period for the Main Solar Cables of Main Array B, According to Hourly Radiation and Each FiT Rate. 105

4.40 Cumulated Life Cycle Saving for the Proposed System, According to One-Second Radiation and FiT rate of 0.5472 RM/kWh. 107

4.41 Net Present Value According to Each Type of Solar Radiation at FiT 0.5472 RM/kWh. 108

4.42 Net Present Value According to Each Type of Solar Radiation at FiT 0.684 RM/kWh. 108

4.43 Net Present Value According to Each Type of Solar Radiation at FiT 0.4104 RM/kWh. 109
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Common Configuration of a Grid-Connected PV System (Solar Electric</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Global PV Module Price Learning Curve for C-Si Wafer-Based and Cd-Te</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Modules (IRENA, 2012).</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Evolution of Global Cumulative Installed Capacity (IRENA, 2012).</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Working Principle of PV Cell.</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Equivalent Circuit of a PV Cell.</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Effects of the Irradiation on the Module Voltage and Current</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(Mpoweruk.com, 2015).</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Effect of the Ambient Temperature on the Module Voltage and Current</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(Mpoweruk.com, 2015).</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Basic Components of PV Systems.</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Standalone PV System (Singh, 2010).</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Grid Connected PV System (Singh, 2010).</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Central Inverter Configuration (Al-Gahtani, 2015).</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>String Inverter (Al-Gahtani, 2015).</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>PV Array Configuration with Four Strings Connected in Parallel to a</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Junction Box and Four Modules Connected in Series in Each String</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Pvpowerway.com, 2015).</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Discretization of Solar Radiation and Current (Maillo, 2013).</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Solar Irradiance versus Time for a Cloudy Day (17-May-2014).</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Solar Irradiance versus Time for a Normal Day (5-December-2014).</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Solar Irradiance versus Time for a Sunny Day (5-August-2014).</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Solar Irradiance versus Time for a Cloudy Day (17-May-2014) at 1 pm.</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Solar Irradiance versus Time for a Normal Day (5-December-2014) at 11 am.</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Solar Irradiance versus Time for a Sunny Day (5-August-2014) at 9 am.</td>
<td>53</td>
</tr>
</tbody>
</table>
3.9 Optimal Cable Selection Flow Chart.

4.1 Typical PV Plant Layout for 1.2 MW with Cable Route and CCR/CI (Mohamed Nawawi, Gan and Tan, 2015).

4.2 Common Configuration of any Sub-Array in the Proposed System.

4.3 Annuitized Total Cost versus Cable Size, at One-Second Radiation and FiT rate 0.5472 RM/kWh.

4.4 Annuitized Total Cost versus Cable Size, at One-Second Radiation and FiT rate 0.684 RM/kWh.

4.5 Annuitized Total Cost versus Cable Size, at One-Second Radiation and FiT rate 0.4104 RM/kWh.

4.6 Annuitized Total Cost versus Cable Size, at One-Minute Radiation and FiT rate 0.5472 RM/kWh.

4.7 Annuitized Total Cost versus Cable Size, at One-Minute Radiation and FiT rate 0.684 RM/kWh.

4.8 Annuitized Total Cost versus Cable Size, at One-Minute Radiation and FiT rate 0.4104 RM/kWh.

4.9 Annuitized Total Cost versus Cable Size, at Five-Minute Radiation and FiT rate 0.5472 RM/kWh.

4.10 Annuitized Total Cost versus Cable Size, at Five-Minute Radiation and FiT rate 0.684 RM/kWh.

4.11 Annuitized Total Cost versus Cable Size, at Five-Minute Radiation and FiT rate 0.4104 RM/kWh.

4.12 Annuitized Total Cost versus Cable Size, at Half-Hour Radiation and FiT Rate 0.5472 RM/kWh.

4.13 Annuitized Total Cost versus Cable Size, at Half-Hour Radiation and FiT Rate 0.684 RM/kWh.

4.14 Annuitized Total Cost versus Cable Size, at Half-Hour Radiation and FiT Rate 0.4104 RM/kWh.

4.15 Annuitized Total Cost versus Cable Size, at Hourly Radiation and FiT Rate 0.5472 RM/kWh.

4.16 Annuitized Total Cost versus Cable Size, at Hourly Radiation and FiT Rate 0.684 RM/kWh.

4.17 Annuitized Total Cost versus Cable Size, at Hourly Radiation and FiT Rate 0.4104 RM/kWh.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publication</td>
<td>122</td>
</tr>
</tbody>
</table>
W - Watt.
KW - Kilo watt
MW - Mega Watt.
GW - Giga Watt.
FiT - Feed in Tariff.
WP - Watt at Peak output.
$ - US Dollar.
KWh/m2 - Kilo Watt hour per meter square
I - electric current
I_{ph} - photon current.
I_s - reverse saturation current of the diode
q - electron charge
V - voltage
K - Boltzmann's constant
Te. - temperature
N - ideality factor of the diode
R - resistance
R_s - series resistance
I_{sh} - shunt current
I_{S.C} - short circuit current
$V_{O.C}$ - open circuit voltage

°C - Celsius degree

% - percentage

Hz - Hertz

mm2 - millimeter square

p - power

kcmil - kilo circular mils

W/m2 - Watt per meter square

NPV - net present value

Pb - payback period

C - capital cost

S - annual savings

C_0 - initial cost

C_t - net cash flow

n - lifespan

r - discount rate

t - time

V_{MPP} - voltage at maximum power point

$N_{modules}$ - number of modules

I_{MPP} - current at maximum power point

$N_{strings}$ - number of strings

A - cable cross section area

L - length

γ - conductivity
e - voltage drop
E_{lost} - energy lost
d - number of daylight hours
i - specific hour
I_i - current at hour i
I_{string} - string current
G_i - solar radiation
RM - Malaysian Ringgit
C_{losses} - losses cost
C_{standards} - standards cost
C_{investment} - investment cost
A_{standards} - standards cable cross section area
A_{new} - new cable section cross section area
j - specific year
RM/kWh - Ringgit Malaysian per kilo Watt hour
P - cable price
RM/m - Ringgit Malaysian per meter
RM/year - Ringgit Malaysian per year
P_{max} - maximum power
m - meter
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>STC</td>
<td>Standard Test Condition</td>
</tr>
<tr>
<td>SEDA</td>
<td>Sustainable Energy Development Authority</td>
</tr>
<tr>
<td>LCOE</td>
<td>Levelized Cost of Energy</td>
</tr>
<tr>
<td>MBIPV</td>
<td>Malaysia Building Integrated Photovoltaic</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>C-Si</td>
<td>Crystalline Silicon</td>
</tr>
<tr>
<td>Sc-Si</td>
<td>Single Crystalline Silicon</td>
</tr>
<tr>
<td>Mc-Si</td>
<td>Multi crystalline Silicon</td>
</tr>
<tr>
<td>Ga As</td>
<td>Gallium-Arsenide</td>
</tr>
<tr>
<td>CI-GS</td>
<td>Copper Indium Gallium Selenide</td>
</tr>
<tr>
<td>Cd-Te</td>
<td>Cadmium Telluride</td>
</tr>
<tr>
<td>PCU</td>
<td>Power Conditioning Unit</td>
</tr>
<tr>
<td>CCC</td>
<td>Current Carrying Capacity</td>
</tr>
<tr>
<td>PR</td>
<td>Performance Ratio</td>
</tr>
<tr>
<td>TLDC</td>
<td>Technique of Load Distribution Centre</td>
</tr>
<tr>
<td>TCT</td>
<td>Total-Crossed Tied</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>BL</td>
<td>Bridge-Link</td>
</tr>
<tr>
<td>DCF</td>
<td>Discount Cash Flow</td>
</tr>
<tr>
<td>CB</td>
<td>Combiner Box</td>
</tr>
<tr>
<td>CI</td>
<td>Central Inverter</td>
</tr>
<tr>
<td>CCR</td>
<td>Common Control Room</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATION

Journal

CHAPTER 1

INTRODUCTION

1.1 Research Background

As the fossil fuel is on the brink of depletion and its influence on the environment (i.e. CO₂ emission), and as the electrical energy becomes increasingly on demand, the world attention shifts towards finding resources of alternative renewable and environmentally friendly energy. Photovoltaic (PV) has been recognized as a promising renewable energy (RE) resource, based on the fact that the solar energy received by Mother Earth is abundant (Ogimoto et al., 2013) (Denholm et al., 2013). The direct conversion technology that leans on solar photovoltaics (PVs) boasts off some positive attributes and it appears to be the most promising. People have become more optimistic that solar PV systems will stand out as a primary means in coming decades (Kaushika and Rai, 2006). In this regard, there are more grid-connected PV system installations set up all over the world, from kW scale residential PV systems to MW scale utility solar PV farms. The main drive comes from the strong regulatory support in the respective countries (Gan et al., 2014). In Europe, for instance the combined target yielding a total expected PV power generation capacity is 15 GW by 2020, and 30 GW by 2030 (Hdr.undp.org, 2015). At the end of 2009, France kept its intention to multiply its solar power use by 400 in the coming 12 years. This is a smaller fraction of the whole plan to double the share of energy from renewable to 23% by 2020 to adhere with the European Union obligations as well as to stay in rivalry with Germany which is regarded as the giant in European Union countries (Solangi et al., 2011). Table 1 shows the anticipated development and installation of solar
photovoltaic electricity in the USA, Europe, and Japan as well as for the rest of the world countries until 2030.

Table 1.1: Development and Installation of Solar Photovoltaic Electricity in Various Countries (Hdr.undp.org, 2015).

<table>
<thead>
<tr>
<th>Year</th>
<th>USA (MW)</th>
<th>Europe (MW)</th>
<th>Japan (MW)</th>
<th>Worldwide (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>140</td>
<td>150</td>
<td>250</td>
<td>1000</td>
</tr>
<tr>
<td>2010</td>
<td>3000</td>
<td>3000</td>
<td>5000</td>
<td>14,000</td>
</tr>
<tr>
<td>2020</td>
<td>15,000</td>
<td>15,000</td>
<td>30,000</td>
<td>70,000</td>
</tr>
<tr>
<td>2030</td>
<td>25,000</td>
<td>30,000</td>
<td>72,000</td>
<td>140,000</td>
</tr>
</tbody>
</table>

The Malaysian government has established various energy-related policies in the attempt to address the climate change and ensure energy security. Pragmatic energy policies that have come into effect for the past thirty years have facilitated a clean energy development path. The five-fuel policy was embedded in the 8th Malaysian Plan as the extension of four fuel diversification policy, in which renewables as a fifth fuel have been included. The 5% contribution of the country energy, coupled with RE by year 2005 was targeted to reduce 70 million tons of CO$_2$ over a span of 20 years. Not only that, in the 9th Malaysian plan the utilization of RE resources and efficient use of energy were highlighted (Fayaz et al., 2011). Next, in the 10th Malaysian Plan, RE share is aimed to achieve 5.5% of Malaysia’s total electricity generation mix, and can well escalate to 5.9% by 2030 (Epu.gov.my, 2015). Thus, the 2011 Renewable Energy Act has been enacted (Seda.gov.my, 2015) and the Feed-in Tariff (FiT) scheme has been properly introduced in 2011 (Handbook on the Malaysian Feed-in Tariff for the Promotion of Renewable Energy, 2011). Those were the beginning of the years where Malaysia demonstrated strong growth in the solar PV installation for both residential and commercial sectors (Muhammad-Sukki et al., 2014). Table 1.2 illustrates the rough estimation of the RE potential in Malaysia by