

Faculty of Electrical Engineering

IMPACT OF DISTRIBUTED GENERATION ON POWER SYSTEM PROTECTION

Dawood Saleem Ahmed

Master of Electrical Engineering (Industrial Power)

2016

IMPACT OF DISTRIBUTED GENERATION ON POWER SYSTEM PROTECTION

DAWOOD SALEEM AHMED

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this dissertation entitles "Impact of Distributed Generation on Power System Protection" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	·
Name:	: Dawood Saleem Ahmed
Date:	·

APPROVAL

I hereby declare that I have read this report and in my opinion this dissertation is sufficient in terms of scope and quality for the award of Master in Electrical Engineering.

Signature	·
Supervisor Name	: Dr. Hidayat Bin Zainuddin
Date:	·

DEDICATION

This dissertation work is dedicated to my wife, and my big family; you are good examples and you have taught me to work hard for the things that I aspire to achieve.

ABSTRACT

This dissertation describes a simulation study of the impact of distributed generation (DG) interconnection to an existing distribution system of an Iraq system. The increase load demand in many countries pushes the electrical company to use DG technology to meet their load. From the literature review, it was found in spite of many positive effects of DG such as reduce the power losses and reduce voltage drop; the parallel operation of DG with an existing distribution system has many technical problems. One of the most significant issues of parallel operation is the change of fault level and suitability of existing protection system that indeed needs to be maintained within acceptable limits as defined in the international standards. Therefore, this dissertation is performed to investigate the impact of DG based synchronous generator driven by diesel engine on both the fault level and protection system. A small part of the distribution system in Baghdad capital-Iraq which the DG is currently interconnected at 11kV bus has been chosen and modeled using DIgSILENT PowerFactory version 15. The impacts of DG installation at three different locations, i.e. two possible locations which are 33kV and 132kV buses as well as the actual location have been investigated. The dissertation basically includes two investigations which are; examine the change in the fault level without the presence of DG and with DG interconnection at three interconnection locations by executing three-phase fault at each bus of the network as well as investigate the suitability of protection devices through performing single-line-to-ground and three-phase faults at 33kV and 11kV feeders within the distribution system. The results show that after an extensive simulation study, the increase in short circuit level is noticeable at the buses where the DG is interconnected and the protection performance of unidirectional overcurrent relay suffer from blinding and sympathetic tripping as well as the under reach of distance relay, therefore, a series remedy is needed for safety purposes and to reliability of the system.

i

ABSTRAK

Disertasi ini menerangkan tentang kajian simulasi kesan sambungan Penjana Teragih (PT) kepada system pengagihan yang sedia ada dalam sistem Iraq. Peningkatan permintaan beban di banyak negara memaksa syarikat elektrik menggunakan teknologi PT untuk memenuhi beban mereka. Daripada kajian literatur, didapati walaupun banyak kesan positif PT seperti mengurangkan kehilangan kuasa dan mengurangkan kejatuhan voltan operasi selari PT dengan sistem pengagihan yang sedia ada mempunyai banyak masalah teknikal. Salah satu isu yang paling penting ialah perubahan aras kerosakan dan kesesuaian sistem perlindungan sedia ada yang sememangnya perlu dikekalkan dalam had yang boleh diterima seperti yang ditakrifkan dalam piawaian antarabangsa. Oleh itu, kajian ini dijalankan untuk menyiasat kesan penjana segerak PT berasaskan enjin diesel terhadap aras kerosakan dan sistem perlindungan. Sebahagian kecil daripada sistem pengagihan di Bandar Baghdad, Iraq yang mana PT disambungkan di bas 11kV telah dipilih dan dimodelkan menggunakan DIgSILENT PowerFactory Versi 15. Kesan pemasangan DG di tiga lokasi berbeza iaitu dua lokasi kemungkinan, di bas 33kV dan 132 kV serta lokasi sebenar telah disiasat. Disertasi pada dasarnya menyentuh dua kes utama iaitu; memeriksa perubahan dalam aras kerosakan tanpa kehadiran PT dan dengan sambungan DG di tiga lokasi sambungan melalui pelaksanaan kerosakan tiga fasa pada setiap bas rangkaian serta menyiasat kesesuaian peranti perlindungan dengan melakukan kerosakan talian tunggal ke bumi dan kerosakan tiga fasa pada penyuap 33 kV dan 11kV dalam sistem pengagihan. Keputusan kajian simulasi menunjukkan peningkatan yang banyak pada aras litar pintas adalah ketara pada bas disambungkan dengan PT dan prestasi perlindungan bagi geganti arus lebih satu arah mengalami masalah terpelantik kabur dan simpatetik serta di bawah jangkauan geganti jarak. Oleh itu, penyelesaian yang serius diperlukan untuk tujuan keselamatan dan untuk meningkatkan kebolehpercayaan sistem.

ACKNOWLEDGMENT

First my praise is to the Almighty "Allah", on whom we ultimately depend. Then, I would like to sincerely thank my supervisor Dr. Hidayat Bin Zainuddin and my Co-supervisor Dr. Mohd Hendra Bin Hairi for their guidance, advice, and support.

This research would not be possible without financial support from the ministry of electricity Iraq.

I am greatly indebted to all the teaching staff for their helpful recommendation, supports, and giving infinite during my study in UTeM.

TABLE OF CONTENTS

		_
DECL	ARATION	
APPR	OVAL	
DEDIC	CATION	
ABSTI	RACT	i
ABSTI	RAK	ii
ACKN	IOWLEDGMENT	iii
TABL	E OF CONTENTS	iv
LIST (OF TABLES	vi
LIST (OF FIGURES	viii
LIST (OF APPENDICES	xii
LIST (OF ABBREVIATIONS	xiii
LIST OF ADDRE VIATIONS		XIII XV
СНАР	TER	
1. INT	RODUCTION	1
1.1	Background	1
1.2	Motivation for Research	3
1.3	Problem Statement	4
1.4	Objective of Research	4
1.5	Scope of Research	5
1.6	Contribution of Research	5
1.7	Organization of Dissertation	6

Organization of Dissertation	
	Organization of Dissertation

2. LITI	ERATURE REVIEW	8
2.1	Introduction	8
2.2	Distributed Generation	9
2.3	Types of Distributed Generation	11
	2.3.1 Solar Photovoltaic Generation	11
	2.3.2 Wind Turbines	13
	2.3.3 Fuel Cells	14
	2.3.4 Micro Turbines	15
	2.3.5 Induction and Synchronous Generators	16
2.4	Islanding of a Power Network	19
2.5	Interconnection Protection	22
2.6	Impact of Distributed Generation on Power System Grid	25
	2.6.1 Impact of DG on Voltage Regulation	26
	2.6.2 Impact of DG on System Losses	27
	2.6.3 Impact of DG on Short Circuit Level	27
	2.6.4 Impact of DG on Distribution System Protection	30
	2.6.4.1 Coordination Protection Problem	31
	2.6.4.2 Sympathetic Tripping	34
	2.6.4.3 Blinding of protection	35
2.7	Summary	38

3. RES	SEARCH METHODOLOGY	39
3.1	Introduction	39
3.2	Power Flow Study	40
3.3	Radial Line Fault Current Calculation	44
3.4	DIgSILENT PowerFactory	54
	3.4.1 Power Flow Study in DIgSILENT	54
	3.4.2 Short Circuit Calculation in DIgSILENT	55
3.5	Modeling of the Iraq system in DIgSILENT	58
3.6	Methodology of Analysis	61
	3.6.1 Load Flow Study	62
	3.6.2 Fault Level Study	62
	3.6.3 Protection System Study	62
3.7	Summary	63

4. RESULTS AND DISSCUSSION

64

4.1	Introduction	64
4.2	Description of the Network Used	67
4.3	Validation study	71
	4.3.1 Load Flow Analysis Using IEEE System	71
	4.3.2 Short-Circuit Analysis Using IEEE System	75
4.4	Load Flow Analysis	78
4.5	Short Circuit Level Investigation	82
4.6	Performance of the Protection System	95
	4.6.1 Blinding of Protection	95
	4.6.1.1 Case 1: 3PH fault at 90% of feeder FA3	96
	4.6.1.2 Case 2: 3PH fault at 90% of feeder SB4	97
	4.6.2 Sympathetic Tripping	103
	4.6.2.1 Case 1: 1LG Fault at OHL of Feeder FA3	103
	4.6.2.2 Case 2: 1LG Fault at 90% of Feeder F-1	107
	4.6.2.3 Case 3: 3PH Fault at 90% of Underground Feeder FA3	109
	4.6.2.4 Case 4: 3PH Fault at SB4	112
	4.6.3 Reduction in Reach of Distance Relay	116
	4.6.3.1 Case1: Without DG Interconnection	116
	4.6.3.2 Case2: With DG Interconnection	120
4.7	Summary	125

5. CO	NCLUSION AND RECOMMENDATION	127
5.1	Conclusion	127
5.2	Achievement of Research Objective	128
5.3	Significance of Research Outcomes	129
5.4	Suggestions for Future Research	129

REFERENCES	131
APPENDIX A	140
APPENDIX B	149

LIST OF TABLES

TABI	LE TITLE	PAGE
2.1	Classification of DG depending on range of size	9
4.1	IEEE 4 node voltage-phase A	73
4.2	IEEE 4 node voltage-phase B	73
4.3	IEEE 4 node voltage-phase C	74
4.4	IEEE 4 node branch current	74
4.5	Comparison of 3HP and 1LG fault results	78
4.6	Base Case Load Flow at Al-Farabi Substation	80
4.7	Load Flow at Al-Farabi Substation with DG1	81
4.8	Variation of fault current [kA] at different buses	91
4.9	Rate of change in the fault current level	92
4.10	Change in the Equivalent Impedances at the fault points	93
4.11	Time overcurrent characteristics of relays R6, R7, and R9	98
4.12	Characteristics of overcurrent relay at intertie point	98
4.13	Characteristics of overcurrent relay at AL-Sebaq and up to	
	AL- Farabi substation	99
4.14	Results of 3PH fault at 90% of feeder FA3	99
4.15	Results of 3PH fault at 90% of feeder SB4	100
4.16	Results of 1LG fault at FA3 OHL	104
4.17	Results of 1LG fault at feeder f-1	107
4.18	Results of 3PH fault at feeder FA3	111

vi

4.19	Distance relay zones setting and reach operation	124
4.20	Reduction in reach as ratio %	124
A.1	Synchronous generator data	140
A.2	Excitation system model IEEE type DC2 (EXDC2) data	141
A.3	Diesel governor model (DEGOV) data	142
A.4	Transformer TR3 data	142
A.5	Transformers TR1 and TR2 data	143
A.6	Distribution transformers	143
A.7	Sub-transmission line data 132kV	143
A.8	Overhead line data	144
A.9	Underground cable 11kV (3×150 mm2) data	144
A.10	Underground cable 33kV (1×400 mm2) data	144
A.11	Underground cable 132 kV (1×800 mm2) data	144
A.12	Load data	145
A.13	Transformer data	146
A.14	Load data	147

LIST OF FIGURES

FIGUR	E TITLE	PAGE
2.1	(a) Equivalent circuit of PV cell; (b) V-I array characteristic	12
2.2	Schematic diagram of PV inverter for grid connected operation	13
2.3	Power conversion from wind power into electrical power available to	
	the consumer	14
2.4	Fuel cell diagram	15
2.5	Schematic Diagram of a Micro-Turbine	16
2.6	(a) Induction generator; (b) synchronous generator	18
2.7	Diesel engine set	19
2.8	Intentional islanding of part of the distribution network	22
2.9	Simplified representation of the network used for the analytical	
	analysis	30
2.10	Simple radial distribution power system	33
2.11	Sympathetic tripping	34
2.12	Blinding of Overcurrent Relay	36
3.1	A typical bus of the power system	41
3.2	Distribution substation and radial feeder	45
3.3	Three phase fault connection	47
3.4	1LG fault (a) general representation; (b) interconnection of	
	sequence networks	50
3.5	Flow chart of the study	53

viii

3.6	Illustration of the developed superposition method	57
3.7	Part of 400kV and 132kV sub-transmission connection	61
4.1	33/11kV Substation equipped with two 31MVA transformers	66
4.2	A Single Line Diagram of Typical 11/0.4kV Substation	66
4.3	Single line diagram of Al-Farabi substations	70
4.4	IEEE 4 node test feeder	72
4.5	Pole Configuration	72
4.6	Impedance diagram of the IEEE 4 node test feeder	77
4.7	Interconnection of resultant equivalent sequence networks of 1LG	
	fault	77
4.8	Load Flow at AL-Farabi 132 kV Bus-Bar	79
4.9	Load flow at AL-Farabi 132 kV Bus Bar with DG1	81
4.10	Load Flow at AL-Farabi 132 kV Bus Bar with DG1	82
4.11	3PH fault without DG; (a) at AL-Farabi bus, (b) at bus 33A, (c) at	
	bus11A	85
4.12	3PH fault at AL-Farabi bus (a) with DG1, (b) with DG2, (c) with	
	DG3	87
4.13	3PH fault at 33A bus; (a) with DG1, (b) with DG2, (c) with DG3	88
4.14	3PH fault at 11A; (a) with DG1, (b) with DG3, (c) with DG3	90
4.15	Variation in current level	94
4.16	Percentage variation in current level	94
4.17	Time overcurrent (50, 51) characteristic plot of relays R6, R7, and R9	101
4.18	Overcurrent relays characteristic (50, 51) of relays RA, R2, R3, R4,	
	R5 and R7	101
4.19	Increase in pickup time of overcurrent relay due to DGs	

	interconnection with fault at LF3	102
4.20	Pickup time of overcurrent relays with 3PH fault at feeder SB4	102
4.21	Characteristics of relays R6, R9, and RDGCL	104
4.22	1LG fault at downstream of FA3	105
4.23	Operating time of relays with TR1 open-isolator	106
4.24	Operating time of relays with TR1 closed-isolator	106
4.25	Characteristic of relays R4, R5, and RDGL1	108
4.26	Operating time of relays of 1LG fault at F-1	108
4.27	3PH fault at 90% of underground cable FA3	110
4.28	Characteristic plot of R6, R7 and R9 case fault at LF3	111
4.29	Operating time of 50 and 51 characteristics plot curves of 3PH	112
4.30	50 and 51 characteristic plot of relays RA, R2, R3, R4, R5, RDGL1	
	and R7	113
4.31	Overcurrent relay characteristic plot, (a) without DG2, (b) with DG2	114
4.32	3PH fault at end of SB4	115
4.33	Fault at 80% end TL1 without DG	117
4.34	CB state of fault at 80% of TL1 without DG	118
4.35	Fault at 20% at end of TL5 without DG	118
4.36	CB state of fault at 20% at end of TL5 without DG	119
4.37	Fault at 50% of TL2 without DG	119
4.38	CB state of fault at 50% of TL2 without DG	120
4.39	Fault at 80% at end of TL1 with DG1, DG2, and DG3	121
4.40	Fault at 20% at end of TL5 with DG1, DG2, and DG3	122
4.41	Fault at 50% of TL2 with DG1	122
4.42	Fault at 50% of TL2 with DG2	123

4.43	Fault at 50% of TL2 with DG3	123
4.44	Reduction in reach as ratio %	125
B.1	A typical portion of the radial distribution network	153
B.2	General operating characteristic of various inverse time relays	156
B.3	VT equivalent circuit	157
B.4	CT equivalent circuit	158
B.5	Characteristic of mho distance relay on R-X plane	160

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Systems Data	140
В	Analysis and Modeling	149

LIST OF ABBREVIATIONS

Abbreviation	Specification
AC	Alternative Current
ACSR	Aluminum Conductor Steel Reinforce
AAAC	All-Aluminum-Alloy Conductor
СТ	Current Transformer
CHP	Combined Heat and Power
DC	Direct Current
DG	Distributed Generation
DR	Distribution Resource
DN	Distribution Network
DSG	Distributed Synchronous Generator
EPS	Electric Power System
FC	Fuel Cell
FCL	Fault Current Limiter
GEN	Generator
IEEE	Institute of Electrical and Electronics Engineers
IDMT	Inverse Definite Minimum Time
Ip	Pickup Current
LV	Low Voltage
LTC	Load Tap Changer

xiii

mmf	Magneto Motive Force
OC	Overcurrent Relay
OHL	Overhead Line
ONAN/ONAF	Oil Cooling/Forced Air Cooling
PCC	Point of Common Coupling
p.u.	Per Unit
PV	Photovoltaic Cells (Solar Cell)
RCS	Remote Control System
SFCL	Superconductor Fault Current Limiter
TR	Transformer
TDS	Time Dial Setting
Т	Operating Time
VT	Voltage Transformer
XLPE	Cross-Linked Polyethylene
UTeM	Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

Symbol	Specification
ρ	Air Density
U	Wind Speed
C_P	Power Coefficient of Rotor (Aerodynamic)
Ζ	Impedance
R	Relay
Δ	Delta Transformer Configuration
Y	Wye Transformer Configuration
RMS	Electromechanical Transient
EMT	Electromagnetic Transient

CHAPTER 1

INTRODUCTION

1.1 Background

The first and simplest form of power generator in Iraq was developed in 1917 in the form of diesel-driven direct current (DC) generators, operating in the city of Baghdad. The generator, however, only served a small number of consumers. Following the success, other Iraqi cities began installing diesel stations and their distribution networks, such as the city of Kirkuk and Basrah in 1918, the city of Mousal in 1921, and the city of Ramadi in 1927.

In present, Iraq has around eight steam generation plants, 20 gas-powered facilities, and six main hydroelectric plants with expected capacity of 11,120 MW though some are being repaired. Among the power supplies, 40 percent is thermal, 22 percent is hydropower and 38 percent is gas-powered. The major problem faced by the power grid and electricity industry in Iraq is the shortage in a generation. This is mainly due to aging power plants, plus the lack of proper routine of overhaul maintenance. In addition, the political and economic circumstances in Iraq during the past 20 to 30 years make it difficult to install new generators. Generally, shortage in power generation, rapid rise in demand and consumption, and degradation of system components (due to aging and other reasons) all lead to long hours of load shedding and operation beyond standard limits (Hassan and Moghavvemi, n.d.; Reda et al., 2006).

One potential solution for these problems is the installation of small-size diesel generating units (defined here as distributed generating (DG) units). In reality, due the fact

that load concentration in major cities and chaotic situation which hinder the construction of remote power stations with adequate transmission facilities, the addition of these DG units has to be in the already established stations, with condition if they are geographically possible due to shortage of space.

DG such as diesel engine can be easily directly installed in synchronous generator compared with conventional power generation. Therefore, many countries are interested in accommodating and extending DG in their distribution networks. Cost of the transmission line and distribution network construction is rising; however, the cost of DG technologies is descending. This makes it more economical to increase loads from DG to distribution feeders compared to expanding the transmission line and distribution facility (Willis and Scott, 2000). DG at distribution level has positive impacts on the system voltage profile and substations capacity. However, the extent of such benefits depends greatly on the DG size and location. Heavily loaded systems need more than one DG to rectify the voltage profile and to achieve other DG promised benefits (AlHajri and El-Hawary, 2007).

By integrating DG into the utility power grid, the line upgrades could be postponed, then there exists the possibility of a greater efficiency of the power delivery. The Power flow should be reduced, thus, minimizing losses. Particularly, the heavily loaded feeders or the transmission corridors could be relieved. This is also potential as opportunity for improving power quality, allowing the consumers and utility equipment to be more durable (To et al., 2007). However, DGs have significant impacts on electric utility power delivery systems. With higher levels of DG penetration, greater impacts are expected on both the transmission and distribution systems. DG basically will induce many protection issues to the distribution system during an event of a fault, for example, blinding and sympathetic, overcurrent relay and under-reach of distance relay (Sharkh et al., 2014). These impacts on protection system are mainly due to DG contribution to the fault current which are not considered in the planning stages. Furthermore, the presence of such DG causes the change of fault level and consequently on the previously mentioned protection problems.

1.2 Motivation for Research

To achieve the desired support from DG to the grid either by small part or most of the load, this means a large number of DG generators have to be embedded in the distributed network. However, large capacity installation of DG will induce severe power system problems. In the case of DG in Iraq, there have been registered problems of protection system without apparent reason. The worst case was a major fire in both DG system and the distribution substation, in addition to fatality to lives of employees who worked in the field of electrical network maintenance (Mozina, 2001). Therefore, the existing protection system should be more effective or work well to avoid such problems. For these reasons, this study will focus on investigating the impact of the DG on short circuit levels, which certainly will affect the protection system performance. However, to ensure successful large scale penetration of DG generators in existing distribution network, it is necessary to examine and understand the nature of these problems. Thus, researches need to be conducted to develop approaches for successful integration of DG generators in existing network.

The influence of DG based synchronous generator driven by diesel engine on protection coordination includes blinding, sympathetic of overcurrent, reduction in reach of distance relay and fault withstand capacity of devices, which have not been investigated in detail for medium voltage networks.

1.3 Problem Statement

Nowadays, global power electricity demand is growing at a tremendous rate. The main concern of any electrical utility is to generate adequate electricity to meet consumer demand. One potential solution is by installing DGs, which are small-scale generators interconnected to the power distribution system such as diesel generator system.

As traditional distribution systems have been designed to operate radially, the main issue will be the power flow by the new interconnected generation to existing power distribution system. In radial systems, the power flows from the upper terminal voltage down to customer site. Therefore, the protection system is easy to handle as long as the fault current only flows in one direction (Jenkins et al., 2008). However the presence of DG based diesel generator system in distribution system will change the fault level and consequently lead to protection system problems, such as blinding and sympathetic of overcurrent relay and under reach of distance relay. Thus, more complex protection investigation is necessary to overcome the appearing problems in a radial system.

To improvise the new configuration, distribution system design regarding DG technology, sizing and location must be taken into account these affect the short circuit levels and the protection chains strength.

1.4 Objective of Research

The objectives of this project are:

- To analyze the short circuit levels of the distribution system connected with DG based synchronous generators at different location of different voltage levels.
- To evaluate the performance and suitability of existing protection devices (overcurrent and distance relay in terms of blinding, sympathetic and under reach) against changing in short circuit levels.