Faculty of Electrical Engineering

HARMONICS MINIMIZATION OF A THREE PHASE CASCADED H-BRIDGE MULTILEVEL INVERTER

Afiqah Binti Sabari

Master of Science in Electrical Engineering

2016
HARMONICS MINIMIZATION OF A THREE PHASE CASCADED H-BRIDGE MULTILEVEL INVERTER

AFIQAH BINTI SABARI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “HARMONICS MINIMIZATION OF A THREE PHASE CASCADED H-BRIDGE MULTILEVEL INVERTER” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...
Name : Afiqah Binti Sabari
Date : ..
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality as a partial fulfillment of Master of Science in Electrical Engineering.

Signature :................

Supervisor Name : Assoc Prof Ir Dr Rosli Bin Omar

Date :..........................
DEDICATION

To my beloved mother and father

“I am only one, but I am one. I cannot do everything, but I can do something. What I can
do I ought to do. And what I ought to do by the bless of ALLAH, I will do”
ABSTRACT

For more than two decades, multilevel inverter technology has drawn tremendous interest among researchers from industry and academia in recent years due to its superior performance. In this regard, the main objectives of this thesis are to study, modeling, design and develop a prototype of a three-phase cascaded H-Bridge Multilevel inverter (CHB-MLI) based on Newton-Raphson technique that aims to analyze the performance of the inverter output for harmonic minimization. The source codes programming based on Newton-Raphson method was developed, and then stored into the Digital Signal Processing (DSP) TMS320F2812. The proposed controller based on Newton Raphson was applied to CHB-MLI. The optimization of this system had managed to minimize the harmonic contents of the inverter output. Besides, the experimental results of the developed prototype are discussed. In addition, the performance of the proposed system was compared between simulation and experimental results for both Optimization and Non-optimization techniques. The Optimization of this system had been capable in reducing the harmonic contents of the inverter output. Thus, optimization and Non-optimization of the CHB-MLI system had been successfully demonstrated in this study. Finally, the development of a three-phase CHB-MLI based on DSP, its controller and power electronic devices would be a challenging future research in minimize the content of harmonic of the inverter output.
ABSTRAK

ACKNOWLEDGMENT

All praises be to Allah S.W.T, The Most Gracious, The Most Merciful for Guidance and Blessing. First of all, I would like to express my gratitude and special thanks to my supervisor and also my advisor Assoc Prof Ir Dr Rosli Bin Omar. I cannot say thank you enough for his tremendous support and help. I am very grateful for the opportunity to continue my study through a project he gave to me. Without his encouragement and guidance, this thesis would not materialize. An addition, thanks to Mr Azhar Bin Ahmad for his interest in this work and holding the post of my co-supervisor in this research. I am also very thankful to UTeM for sponsoring this research through the Malaysian Technical University Network (MTUN) with research Project Code: MTUN/2012/UTeM-FKE/4 M00012 and Fundamental Research Grant Scheme (FRGS) with research Project Code: FRGS(RACE)/2012/FKE/TK02/02/1 F00151 belonging to my Principal Supervisor. Other than that, I feel a deep sense of gratitude to my parents, Sabari Bin Siraj and Siti Marpungah Bt Sipon because for their encouragement and moral support during my studies at Universiti Teknikal Malaysia Melaka (UTeM). Last but not least, I would like to take this opportunity to express my gratitude to the people who have given me support in the successful to complete this research project.
TABLE OF CONTENTS

DECLARATION	i
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii

CHAPTER

1. **INTRODUCTION**
 1.1 Background
 1.2 Problem Statement
 1.3 Objectives of Research
 1.4 Motivation of Research
 1.5 Scope of the Research
 1.6 Contributions of the Research
 1.7 Thesis Organization

2. **LITERATURE REVIEW**
 2.1 Introduction
 2.2 Multilevel Inverter Topologies
 2.2.1 Diode-Clamped Multilevel Inverter
 2.2.2 Flying Capacitor Multilevel Inverter
 2.2.3 Cascaded H-Bridge Multilevel Inverter
 2.2.4 Advantages and Disadvantages of Multilevel Inverters
 2.3 The concept of Harmonics Theory
 2.3.1 Definition of Total Harmonics Distortion
 2.4 Harmonic Sources
 2.4.1 Effect of Harmonic
 2.4.2 Harmonic Measurement
 2.4.3 Harmonic Spectrum
 2.5 Types of Controllers and Modulations used in (MLI)
 2.5.1 Selective Harmonic Elimination Technique (PWM)
 2.5.2 Space Pulse Width Modulation
 2.5.3 Space Vector Pulse Width Modulation
 2.6 Summary

iv
3. PROJECT METHODOLOGY

3.1 Introduction

3.2 Flow chart of the project

3.2.1 Stage 1

3.2.2 Stage 2

3.2.2.1 Construction of the Proposed CHB-MLI Scheme

3.2.2.2 Simulation Model of the Three-Phase CHB-MLI based on MATLAB/SIMULINK

3.2.2.3 Tuning Parameters of the Newton-Raphson Controller

3.2.3 Stage 3

3.2.3.1 Gate Drive for Switching the IGBT

3.2.2.2 Printed Circuit Board (PCB) Fabrication Process Five-level (MLI)

3.2.2.3 Three-phase Five-level CHB-MLI hardware

3.2.2.4 Implementation of Controller Hardware Using Digital Signal Processor (DSP TMS320F2812)

3.2.4 Stage 4

3.2.5 Stage 5

3.3 Fourier Series

3.4 Mathematical Technique of Switching via Newton-Raphson

3.5 A Hardware Prototype of a Three-phase 5-level CHB-MLI

3.6 Prototype Development of a Three-phase Experiment Circuits

3.7 Summary

4. RESULT AND DISCUSSION

4.1 Simulation of CHB-MLI

4.1.1 Simulation Results for Optimization of a Three-Phase Five-Level CHB-MLI model with \(\mu_i = 0.84 \)

4.1.2 Simulation Results for Non-Optimization of a Three Phase Five-Level CHB-MLI model with \(\mu_i = 0.68 \)

4.1.3 Simulation Results for Non-Optimization of a Three Phase Five-Level CHB-MLI model with \(\mu_i = 0.58 \)

4.1.4 Simulation Results for Non-Optimization of a Three Phase Five-Level CHB-MLI model with \(\mu_i = 0.48 \)

4.1.5 Simulation Results for Non-Optimization of a Three Phase Five-Level CHB-MLI model with \(\mu_i = 0.90 \)

4.2 Experimental Results of Three-Phase CHB MLI

4.2.1 Optimization Experimental Results a Three-Phase Five-Level CHB-MLI with \(\mu_i = 0.84 \)

4.2.2 Non-Optimization Experimental Results a Three Phase Five-Level CHB-MLI with \(\mu_i = 0.68 \)

4.2.3 Non-Optimization Experimental Results a Three Phase Five-Level CHB-MLI with \(\mu_i = 0.58 \)

4.2.4 Non-Optimization Experimental Results a Three Phase Five-Level CHB-MLI with \(\mu_i = 0.90 \)
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Switching pattern for three-level diode-clamped inverter</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Switching pattern for a five-level diode-clamped multilevel inverter</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Switching Pattern: A five-level FC inverter</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Switching vector pattern, phase voltages, and output line-to-line voltages</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>List of the components for the IGBT gate drive</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Switching Pattern for Five-Level Inverter</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of THDv and THDi Optimization and Non-Optimization by Simulation</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of THDv and THDi Optimization and Non-Optimization by Hardware Experimental</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Three-level diode-clamped inverter</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Five-level diode-clamped multilevel inverter</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>A three-level FC inverter</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>A five-level FC inverter</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>An H-bridge multilevel inverter</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Repeated zero-level switching pattern</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Swapped zero-level switching pattern</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Phase output voltage waveforms of a five-level topology CHB-MLI with two separate DC sources.</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) Separated fundamental and harmonic waveforms, and (b) waveform resulting from summation</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Harmonic spectrum</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>A three-phase power-source inverter circuit</td>
<td>32</td>
</tr>
<tr>
<td>2.12</td>
<td>The voltage space vector and its components dq plane</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the proposed methodology</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>The Proposed Topology of a Three-Phase CHB-MLI</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>MATLAB/SIMULINK 7.120 (R2012a)</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Five-Level CHB-MLI Model</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Current Measurement Five-Level CHB-MLI Model.</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Switching Block model</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>The design and the construction of the gate drive with CHB-MLI</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>The Development of a single-phase CHB-MLI</td>
<td>49</td>
</tr>
</tbody>
</table>
3.9 The Development of a three-phase CHB-MLI with star connection load

3.10 Digital Signal Processor (DSP) TMS 320F2812

3.11 TMS320F2812 Architecture

3.12 Switching pattern (5V)

3.13 Switching pattern (15V)

3.14 Switching pattern for S1, S2, S3 and S4 (15V)

3.15 Switching pattern for S5, S6, S7 and S8 (15V)

3.16 The Overall Experimental set-up for the Prototype of Five-Level CHB MLI Inverters.

4.1 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase A with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.2 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase A with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.3 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase B with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.4 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase B with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.5 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase C with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.6 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase C with \(mi=0.84 \) for \(\Theta_1=17.060 \) and \(\Theta_2=43.530 \).

4.7 Output Optimization Phase Voltage 5-level inverter based of 5-level CHB-MLI with \(mi=0.84 \).

4.8 Optimization Harmonic spectrum for voltage waveform output

4.9 Optimization Current Waveform Output of 5-level CHB-MLI

4.10 Optimization harmonic spectrum for current waveform output of 5-level of CHB-MLI with \(mi=0.84 \).

4.11 Upper Switches Timing diagram for S1, S2, S3, and S4 at phase A with \(mi=0.68 \) for \(\Theta_1=8.7740 \) and \(\Theta_2=68.1550 \).

4.12 Lower Switches Timing Diagram for S5, S6, S7, and S8 at
phase A with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.13 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase B with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.14 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase B with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.15 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase C with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.16 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase C with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.17 Output Non-Optimization Voltage 5-level inverter \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.18 Non-Optimization Harmonic Spectrum for Voltage Waveform Output of 5-level CHB-MLI with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.19 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-Level CHB-MLI with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.20 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-Level CHB-MLI with \(\theta_1=8.7740 \) and \(\theta_2=68.1550 \).

4.21 Upper Switches Timing diagram for S1, S2, S3, and S4 at phase A with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.22 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase A with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.23 Upper Switches Timing diagram for S1, S2, S3, and S4 at phase B with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.24 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase B with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.25 Upper Switches Timing diagram for S1, S2, S3, and S4 at phase C with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.26 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase B with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.27 Output of Non-optimization Voltage 5-level inverter \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).

4.28 Non-Optimization Harmonic Spectrum for Voltage Waveform Output of 5-level CHB-MLI with \(\theta_1=17.9550 \) and \(\theta_2=77.9480 \).
4.29 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-level CHB-MLI with mi=0.58.

4.30 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-Level CHB-MLI with mi=0.58.

4.31 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase A with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.32 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase A with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.33 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase B with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.34 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase B with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.35 Upper Switches Timing Diagram for S1, S2, S3, and S4 at phase C with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.36 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase C with mi=0.48 for \(\Theta_1=26.6580 \) and \(\Theta_2=86.6580 \).

4.37 Output Non-optimization Voltage 5-level inverter based on mi=0.48.

4.38 Non-optimization Harmonic spectrum for voltage waveform output of 5-level CHB-MLI with mi=0.48.

4.39 Non-optimization harmonic spectrum for current waveform output of 5-level CHB-MLI with mi=0.48.

4.40 Non-optimization harmonic spectrum for current waveform output of 5-level CHB-MLI with mi=0.48.

4.41 Upper Switches Timing diagram for S1, S2, S3, and S4 at phase A with mi=0.90 for \(\Theta_1=10 \) and \(\Theta_2=35 \).

4.42 Lower Switches Timing Diagram for S5, S6, S7, and S8 at phase A with mi=0.90 for \(\Theta_1=10 \) and \(\Theta_2=35 \).

4.43 Output of Non-optimization Voltage 5-level inverter mi=0.90.

4.44 Non-Optimization Harmonic Spectrum for Voltage Waveform Output of 5-level CHB-MLI with mi=0.90.

\[\text{xi} \]
4.45 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-level CHB-MLI with \(m_i = 0.90 \)

4.46 Non-Optimization Harmonic Spectrum for Current Waveform Output of 5-Level CHB-MLI with \(m_i = 0.90 \).

4.47 Graph of THD Voltage Versus Modulation Index Based On Simulation Results

4.48 Graph of THD Voltage Versus Modulation Index Based On Simulation Results

4.49 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase A

4.50 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase A

4.43 Upper Switches Timing Diagram for S1, S2, S3, and S4 with \(\theta_1 = 17.060 \) and \(\theta_2 = 43.530 \).

4.52 Lower Switches Timing Diagram for S5, S6, S7, and S8 for Phase B

4.53 Upper Switches Timing Diagram for S1, S2, S3, and S4 for Phase C

4.54 Lower Switches Timing Diagram for S5, S6, S7, and S8 for Phase C

4.55 Optimization of Voltage Output Waveform of 5-Level CHB-MLI

4.56 Optimization Harmonic Spectrum of Voltage Output Waveform

4.57 Optimization Voltage and Current Output Waveform of 5-Level CHB-MLI

4.58 Optimization Harmonic Spectrum of Current Output Waveform

4.59 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase A

4.60 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase A

4.61 Upper switches Timing Diagram for S1, S2, S3, and S4 at
Phase B with \(\Theta_1 = 8.7740 \) and \(\Theta_2 = 68.1550 \).

4.62 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase B 105

4.63 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase C 105

4.64 Lower Switches Timing Diagram for S6, S7, and S8 at Phase C With \(\Theta_1 = 8.7740 \) and \(\Theta_2 = 68.1550 \).

4.65 Non-Optimization Voltage Output Waveform of 5-Level 107

4.66 Non-Optimization Harmonic Spectrum of Voltage Output waveform of CHB-MLI with \(\Theta_1 = 0.68 \).

4.67 Non-Optimization Voltage and Current Output Waveform of 5-Level 108

4.68 Non-Optimization Harmonic Spectrum of Current Output 109

4.69 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase A 110

4.70 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase A with \(\Theta_1 = 0.58 \) for \(\Theta_1 = 17.9550 \) and \(\Theta_2 = 77.9480 \).

4.71 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase B with \(\Theta_1 = 0.58 \) for \(\Theta_1 = 17.9550 \) and \(\Theta_2 = 77.9480 \).

4.72 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase B with \(\Theta_1 = 0.58 \) for \(\Theta_1 = 17.9550 \) and \(\Theta_2 = 77.9480 \).

4.73 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase C with \(\Theta_1 = 0.58 \) for \(\Theta_1 = 17.9550 \) and \(\Theta_2 = 77.9480 \).

4.74 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase C with \(\Theta_1 = 0.58 \) for \(\Theta_1 = 17.9550 \) and \(\Theta_2 = 77.9480 \).

4.75 Non-Optimization Voltage Output Waveform of 5-Level CHB-MLI 113

4.76 Non-optimization Harmonic Spectrum of Voltage Output waveform of CHB-MLI with \(\Theta_1 = 0.58 \).

4.77 Non-Optimization Current Output Waveform of 5-Level 115

4.78 Non-Optimization Harmonic Spectrum of Current Output waveform of CHB-MLI with \(\Theta_1 = 0.58 \).

4.79 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase A with \(\Theta_1 = 0.48 \) for \(\Theta_1 = 26.6580 \) and \(\Theta_2 = 86.6580 \).

4.80 Lower Switches Timing Diagram for S5, S6, S7, and S8 at 117
Phase A with \(mi=0.48 \) for \(\theta_1=26.6580 \) and \(\theta_2=86.6580 \).

4.81 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase B With \(mi=0.48 \) for \(\theta_1=26.6580 \) and \(\theta_2=86.6580 \).

4.82 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase B With \(mi=0.48 \) for \(\theta_1=26.6580 \) and \(\theta_2=86.6580 \).

4.83 Upper Switches Timing Diagram for S1, S2, S3, and S4 at Phase C With \(mi=0.48 \) for \(\theta_1=26.6580 \) and \(\theta_2=86.6580 \).

4.84 Lower Switches Timing Diagram for S5, S6, S7, and S8 at Phase C With \(mi=0.48 \) for \(\theta_1=26.6580 \) and \(\theta_2=86.6580 \).

4.85 Non-optimization Voltage Output Waveform of 5-Level CHB-MLI

4.86 Non-Optimization Harmonic Spectrum of Voltage Output Waveform

4.87 Non-optimization Voltage and Current Output Waveform of 5-Level CHB-MLI with \(mi=0.48 \)

4.88 Non-optimization Harmonic Spectrum of Current Output Waveform of CHB-MLI with \(mi=0.48 \)

4.89 Upper Switches Timing Diagram for S1, S2, S3, and S4 with \(mi=0.90 \) for \(\theta_1=10 \) and \(\theta_2=3 \)

4.90 Lower Switches Timing Diagram for S5, S6, S7, and S8 with \(mi=0.90 \) for \(\theta_1=10 \) and \(\theta_2=35 \)

4.91 Non-optimization Voltage Output Waveform of 5-Level CHB-MLI

4.92 Non-optimization Voltage Output Waveform of 5-Level CHB-MLI with \(mi=0.90 \)

4.93 Non-Optimization Harmonic Spectrum of Voltage Output Waveform

4.94 Non-optimization Current Output Waveform of 5-Level CHB-MLI with \(mi=0.90 \)

4.95 Non-optimization Harmonic Spectrum of Current Output Waveform of CHB-MLI with \(mi=0.90 \)

4.96 Graph of THD Voltage Versus Modulation Index based on Experiment Results

4.97 Graph of THD Current Versus Modulation Index based on Experiment Results
LIST OF ABBREVIATIONS

AC Alternating Current
DC Direct Current
CHB-MLI Cascaded H-bridge Multilevel Inverter
FC Flying Capacitor
NR Newton Raphson
DSP Digital Signal Processors
GUI Graphic User Interface
IGBT Insulated Gate Bipolar Transistor
PWM Pulse Width Modulation
SVPWM Space Vector Pulse Width Modulation
IEC International Electric Code
PCB Printed Circuit Board
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>AC power frequency</td>
</tr>
<tr>
<td>f_s</td>
<td>Sampling frequency</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>Switching frequency</td>
</tr>
<tr>
<td>I</td>
<td>Current, absolute value</td>
</tr>
<tr>
<td>V_s</td>
<td>Voltage Source</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Voltage Source reference</td>
</tr>
<tr>
<td>Θ</td>
<td>Angle</td>
</tr>
<tr>
<td>Σ</td>
<td>Summation</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATION

Journal

- Mohammed Rasheed, Rosli Omar Afiqah Sabari, Marizan Sulaiman. "Validation of a Three-Phase Cascaded Multilevel Inverter Based on Newton Raphson(N.R) " Indian Journal of Science & Technology ISSN : 0974-5645 (Accepted)

Conference

CHAPTER 1

INTRODUCTION

1.1 Background

The multilevel inverter concept has been employed to decrease harmonic distortion (Gobinath, K., & Mahendran, S., 2013) in the output waveform without decreasing the inverter power output. It has several advantages, such as lower switching frequency and switching losses, lower voltage device evaluation, lower harmonic distortion, high power quality waveform, higher efficiency, reduction of electromagnetic interference (EMI), and interfacing renewable energy sources, such as photovoltaic to the electric power grid (S. Suresh Kota, 2012). Nevertheless, at present, three common topologies of multilevel inverter have been proposed, which are diode-clamped, flying capacitors (FCs), and cascaded H-bridge (CHB) (Akshay K. Rathore, & zjoachim Hotlz, 2010).

Furthermore, the type of multilevel inverter that uses a single DC source rather than multiple sources is the diode-clamped multilevel inverter. Meanwhile, the FC type is designed by a series connection of capacitor-clamped switching cells.
Lastly, the CHB type, which can be series or parallel connected, also consists of a series of H-bridge cells to synthesize the required voltage from several separate DC sources, which are recoverable from batteries, fuel cells, renewable energy or ultra-capacitor (Panda, Kaibalya Prasad, Sahu, Bishnu Prasad, & Samal, 2013). Besides, this CHB topology has the least components for a given number of levels (Colak et al., 2011). Thus, CHB is more advantageous among other multilevel inverter topologies. Moreover, an appropriate switching angle has to be generated by using optimizing techniques to control the switching frequencies of each semiconductor switches connected. Thus, insulator gate bipolar transistor (IGBT) is an example of semiconductor switches that are switched on and off in any ways to keep the percentage of total harmonic distortion (THD) to its minimum value. These switches also have low block voltage and high switching frequency.

1.2 Problem Statement

Multilevel inverters, an approach for harmonic cancellation, have gained worldwide interest. They provide an output with desired waveform that exhibits multiple-steps voltage-levels with minimum distortion. Besides, the modulation control signal is required in a multilevel inverter to generate the synthesized desired output waveform. This is to generate the desired fundamental frequency while minimizing higher-order harmonic content.

In fact, four control methods are commonly used in the multilevel inverters. These methods are traditional PWM control, selective harmonic minimization, space vector