DEVELOPMENT OF SELF-POWERED THERMOELECTRIC BASED COOLING SYSTEM FOR LCD PANEL

GOH SIEW YUN

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

June 2016
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

Tajuk Projek : Development of self-powered thermoelectric based cooling system for LED panel

Sesi Pengajian : 15/1/16

Saya Goh Siew Yun

(HURUF BESAR)

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√) :

☐ SULIT*

*(Mengandungi maklumat yang berdaar jah kecemasan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHISIA RASMI 1972)

☐ TERHAD**

** (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

PROF. MADYA DR. KOK SWEE LEONG

(TANDATANGAN PENULIS)

14/6/16

(TANDATANGAN PENYELESAIAN)

14/6/16
"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature : ..

Author : GOH SIEW YUN

Date : 14/6/2016
"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) with Honours."

Signature: ...

Supervisor’s Name: Prof. Madya Dr. Kok Swee Leong

Date: 14/6/2016
Thank for my beloved family. Thank for my supervisor and all lecturers who guiding me, and to all my friends for giving me mentally and moral support during process of finish final year project.
ACKNOWLEDGEMENT

First of all, I would like to express my deepest appreciation to all those who supporting and helping me to complete this report. Thank to my family for encourage and provide me resources to complete my project with any concern.

Besides, a special gratitude I give to my supervisor, Prof. Madya Dr. Kok Swee Leong who contributes in suggestion in term of knowledge and experience, helped me along my final year project. PM Dr.Kok always gave good motivation and suggestion to complete this project.

Furthermore, I would like to acknowledge with much appreciation of the Engineer assistance from Research Lab2, Puan Hafizah Binti Adnan, who gave the help for arrange all required equipment and material to complete my final year project.

Thank to anyone for sharing the ideas and knowledge for the circuit design and provide guide to finish the project in time. They had given me a lot of encouragement and tips to improve my project.
Nowadays, electronic systems or devices have become part of our life. All of the electronic systems or devices will dissipate heat while heat dissipated affecting the functionality and lifetime of the system or devices. However, the heat dissipated can be converted from one form to another and thus turning the waste energy into useful energy. Thermoelectric generator (TEG) is a generator which converts heat energy to electrical energy. In this project, TEG will be used to minimize the heat that generated from the electric system. Firstly, heat dissipated is characterized from 85" inch Thin-film-transistor liquid-crystal display (TFT LCD) from Quantum Electro Opto System Sdn. Bhd. Heat dissipated from power board of LCD panel is collected and compared with thermal analysis from different size of LCD panel. After that, hotplate is used to simulate the heat dissipated for LCD panel. TEG is placed between hot plate and heat sink to generate voltage output. After that, power conditioning circuit is designed to boost up the voltage generated from the TEG. In this project, power conditioning circuit is a combination of Multivibrator and Charge Pump circuit. Output voltage from the power conditioning circuit is used to power up wireless electronic devices for the application of triggering cooling system. This mechanism is referred to as self-powering whereby the RF transmitter is powered by the heat itself without necessary to use battery. After RF transmitter turned on, RF signal will send to RF receiver to trigger on the cooling fan on receiver station.
ABSTRAK

TABLE OF CONTENT

CHAPTER TITLE PAGE

PROJECT TITLE i
REPORT STATUS APPROVAL FORM ii
DECLARATION iii
SUPERVISOR APPROVAL iv
DEDICATION v
ACKNOWLEDGEMENT vi
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENT ix
LIST OF FIGURES xii
LIST OF TABLES x
LIST OF GRAPHS xvi
LIST OF APPENDIX xvii

I INTRODUCTION 1

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Project Objectives 2
1.4 Scope of Work 3
1.5 Report Overview 3

II LITERATURE REVIEW 5

2.1 Thermoelectric effect 5
2.2 Thermocouple 7
2.3 Thermoelectric generators (TEG) 8
 2.3.1 Power and efficiency measurement of TEG 9
2.4 Power conditioning circuit 9
 2.4.1 Oscillator 9
 2.4.1.1 Resonant Oscillator 10
 2.4.1.2 Astable Multivibrator 11
 2.4.2 Pulse-Width Modulated DC to DC power converter 13
 2.4.2.1 Boost Converter 13
 2.4.2.2 Charge Pump 14
 2.4.2.3 Comparison between boost converter and charge pump 16
2.5 Previous work related with TEG 17
 2.5.1 Effect of Heat Pipes to Suppress Heat Leakage for Thermoelectric Generator of
Energy Harvesting
2.5.2 Thermoelectric waste heat recovery for automotive
2.5.3 Energy harvested LED luminary
2.5.4 Electricity Generation Using Thermoelectric Generator
2.5.5 Development of prototype for waste energy recovery from the thermoelectric system at Godrej Vikhroli plant
2.5.6 Design and testing of thermoelectric generator embedded clean forced draft biomass cook stove
2.5.7 Result summary for previous work

2.6 Conclusion

III PROJECT METHODOLOGY

3.1 Project flow
3.2 Project Methodology
3.3 Workflow and procedure
 3.3.1 Block diagram of the system
 3.3.2 Research Methodology
 3.3.2.1 Study about the heat dissipated from TFT LCD panel (LEDs backlight)
 3.3.3 Characterize heat dissipate from LCD panel
 3.3.4 Characterize the voltage output from TEG
 3.3.5 Simulate power conditioning circuit
 3.3.6 Design and fabrication circuit
 3.3.7 Design cooling system
3.4 Conclusion

IV RESULT AND DISCUSSION

4.1 Characterize heat dissipate from LCD panel
4.2 Characterize temperature output from TEG
4.3 Simulate power conditioning circuit
 4.3.1 Multivibrator
 4.3.2 Charge pump circuit
4.4 Design and fabrication circuit
 4.4.1 Frequency output of Multivibrator
 4.4.2 Measurement 1N4001 diode and shockley diode
 4.4.3 Design charge pump circuit
 4.4.3.1 Investigate charging output with different value of charging capacitor (C3 to C6)
 4.4.3.2 Investigate charging output with...
different clock pulse frequency from Multivibrator

4.4.3 Fabricated PCB circuit by using Eagle

4.4.4 Development cooling system

4.4.4.1 Fabricated RF transmitter and receiver circuit

4.4.4.2 Soft latching power switching circuit

4.4.4.3 Combine power conditioning with cooling system

4.5 Conclusion

V CONCLUSION

5.1 Conclusion

5.2 Future recommendation

REFERENCE

APPENDIX
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration of Peltier effect</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Simple Thermocouple Circuit</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Thermoelectric module</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Thermoelectric generator (TEG) : schematic diagram of a thermoelectric cell.</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic configuration of resonant circuit oscillator</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>FET Colpitts oscillator</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>BJT Colpitts oscillator</td>
<td>10</td>
</tr>
<tr>
<td>2.8</td>
<td>FET Hartley oscillator</td>
<td>11</td>
</tr>
<tr>
<td>2.9</td>
<td>BJT Hartley oscillator</td>
<td>11</td>
</tr>
<tr>
<td>2.10</td>
<td>The collector-coupled astable multivibrator</td>
<td>11</td>
</tr>
<tr>
<td>2.11</td>
<td>Waveform of the collector-coupled free running multivibrator with PNP transistor</td>
<td>12</td>
</tr>
<tr>
<td>2.12</td>
<td>Boost converter circuit (up converter)</td>
<td>13</td>
</tr>
<tr>
<td>2.13</td>
<td>Transistor in ON state</td>
<td>13</td>
</tr>
<tr>
<td>2.14</td>
<td>Transistor in OFF state</td>
<td>13</td>
</tr>
<tr>
<td>2.15</td>
<td>First half period of one stage charge pump</td>
<td>15</td>
</tr>
<tr>
<td>2.16</td>
<td>Second half period of one stage charge pump</td>
<td>15</td>
</tr>
<tr>
<td>2.17</td>
<td>N-stage charge pump</td>
<td>16</td>
</tr>
<tr>
<td>2.18</td>
<td>Experimental Setup of Heat Pipes</td>
<td>18</td>
</tr>
<tr>
<td>2.19</td>
<td>Schematic diagram of exhaust pipe</td>
<td>18</td>
</tr>
<tr>
<td>2.20</td>
<td>Heat exchanger</td>
<td>19</td>
</tr>
<tr>
<td>2.21</td>
<td>Experimental set-up system for energy harvest</td>
<td>19</td>
</tr>
<tr>
<td>2.22</td>
<td>Top view of apparatus</td>
<td>20</td>
</tr>
<tr>
<td>2.23</td>
<td>Illustration of TEG and heat centre (chimney)</td>
<td>21</td>
</tr>
<tr>
<td>2.24</td>
<td>Block diagram of the TEG embedded system</td>
<td>22</td>
</tr>
</tbody>
</table>
3.1 Flow chart of project flow 26
3.2 Flow chart of first part project 27
3.3 Flow chart of second part project 28
3.4 Block diagram of cooling system 29
3.5 Block diagram of power conditioning circuit 29
3.6 Places for thermocouple mounting on Back cover Metal Surface 31
3.7 Places for thermocouple mounting on TFT LCD Front Metal and Cell surface 31
3.8 Places for thermocouple mounting on TFT LCD Aluminium Bracket surface 32
3.9 Back view of LCD panel 33
3.10 Thermal paste is used between heat sink and TEG 34
3.11 TEG is heating up by hotplate 34
3.12 Circuit simulation by using multisim 35
3.13 Output frequency measured by using oscilloscope 35
3.14 1N4001 diode connect with load resistor 36
3.15 Shockley diode connect with load resistor 36
3.16 testing circuit on breadboard 36
3.17 Schematic layout in Eagle 37
3.18 PCB layout in Eagle 37
3.19 Transmitter module with TX-2B circuit 37
3.20 Receiver module with RX-2B circuit 38
3.21 voltage flow of soft latching switching circuit 38
4.1 the power board is tagged as 1, 2 and 3 39
4.2 Outline drawing for TEG 41
4.3 Simulation of Multivibrator circuit with 68kΩ value R₂ & R₃ 45
4.4 Oscilloscope result of Multivibrator circuit with 68kΩ value R₂ & R₃ 45
4.5 Simulation of Multivibrator circuit with 47kΩ value R₂ & R₃ 45
4.6 Oscilloscope result of Multivibrator circuit with 47kΩ value R₂ & R₃ 46
4.7 Simulation of Multivibrator circuit with 27kΩ value R₂ & R₃ 46
4.8 Oscilloscope result of Multivibrator circuit with 27kΩ value R₂ 46
&R_3
4.9 Larger R_1 &R_4 is used for Multivibrator 47
4.10 Oscilloscope result of Multivibrator circuit with 3.3kΩ value R_1 47
&R_4
4.11 Simulation pump charge circuit by using Multisim 48
4.12 Output frequency of Multivibrator 1 49
4.13 Output frequency of Multivibrator 2 50
4.14 Output frequency of Multivibrator 3 50
4.15 Connection for voltage drop measurement 52
4.16 Connection for forward current measurement 52
4.17 testing circuit on breadboard 54
4.18 Illustration of charge pump circuit will 2200uF load capacitor 55
4.19 Illustration of charge pump circuit will 3300uF load capacitor 56
4.20 Illustration of charge pump circuit will 6800uF load capacitor 57
4.21 Schematic layout for Multivibrator 60
4.22 PCB board layout for Multivibrator 60
4.23 Schematic layout for Shockley diode 60
4.24 PCB board layout for Shockley diode 61
4.25 Fabricated Multivibrator circuit 61
4.26 Fabricated shockley diode circuit and charge pump circuit on strip board 61
4.27 RF transmitter and receiver circuit tested on the breadboard 62
4.28 Schematic layout of RF transmitter 62
4.29 PCB board layout of RF transmitter 62
4.30 Schematic layout of RF receiver 63
4.31 PCB board layout of RF receiver 63
4.32 Fabricated RF transmitter circuit 63
4.33 Fabricated RF receiver circuit 63
4.34 Soft latching power switching circuit 64
4.35 LED is switched on when ONA switch is closed 64
4.36 LED1 still turn on even though ONA switch is opened 64
4.37 LED is switched off when OFFA switch is closed. 65
4.38 LED1 still turn off even though OFFA switch is opened 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.39</td>
<td>ONA switch is replaced by 2N2222 PNP transistor</td>
<td>65</td>
</tr>
<tr>
<td>4.40</td>
<td>5V Vcc is removed from the base of PNP transistor</td>
<td>66</td>
</tr>
<tr>
<td>4.41</td>
<td>LED1 is switched off when OFFA switch is closed</td>
<td>66</td>
</tr>
<tr>
<td>4.42</td>
<td>Switching circuit built on strip board to control cooling fan</td>
<td>66</td>
</tr>
<tr>
<td>4.43</td>
<td>TC-54 connects to charge pump output</td>
<td>67</td>
</tr>
<tr>
<td>4.44</td>
<td>Laboratory Setup for cooling system</td>
<td>67</td>
</tr>
<tr>
<td>4.45</td>
<td>Charging and discharging period of charge pump circuit</td>
<td>68</td>
</tr>
<tr>
<td>4.46</td>
<td>Output voltage pulse from charge pump circuit</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Variety Resonant Oscillator</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison between boost converter and charge pump</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Measured output voltage, current and load resistance</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Result summary of previous work</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Maximum temperature of measuring points in LCD panel</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Specification of both Peltier coolers (TEGs) from data sheet</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Specification of Multivibrator from calculation</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Specification of Multivibrator from simulation</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Accuracy frequency of the calculation result</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison multivibrator frequency output between calculation,</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>simulation and experimental</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Accuracy frequency between calculation or simulation with</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>experimental</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF GRAPHS

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Temperature when turned ON and OFF LCD panel versus Time</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Output voltage and output current versus temperature different</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>between hotplate and heatsink for TEG 1</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Output voltage and output current versus temperature different</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>between hotplate and heatsink for TEG 2</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Output power and total power output versus hot plate</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>temperature for TEG 1 and TEG 2</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Voltage output of charge pump versus number of charge pump stage</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Voltage drop of 1N4001 diode and shockley diode</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Voltage drop of load resistor</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Forward current of 1N4001 diode and shockley diode</td>
<td>53</td>
</tr>
<tr>
<td>4.9</td>
<td>Voltage output of charge pump versus charging time with</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>different value of charging capacitor</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Voltage output of charge pump versus charging time with</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>different value of charging capacitor</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Voltage output of charge pump versus charging time with</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>different value of charging capacitor</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Voltage output of charge pump circuit with 220uF charging</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>capacitor and 2200uF load capacitor versus charging time</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Voltage output of charge pump circuit with 330uF charging</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>capacitor and 3300uF load capacitor versus charging time</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Voltage output of charge pump circuit with 680uF charging</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>capacitor and 6800uF load capacitor versus charging time</td>
<td></td>
</tr>
<tr>
<td>4.15(a)</td>
<td>Charging and discharging time of charge pump circuit</td>
<td>69</td>
</tr>
<tr>
<td>4.15(b)</td>
<td>Waveform output from TC-54 voltage detector</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thermoelectric - Peltier cooler (multicomp)</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Thermoelectric APH-071-10-08-S</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Shockley diode</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>Voltage detector TC-54</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Rx-2B & Tx-2B</td>
<td>82</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In this chapter introduction of project will be discussed as a guideline for the research. Introduction is includes the project background, objectives, problem statement, scope of the project, summary of methodology and project overview.

1.1 Project Background

Excessive heat energy dissipates from electronic system may causes malfunction and lower efficiency of the operating system, therefore it needs to be eliminated. In this project, thermoelectric generator (TEG) will be used to minimize the heat generated from the electric system by transforming into useful electrical power for powering other electronic devices.

TEG is a device that operates according to thermoelectric effect, whereby the effect is a phenomenon of transforming heat into electrical energy and via versa. The TEG is used to work as a self-powered cooling system which generates electrical energy to power up cooling fan and RF transmitter and receiver circuit.

In this project, the heat source is from an LCD display. Characterization on the heat source is carried out on real life TFT LCD panel (Thin-film-transistor liquid-crystal display) from Quantum Electro Opto System Sdn. Bhd. The temperature obtains from the back-light LED and power board of the LCD panel. After that, hot plate is used to carry out the experiment in the lab, the output voltage of TEG is converted up by using power conditioning circuit. After voltage is converted up, it will be used to power the RF transmitter so one trigger signal will send from transmitter to receiver.

Project design of self-powered cooling system will focus on green technology
and environmentally friendly for sustainable development. Once the heat energy turned into electric energy, lifetime of electronic device or system can be protected. Meanwhile, it can reduce the heat energy on the electronic device or system. Besides, the cooling fan in this cooling system can be switched ON when necessary. Therefore, it is more power effective and cost effective. On the other hand, the self-powered cooling system can improve the overall efficiency of energy conversion system. Meanwhile, this project can be embedded to any display or electronic system such as refrigerator, car engine, industry machine, and so on. Thus, it will be more flexible compare to other cooling system existed in the market and it have high potential of commercialization.

1.2 Problem Statement

Every electronic device dissipates heat and it affects functionality and lifetime of the devices. Engineers designed heat sink to dissipate the heat efficiently, but heat energy will become waste. According conservation of energy, the energy can be neither created nor be destroyed, but it transforms from one form to another. Thus, heat energy can be transforms to another useful energy and can avoid it become waste. Thermoelectric will be used to transforms heat energy to electric energy.

Peltier module is a kind of thermoelectric, usually is used as thermoelectric cooler. In this project, it will be used as thermoelectric generator (TEG), to generator electric energy from heat energy. The problem of TEG is high temperature gradient needed to generate high output power. Besides, the power conditioning circuit needs to be designed by using passive component. On the other hand, low voltage generated needs converted up by using power conditioning circuit.

1.3 Project Objectives

There are three objectives that need to achieve in this project, which are:

i. To characterize heat dissipation in 85' inch LCD panel.
ii. To design a power conditioning circuit based on output of TEG.
iii. To develop a cooling system depends on the output of power conditioning circuit.

1.4 Scope of Work

The scope of work of this project is to develop a cooling system using the output of TEG. The heat source for the experiment is from a real 85" inch LCD panel, and different size of thermal analysis LCD panel is study to estimate the trends of the heat dissipation for LCD panel. In this project, existing TEG is used to generate voltage. In order to simulate the real heat dissipation from the LCD panel, experiment is being carried out in laboratory using hot plate and heat sink is used to release heat and increase the temperature gradient hence increase the voltage output. There are two parts of circuit design, which are RF transmitter station and RF receiver station. Energy harvested is used to power up RF transmitter station, and external DC power source is used to powered RF receiver station. Material and equipment included TEG, RF module, RX-2B (RF encoder), TX-2B (RF-decoder), Multisim, Multimeter with thermocouple, and hotplate are used to complete this project.

1.5 Report Overview

This thesis consists the introduction project, concept applied, method used, problem solving, analysis and conclusion of self-powered cooling system. In this report, there are 5 chapters which are introduction, literature review, methodology, discussion and result, and conclusion.

In chapter 1, main idea of self-powered cooling system is delivered via project background, objectives, problem statement, scope of work and summary of methodology.

In chapter 2, study background related to the project will be done. Overall results of the literature will produce a framework that shows the link between research projects with theories and concepts.
In chapter 3, method used in this project is discussed and undergo step by step. The purpose of this chapter is to explain the method used and testing the system carried out by using this method.

In chapter 4, the result obtain from the project should present clearly and neatly. The results of the present invention will be described and compared to the past research.

In chapter 5, report concludes with the overall summary of the studies based on the objectives and achievement. Besides, recommend any changes and improvement approach concerned with the topic.
CHAPTER 2

LITERATURE REVIEW

In this chapter, background and theory that related to this project will be discussed. Besides, the application done by other researchers relate to the theories is analyzed. Lastly, the improvement on other application will be discussed also.

2.1 Thermoelectric effect

Thermoelectric effect is any phenomenon that involves an interchange between the heat and electrical energy and this phenomenon is irreversible. The reversible phenomena of the thermoelectric effect can more specifically implied at dissimilar conductors of junction. In addition, limited temperature gradients are present throughout area of conductors [1].

Seebeck effect was discovered in 1821 by T.J. Seebeck noticing different types of energy is produce in a complete junction when the junction is connected by two types of conductors detect to two different temperature from upper and lower surface or terminal. After 13 years later, Peltier effect was being mentioned by Jean Peltier. This effect mention about the cold and hot temperature produces from the current flow within the doubled material circuit [2].

After that, an attach had been made between Seebeck and Peltier effect to become Thomson effect. This effect discovers about the reversible between and heat and electrical energy. As thermoelectric power generation is being studied across decades, these three effects play an important role in determining thermoelectric power generation performances [2].
Peltier effect is the phenomenon of producing two different temperature terminals between two dissimilar conductors from the flows of electric charge. The rate dQ/dt of heat absorbed at a junction between two dissimilar conductors (A and B) is:

$$\frac{dQ}{dt} = (\Pi_A - \Pi_B)I$$ \hspace{1cm} (2.1)

Where, I is the electric current and Π_A, Π_B are Peltier's coefficients of the conductors.

The Seebeck effect is the production of the current flow, between two dissimilar conductors. Two conductors connected in series and parallel junctions are held at two different temperatures T_H and T_C and an V appears between their free contacts:

$$V = -S(T_H - T_C)$$ \hspace{1cm} (2.2)

Where, S is Seebeck's coefficient.

The Thomson effect is the production or absorption of heat along a conductor with temperature gradient ΔT when electric charge flows through it. The heat dq/dt produced or absorbed along a conductor segment is:

$$\frac{dq}{dt} = -KJ\Delta T$$ \hspace{1cm} (2.3)

Where, J is the current density, and K is Thomson's coefficient.

The three coefficients are related by Thomson relations (Kelvin relations).