MANAGING SOFTWARE PROJECT RISKS USING STEPWISE AND FUZZY REGRESSION ANALYSIS MODELLING TECHNIQUES

ABDELRAFE M. S. ELZAMLY

DOCTOR OF PHILOSOPHY

2016
Faculty of Information and Communication Technology

MANAGING SOFTWARE PROJECT RISKS USING STEPWISE AND FUZZY REGRESSION ANALYSIS MODELLING TECHNIQUES

Abdelrafe M. S. Elzamly

Doctor of Philosophy in Information & Communication Technology

2016
MANAGING SOFTWARE PROJECT RISKS USING STEPWISE AND FUZZY REGRESSION ANALYSIS MODELLING TECHNIQUES

ABDELRAFE M. S. ELZAMLY

A thesis submitted
in fulfillment of the requirements for the degree of Doctor of Philosophy in
Information & Communication Technology

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that the study entitled "Managing Software Project Risks Using Stepwise and Fuzzy Regression Analysis Modelling Techniques" is the result of my own study except as cited in the references. The study has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature: ……………………………

Name: Abdelrafe M. S. Elzamly

Date: ……………………………
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature:

Name: Prof. Dr. Burairah Bin Hussin

Date:
DEDICATION

I dedicate this humble study to my lovely wife Eman who has supported me throughout the preparation of this study. You have indeed exerted a remarkable effort towards the completion of my study.

I would also like to external my dedication to my beloved mother, late father, my wife Martyr Shaheed, brothers and sisters as well as to my precious kids Nour, Mohammed, Ahmed, Yousef, Sana, Mariam and Adam may Allah bless them.

Special thanks to the Deans of Al-Aqsa University for granting me the scholarship to complete this study.

To my colleagues and friends, who are very helpful in giving me moral support and in particular the Al-Aqsa University, Islamic University – Gaza Team…

Special sincere thanks go to Dr. Yousef Ibrahim and Mr. Mohamed Doheir for your unlimited support and encouragement.

Lastly, a million thanks to all of you for support and guidance that you have rendered towards the successful completion of my study.
ABSTRACT

Despite much research and progress in the area of software project management, many software projects have a very high failure rate. This risk of failure is not always avoidable, but it is controllable. Thus, the aim of this study is to present the stepwise and fuzzy multiple regression analysis modelling, which studies the impact of different risk management techniques and different software risk factors on software development projects. Furthermore, there are 5 main phases in risk management approach such as risk identification, risk analysis and evaluation, risk treatment, risk controlling, risk communication and documentation for software development life cycle. The model incorporates risk management approach and SDLC methodology to mitigate software project failure based on quantitative and intelligent risk techniques. This study provides empirical evidence for the identification of risk factors in model identify and model software risk factors and risk management techniques that effect on successful software projects. Fifty software risk factors and thirty risk management techniques were obtained from the literature to respondents. The results show that all risks in software projects are very important in the perspective of a software project manager, and all risk management techniques are the most commonly used. The study indicates that forty nine software risk factors can be mitigated by risk management techniques according to the stepwise and fuzzy multiple regression analysis modelling techniques. The model’s predictive accuracy slightly improves in fuzzy multiple regression rather than stepwise multiple regression technique. The study has been conducted on a group of software project/IT managers in Palestine. This study will guide software managers to apply software risk management practices with the real world of software development organizations. The effectiveness of the new techniques and approaches on a software project has also been verified.
ABSTRAK

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful, Praise be to Allah, the Cherisher and Sustainer of the Worlds, and Peace and Prayer be upon the Final Prophet and Messenger.

Praise be to Allah, whose gracious help has brought about the accomplishment of my study. The prophet Mohammed encourages us as Moslems to seek for knowledge on science and technology wherever it can be found. In the name of Allah, the Beneficent, and the Merciful:

{And remember! Your Lord caused to be declared:” if you are grateful, I will add more (favors) unto you”} Surah Ibrahim, verse (7).

I would like to express my sincere thanks to my supervisors, Professor Dr. Burairah Bin Hussin and Associate Professor Norhaziah Binti MD Salleh for their guidance, encouragement, and support. In addition, I wish to express my gratefulness to Associate Professor Dr. Mohd. Khanapi Abd. Ghani, Dean of the Faculty of Information and Communication Technology, for his official and personal support and encouragement. Besides, my gratefulness goes to Prof. Dr. Shahrin Bin Sahib, Vice Chancellor UTeM. May Allah bless their sincere efforts in the service of science and islam. My thanks is also to the acting dean of post-graduate studies in UTeM for his helps as well as the members of the discussion committee for accepting to discuss this study. In conclusion, I thank everyone who has helped and contributed to the completion of this study, and I hope that this study contributes to new knowledge in field of information technology sciences. May Allah reward everyone the best of rewards.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Introduction 1
 1.2 Background of Problem 3
 1.3 Statement of Problem 6
 1.4 Aims and Objectives 7
 1.5 Significance of Study 8
 1.6 Scope of Study 9
 1.7 Organization of the Study 9

2. **LITERATURE REVIEW**
 2.1 Introduction 11
 2.2 Software Engineering Process 11
 2.2.1 Software Project 11
 2.2.2 Software Development Life Cycle (SDLC) 12
 2.3 Failure of Software Projects 17
 2.3.1 Principles of Risk Management 18
2.3.2 Concept of Risk 19
2.3.3 Concepts of Risk Management 19
2.3.4 Elements of Risk Management 21
2.3.5 Significance of Software Project Risk Management 21
2.3.6 Risk Management in Software Project 22
2.3.7 Elements of Risk Management in a Software Project: 23

2.4 Techniques for Software Risk Management model 35

2.5 Software Risk Factors in Software Development Life Cycle (SDLC) and Thirty Risk Management Techniques: A Review 39
 2.5.1 Software Risk Factors in Software Development Lifecycle 39
 2.5.2 Risk Management Techniques 63

2.6 Summary 72

3. RESEARCH METHODOLOGY 73
 3.1 Introduction 73
 3.2 The New Conceptual Model for Software Project Risk Management 73
 3.3 Data Collection 78
 3.3.1 Design of questionnaire tools 78
 3.4 Pilot Study 80
 3.5 Study Population and Sampling Criteria 81
 3.6 Research Instrument Validation and Reliability pilot Tests 81
 3.6.1 Construct Validity 82
 3.6.2 Trustees Validity 82
 3.6.3 Factor Analysis 83
 3.6.4 Instrument Reliability Tests 84
 3.7 Quantitative and Intelligent modelling Techniques: 86
 3.7.1 Correlation Analysis 88
 3.7.2 Regression Analysis Model 88
 3.7.3 Coefficient of Determination 91
 3.7.4 Multicollinearity statistic techniques 92
 3.7.5 The Durbin–Watson statistic 93
 3.7.6 Fuzzy Multiple Regression Model with Fuzzy Concepts 95
 3.7.7 Evaluation Techniques Criteria 98
4. RESULTS AND ANALYSIS

4.1 Introduction

4.2 Demographic characteristics of the sample

4.3 Importance of Software Risk Factors Based on the Phases

4.3.1 The Importance of Software Risk Factors in the Planning Phase

4.3.2 Importance of Software Risk Factors in Analysis Phase

4.3.3 Importance of Software Risk Factors in the Design Phase

4.3.4 Importance of Software Risk Factors in the Implementation Phase

4.3.5 Importance of Software Risk Factors in the Maintenance Phase

4.3.6 Ranking of Importance in Software Risk Factors for Project Managers’ Experience

4.3.7 Top Ten Software Risk Factors

4.3.8 Frequency of Occurrence of Risk Management Techniques

4.3.9 Top Risk Management Techniques

4.3.10 Relationships between Risks and Risk Management Techniques Variables

4.3.11 Software Risk Factors Identification Checklists and Risk Management Techniques

4.4 Comparison between Multiple Regression Modelling and Fuzzy Multiple Regression Modelling

4.5 Summary

5. CONCLUSION AND FUTURE WORK

5.1 Introduction

5.2 Conclusions

5.3 Recommendations

5.4 Limitations of Techniques

5.5 Work in the Future

REFERENCES

APPENDICES

APPENDIX A
APPENDIX B ... 251
APPENDIX C ... 256
APPENDIX D ... 257
APPENDIX E ... 259
APPENDIX F ... 261
APPENDIX G ... 264
APPENDIX H ... 271
APPENDIX I ... 272
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Standish CHAOS report on software project failure updated for 2009 year</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Categorization of Degree of Risk</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of top software risk factors in software development life cycle based on literature review</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Measures Scale Software Risks and controls</td>
<td>79</td>
</tr>
<tr>
<td>3.2</td>
<td>Reliability tests</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Spearman-Brown Split Half</td>
<td>85</td>
</tr>
<tr>
<td>3.4</td>
<td>Guttman Split Half</td>
<td>86</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison among Four Multiple Regression Modelling Methods</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>Interpreting the Durbin Watson Statistic</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>Demographic Characteristics of Software Managers (N=76)</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean Score for Each Software Risk Factor (Planning Phase)</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean Score for Each Software Risk Factor (Analysis Phase)</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean Score for Each Software Risk Factor (Design Phase)</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean Score for Each software Risk Factor (Implementation Phase)</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean Score for Each Software Risk Factor (Maintenance Phase)</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>The Overall Risk Ranking of Each Software Risk Factor</td>
<td>106</td>
</tr>
<tr>
<td>4.8</td>
<td>Illustration of the Top Ten Risk Factors</td>
<td>107</td>
</tr>
<tr>
<td>4.9</td>
<td>The Mean Score for Each Risk Management Technique</td>
<td>108</td>
</tr>
<tr>
<td>4.10</td>
<td>Overall Ranking of Risk Management Techniques</td>
<td>109</td>
</tr>
</tbody>
</table>
4.11 Overall Ranking of Risk Management Technique 110
4.12 Illustrates the Value of Correlation 112
4.13 Illustrates the Value of Correlation and R Square (Model Summary) 112
4.14 Illustrates an Analysis of Variance (Stable Model ANOVA^c) 113
4.15 Illustrates the Coefficients and Distributed T (Coefficients^a) 113
4.16 Illustrates the Value of Correlation 114
4.17 Illustrates the Value of Correlation and R Square (Model Summary) 114
4.18 Illustrates an Analysis of Variance (ANOVA^b) 114
4.19 Illustrates the Coefficients and Distributed T (Coefficients^a) 115
4.20 Illustrates the Value of Correlation 116
4.21 Illustrates the Value of Correlation and R Square (Model Summary) 116
4.22 Illustrates an Analysis of Variance (ANOVA^b) 116
4.23 Illustrates the Coefficients and Distributed T (Coefficients^a) 116
4.24 Illustrates the Value of Correlation 117
4.25 Illustrates the Value of Correlation and R Square (Model Summary) 117
4.26 Illustrates an Analysis of Variance (ANOVA^b) 117
4.27 Illustrates the Coefficients and Distributed T (Coefficients^a) 118
4.28 Illustrates the Value of Correlation 119
4.29 Illustrates the Value of Correlation and R Square (Model Summary) 119
4.30 Illustrates an Analysis of Variance (ANOVA^c) 119
4.31 Illustrates the Coefficients and Distributed T (Coefficients^a) 119
4.32 Illustrates the Value of Correlation 120
4.33 Illustrates the Value of Correlation and R Square (Model Summary) 120
4.34 Illustrates an Analysis of Variance (ANOVA^d) 121
4.35 Illustrates the Coefficients and Distributed T (Coefficients^a) 121
4.36 Illustrates the Value of Correlation 122
4.37 Illustrates the Value of Correlation and R Square (Model Summary) 122
4.38 Illustrates an Analysis of Variance (ANOVAb) 122
4.39 Illustrates the Coefficients and Distributed T (Coefficientsa) 123
4.40 Illustrates the Value of Correlation and R Square (Model Summary) 124
4.41 Illustrates an Analysis of Variance (ANOVAc) 124
4.42 Illustrates the Coefficients and Distributed T (Coefficientsa) 124
4.43 Illustrates the Value of Correlation 126
4.44 Illustrates the Value of Correlation and R Square (Model Summary) 126
4.45 Illustrates an Analysis of Variance (ANOVAc) 126
4.46 Illustrates the Coefficients and Distributed T (Coefficientsa) 126
4.47 Illustrates the Value of Correlation 128
4.48 Illustrates the Value of Correlation and R Square (Model Summary) 128
4.49 Illustrates an Analysis of Variance (ANOVAb) 128
4.50 Illustrates the Coefficients and Distributed T (Coefficientsa) 128
4.51 Illustrates the Value of Correlation 129
4.52 Illustrates the Value of Correlation and R Square (Model Summary) 129
4.53 Illustrates an Analysis of Variance (ANOVAb) 129
4.54 Illustrates the Coefficients and Distributed T (Coefficientsa) 130
4.55 Illustrates the Value of Correlation 131
4.56 Illustrates the Value of Correlation and R Square (Model Summary) 131
4.57 Illustrates an Analysis of Variance (ANOVAc) 131
4.58 Illustrates the Coefficients and Distributed T (Coefficientsa) 131
4.59 Illustrates the Value of Correlation 132
4.60 Illustrates the Value of Correlation and R Square (Model Summary) 132
4.61 Illustrates an Analysis of Variance (ANOVA) 133
4.62 Illustrates the Coefficients and Distributed T (Coefficients) 133
4.63 Illustrate the Value of Correlation 134
4.64 Illustrate the Value of Correlation and R Square (Model Summary) 134
4.65 Illustrates an Analysis of Variance (ANOVA) 134
4.66 Illustrates the Coefficients and Distributed T (Coefficients) 134
4.67 Illustrates the Value of Correlation 135
4.68 Illustrates the Value of Correlation and R Square (Model Summary) 136
4.69 Illustrates an Analysis of Variance (ANOVA) 136
4.70 Illustrates the Coefficients and Distributed T (Coefficients) 136
4.71 Illustrates the Value of Correlation 137
4.72 Illustrates the Value of Correlation and R Square (Model Summary) 137
4.73 Illustrates an Analysis of Variance (ANOVA) 138
4.74 Illustrates the Coefficients and Distributed T (Coefficients) 138
4.75 Illustrates the Value of Correlation 139
4.76 Illustrates the Value of Correlation and R Square (Model Summary) 139
4.77 Illustrates an Analysis of Variance (ANOVA) 140
4.78 Illustrates the Coefficients and Distributed T (Coefficients) 140
4.79 Illustrates the Value of Correlation 141
4.80 Illustrates the Value of Correlation and R Square (Model Summary) 141
4.81 Illustrates an Analysis of Variance (ANOVA) 141
4.82 Illustrates the Coefficients and Distributed T (Coefficients) 142
4.83 Illustrates the Value of Correlation 143
4.84 Illustrates the Value of Correlation and R Square (Model Summary) 143
4.85 Illustrates an Analysis of Variance (ANOVA) 143
4.86 Illustrates the Coefficients and Distributed T (Coefficients^a) 143
4.87 Illustrates the Value of Correlation 144
4.88 Illustrates the Value of Correlation and R Square (Model Summary) 144
4.89 Illustrates an Analysis of Variance (ANOVA^c) 145
4.90 Illustrates the Coefficients and Distributed T (Coefficients^a) 145
4.91 Illustrates the Value of Correlation 146
4.92 Illustrates the Value of Correlation and R Square (Model Summary) 146
4.93 Illustrates an Analysis of Variance (ANOVA^b) 146
4.94 Illustrates the Coefficients and Distributed T (Coefficients^a) 146
4.95 Illustrates the Value of Correlation 147
4.96 Illustrates the Value of Correlation and R Square 147
4.97 Illustrates an Analysis of Variance (ANOVA^b) 148
4.98 Illustrates the Coefficients and Distributed T (Coefficients^a) 148
4.99 Illustrates the Value of Correlation and R Square 149
4.100 Illustrates an Analysis of Variance (ANOVA^b) 149
4.101 Illustrates the Value of Correlation 149
4.102 Illustrates the Value of Correlation and R Square (Model Summary) 149
4.103 Illustrates an Analysis of Variance (ANOVA^c) 150
4.104 Illustrates the Coefficients and Distributed T (Coefficients^a) 150
4.105 Illustrates the Value of Correlation 151
4.106 Illustrates the Value of Correlation and R Square (Model Summary) 151
4.107 Illustrates an Analysis of Variance (ANOVA^c) 151
4.108 Illustrates the Coefficients and Distributed T (Coefficients^a) 152
4.109 Illustrates the Value of Correlation 153
4.110 Illustrates the Value of Correlation and R Square (Model Summary) 153
4.136 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 164
4.137 Illustrates the Value of Correlation 165
4.138 Illustrates the Value of Correlation and R Square (Model Summary) 165
4.139 Illustrates an Analysis of Variance (ANOVA\(^b\)) 165
4.140 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 165
4.141 Illustrates the Value of Correlation 166
4.142 Illustrates the Value of Correlation and R Square (Model Summary) 166
4.143 Illustrates an Analysis of Variance (ANOVA\(^c\)) 166
4.144 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 167
4.145 Illustrates the Value of Correlation 168
4.146 Illustrates the Value of Correlation and R Square (Model Summary) 168
4.147 Illustrates an Analysis of Variance (ANOVA\(^c\)) 168
4.148 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 168
4.149 Illustrates the Value of Correlation 169
4.150 Illustrates the Value of Correlation and R Square (Model Summary) 169
4.151 Illustrates an Analysis of Variance (ANOVA\(^b\)) 170
4.152 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 170
4.153 Illustrates the Value of Correlation 171
4.154 Illustrates the Value of Correlation and R Square (Model Summary) 171
4.155 Illustrates an Analysis of Variance (ANOVA\(^b\)) 171
4.156 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 171
4.157 Illustrates the Value of Correlation 172
4.158 Illustrates the Value of Correlation and R Square (Model Summary) 172
4.159 Illustrates an Analysis of Variance (ANOVA\(^c\)) 172
4.160 Illustrates the Coefficients and Distributed T (Coefficients\(^a\)) 173
4.161 Illustrates the Value of Correlation 174
4.162 Illustrates the Value of Correlation and R Square (Model Summary) 174
4.163 Illustrates an Analysis of Variance (ANOVA) 174
4.164 Illustrates the Coefficients and Distributed T (Coefficients) 174
4.165 Illustrates the Value of Correlation 175
4.166 Illustrates the Value of Correlation and R Square (Model Summary) 176
4.167 Illustrates an Analysis of Variance (ANOVA) 176
4.168 Illustrates the Coefficients and Distributed T (Coefficients) 176
4.169 Illustrates the Value of Correlation 177
4.170 Illustrates the Value of Correlation and R Square (Model Summary) 177
4.171 Illustrates an Analysis of Variance (ANOVA) 178
4.172 Illustrates the Coefficients and Distributed T (Coefficients) 178
4.173 Illustrates the Value of Correlation 179
4.174 Illustrates the Value of Correlation and R Square (Model Summary) 179
4.175 Illustrates an Analysis of Variance (ANOVA) 179
4.176 Illustrates the Coefficients and Distributed T (Coefficients) 179
4.177 Illustrates the Value of Correlation 180
4.178 Illustrates the Value of Correlation and R Square (Model Summary) 180
4.179 Illustrates an Analysis of Variance (ANOVA) 181
4.180 Illustrates the Coefficients and Distributed T (Coefficients) 181
4.181 Illustrates the Value of Correlation 183
4.182 Illustrates the Value of Correlation and R Square (Model Summary) 183
4.183 Illustrates an Analysis of Variance (ANOVA) 183
4.184 Illustrates the Coefficients and Distributed T (Coefficients) 183
4.185 Illustrates the Value of Correlation 184
Illustrates the Value of Correlation and R Square (Model Summary) 185
4.187 Illustrates an Analysis of Variance (ANOVA5) 185
4.188 Illustrates the Coefficients and Distributed T (Coefficientsa) 185
#4.189 Illustrates the Value of Correlation 186
4.190 Illustrates the Value of Correlation and R Square (Model Summary) 186
4.191 Illustrates an Analysis of Variance (ANOVA5) 186
4.192 Illustrates the Coefficients and Distributed T (Coefficientsa) 187
4.193 Illustrates the Value of Correlation 188
4.194 Illustrates the Value of Correlation and R Square (Model Summary) 188
4.195 Illustrates an Analysis of Variance (ANOVA5) 188
4.196 Illustrates the Coefficients and Distributed T (Coefficientsa) 189
4.197 Illustrates the Value of Correlation 190
4.198 Illustrates the Value of Correlation and R Square (Model Summary) 190
4.199 Illustrates an Analysis of Variance (ANOVA5) 190
4.200 Illustrates the Coefficients and Distributed T (Coefficientsa) 191
4.201 Illustrates the Value of Correlation 192
#4.202 Illustrates the Value of Correlation and R Square (Model Summary) 192
4.203 Illustrates an Analysis of Variance (ANOVA5) 193
#4.204 Illustrates the Coefficients and Distributed T (Coefficientsa) 193
4.205 Illustrates the Value of Correlation 194
4.206 Illustrates the Value of Correlation and R Square (Model Summary) 194
#4.207 Illustrates an Analysis of Variance (ANOVA5) 195
4.208 Illustrates the Coefficients and Distributed T (Coefficientsa) 195
4.209 Formulas for software risk factors and risk management techniques 197
4.210 Evaluation and validation criteria’s for measuring accuracy of software risk models

4.211 Comparison between estimation stepwise multiple regression and fuzzy multiple regression by evaluation techniques.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Processes in each chapter while conducting this research</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Standard Software Development Life Cycle (SDLC)</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Software Development Life Cycle SDLC methodologies: Waterfall, V-model, Evolutionary model, spiral development, and agile</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Proactive Risk Management</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Software risk management phases for successful software project</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Classification of software project risk management techniques</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>The new conceptual model that incorporates the phases in SDLC for risk mitigation</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>The overall research methodology framework for managing risks in software project</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Structural model for fuzzy multiple regression analysis</td>
<td>98</td>
</tr>
</tbody>
</table>