Faculty of Manufacturing Engineering

EFFECT OF COATING THICKNESS ON THE MICROSTRUCTURE, MECHANICAL AND WEAR PROPERTIES OF AlTiN COATINGS DEPOSITED USING ARC ION PLATING TECHNIQUE

Kamil Jawad Kadhim

Doctor of Philosophy

2016
EFFECT OF COATING THICKNESS ON THE MICROSTRUCTURE, MECHANICAL AND WEAR PROPERTIES OF AlTiN COATINGS DEPOSITED USING ARC ION PLATING TECHNIQUE

KAMIL JAWAD KADHIM

A thesis submitted
In fulfillment of the requirements for the degree of Doctor of Philosophy in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled "Effect of Coating Thickness on The Microstructure, Mechanical and Wear Properties of AlTiN Coatings Deposited Using Arc Ion Plating Technique" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Kamil Jawad Kadhim

Date :
APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy in Manufacturing Engineering.

Signature : ...
Supervisor Name : Associate Professor Dr. Md Nizam Bin Abd Rahman
Date : ...
DEDICATION

To my beloved parents, mother, father, and wife, my sons, and my daughters.

Dedicated, to my beloved, brothers and sisters.

Dedicated, to all my family, and my friends.

Thank you for your support and encouragement.

You all are everything for me.

May Allah bless all of us. Insha’Allah.
AlTiN coatings were deposited on tungsten carbide insert using Al$_{0.67}$ Ti$_{0.33}$ cathodes in cathodic arc plating system. The influence of coating layer thickness on the microstructural, mechanical and wear properties of the coatings was investigated. The AlTiN deposition of hard coatings for tooling applications has many advantages. The main drawback of this technique, however, is the formation of macro particles (MPs) during deposition. The deposited AlTiN coating of various thickness was characterized using X-Ray Diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rockwell tester, and ball-on-disc machine, to analyze and quantify the following coating properties: grain size, preferred orientation, atomic elements, thickness, micro hardness, adhesion, surface roughness, and coefficient of friction (COF) of the deposited coatings. Base of this study, the increase in layer thickness was closely related to increase in deposition time. The coating thickness had a significant influence on the width of crater wear. The width of crater wear reduced significantly as the coating thickness increased. However beyond 5.815µm, further increment in coating thickness resulted in increase in crater wear width due to presence of larger macro-particles on the coating surface and reduction of coating hardness. The deposited AlTiN coating also showed a strong preferred orientation of (200) and (111) plane for all coating thickness. The values of various surface roughness measured by AFM was at minimum of 0.07157 µm for the coating having thickness of 2.717 µm whereas; the maximum value of R_a was 0.29647 µm for the coating thickness of 8.760 µm. The highest hardness value was 1939.0 HV for coating thickness of 5.815 µm. Based on adhesion slope technique, AlTiN coatings of 3.089 µm thickness had the best adhesion strength. Correlation study indicated that cutting tools crater wear width has the strongest correlation with the coating atomic percentage ratio of Al/Ti, with coefficient of determination R^2 value of 0.7251. The coating hardness and grain size also indicated some correlation with the crater width wear with R^2 values of 0.6051 and 0.5184 respectively.
Lapisan AITiN dideposit pada insert tungsten karbida menggunakan katod Al\sub{0.67} Ti\sub{0.33} dengan sistem penyaduran arka. Pengaruh ketebalan lapisan salutan pada mikrostruktur, mekanikal dan sifat-sifat lapisan telah dikaji. Salutan AITiN untuk aplikasi alat mempunyai banyak kelebihan. Bagaimanapun, kelemahan utama teknik ini adalah pembentukan zarah makro semasa pemendapan. Salutan AITiN yang didepositkan dengan pelbagai ketebalan dicirikan menggunakan mikroskop elektron pengimbas, daya mikroskop atom, mesin ujian kekerasan, Rockwell penguji, dan bola ke cakera mesin untuk menganalisis dan mengukur sifat-sifat lapisan berikut: saiz butiran, orientasi pilihan, unsur-unsur atom, kekerasan mikro, rekatan, kekasaran permukaan, dan pekali geseran. Keputusan kajian ini menunjukkan peningkatan dalam ketebalan lapisan berkait rapat dengan masa pemendapan. Apabila masa pemendapan meningkat begitu juga ketebalan lapisan. Keterapan salutan mempunyai pengaruh yang besar ke atas lebar kehausan kawah. Lebar kehausan kawah berkurang dengan ketara apabila apabila ketebalan lapisan meningkat. Namun selepas kira-kira enam mikron, kenaikan berikutnya di dalam ketebalan salutan mengakibatkan peningkatan dalam lebar kehausan kawah. Salutan AITiN yang didepositkan menunjukkan orientasi kristal yang kuat pada (200) dan (111) untuk semua ketebalan salutan. Nilai kekasaran permukaan diukur oleh daya mikroskop atom yang paling minimum ialah 0.07157μm untuk lapisan yang mempunyai ketebalan 2.717 μm. Nilai maksimum \(R_a \) adalah 0.29647μm untuk ketebalan lapisan 8.760 μm. Nilai kekerasan tertinggi ialah 1939.0HV untuk lapisan ketebalan 5,815 μm. Berdasarkan teknik lekatan cerun, AITiN lapisan ketebalan 3.089μm mempunyai kekuatan lekatan yang terbaik. Kajian korelasi menunjukkan bahawa lebar kehausan kawah alat pemotong mempunyai korelasi yang kuat dengan lapisan nisbah peratusan atom Al / Ti, dengan nilai \(R^2 = 0.7251 \). Kekerasan salutan dan bijirin saiz juga menunjukkan korelasi sederhana dengan memakai lebar kawah dengan nilai \(R^2 \) masing-masing ialah 0.6051 dan 0.5184

ABSTRAK
ACKNOWLEDGEMENT

Alhamdulillah, my deepest gratitude to Allah S.W.T. First, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor Dr. Md. Nizam Bin Abd Rahman from the Faculty of Manufacturing Engineering, University Technical Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Associate Professor Dr. Mohd Rizal bin Salleh the Dean of Faculty of Manufacturing Engineering University Technical Malaysia Melaka (UTeM), co-supervisor of this project for his advice and suggestions.

Also my deepest appreciation to all the lecturers and staff of the Faculty of Manufacturing Engineering. Special thanks are also given to the Ministry of Higher Education the Iraqi and Technical Education Foundation, now known as the University Middle Euphrates Technical in Kufa for the support and funding of this project through the fundamental research grant throughout the study scheme.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PUBLICATION</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Background of study
 1.2 Introduction
 1.3 Problem Statement
 1.4 Research Goals and Objectives
 1.5 Scope of the Research
 1.6 Organization of Thesis

2. **LITERATURE REVIEW**
 2.1 Introduction
 2.2 PVD DC Arc system technology
 2.3 Physical Vapor Deposition (PVD) Processes
 2.4 Vacuum Deposition (Vacuum Evaporation)
 2.5 Arc Vapor Deposition System
 2.6 Ion Plating
 2.6.1 PVD Process Considerations
 2.6.2 Deposition of (Al, Ti) N coatings
 2.6.3 Different Processes of PVD Deposition
 2.7 Parameters for deposition of coating
 2.7.1 Effect of cathode composition on PVD deposition
 2.7.2 Effect of gas pressure PVD deposition
 2.7.3 Effect of substrate bias on PVD deposition
 2.7.4 Phase relationship and crystal structure of (Al, Ti) N
 2.7.5 Effect of interlayer/intermediate layer on coating adhesion
 2.7.6 Roughness of coated surface
 2.7.7 Hardness of (Al, Ti) N layer coating
 2.7.8 Arc vaporization
 2.7.9 Crystal structure
 2.7.10 Adhesion Properties analysis
 2.7.11 Tribological coatings
 2.7.12 Friction and wear
3. RESEARCH METHODOLOGY
3.1 Introduction
3.2 Development experimental coating plan
3.2.1 Deposition Process
3.2.2 Loading sample in chamber
3.2.3 Pumping and Heating of coating chamber
3.2.4 Substrate Ion Cleaning
3.2.5 Ti buffer layer deposition
3.2.6 AlTiN coating deposition
3.2.7 Dry Cooling
3.3 Pretreatment of substrate
3.4 Coating Characterization Methods
3.4.1 Micro hardness
3.4.2 Adhesion
3.4.3 Friction and wear analyses
3.4.4 Determination of surface roughness
3.4.5 Phase analysis X-ray diffraction technique
3.4.6 Materials Characterization using SEM
3.4.7 Fracture (CNC EDM Wire Cut) initiation sample
3.4.8 Determination of surface roughness by atomic force microscopy imaging
3.5 Determination of cutting Performance by turning test

4. RESULT AND DISCUSSION
4.1 Introduction
4.2 Materials Characterisation
4.2.1 The thickness measurement and elemental analysis
4.2.2 Macro-particle analysis
4.2.3 Compositional analysis using EDX
4.3 Phase analysis by X-ray diffractometry
4.4 Analysis of Surface Roughness using AFM
4.5 Microhardness Analysis
4.6 Coating Adhesion Analysis
4.7 Tribological Analysis
4.7.1 Analysis of wear mechanism of the coating
4.8 Cutting performance of the coated substrate
4.8.1 Crater wear width of various AlTiN coating thickness
4.9 Correlation between coating performance, coating characteristics and microstructures.
4.10 Summary of major findings
4.10.1 Effect of coating thickness on microstructure and performance
4.10.2 General finding on coating microstructure and coating
5. CONCLUSION AND RECOMMENDATION

5.1 Conclusions

5.2 New contributions to body of knowledge

5.3 Future work and recommendation

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of study done on thin film coatings deposited using various PVD techniques</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Characterization techniques by several researchers</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Rockwell-C characterization techniques performed by several researchers using slopes of indentation load versus crack diameter</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Several methods for measurement crater wear</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Ion cleaning parameters</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Buffer layer parameters</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Main layer parameters</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Deposition parameters</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Cleaning Procedure</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>The characterization equipment used in the respective intended coating Characteristic/performance data to be collected.</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>List of tribological parameters during Ball-on-Disc test</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>SEM/EDX parameters setting</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>XRD Settings</td>
<td>64</td>
</tr>
<tr>
<td>3.10</td>
<td>SEM/EDX parameters setting</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>Duplex 2205 stainless steel chemical compositions.</td>
<td>68</td>
</tr>
<tr>
<td>3.12</td>
<td>Summary of single point turning conditions</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Main process AlTiN of coatings deposition</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Micro-particle measurement at AlTiN coating</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of as-deposited AlTiN coatings</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Deposition time and thickness with Al/Ti ratio at AlTiN coating</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>XRD crystallographic data for various coating thickness</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>AlTiN coating characteristics and microstructure data with varying</td>
<td>88</td>
</tr>
</tbody>
</table>
layer

4.7 Surface roughness of AlTiN for various coating thickness. 90
4.8 Micro-Vickers hardness at different thickness of coated AlTiN 93
4.9 Crack diameter, and adhesion slope for various coating thickness 95
4.10 Elements of wear debris of AlTiN coatings at layer thickness. 99
4.11 Weight of the steel ball before and after ball-on disc test. 102
4.12 Ball volume loss after ball on disc test 105
4.13 Crater wears width for different coating thickness 107
4.14 Compilation of AlTiN coating performance, characteristics, and 110
 microstructure data for correlation study
4.15 Summary of coefficient of determination value for the correlation 113
 studies between crater width wear and coating characteristic/
 microstructure data.
4.16 Summary of the behavior of the deposited AlTiN coating with 115
 constant PVD process parameters
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Several PVD techniques are available for deposition of hard coatings</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Gas flow regimes vacuum ranges (https://www.chalmers.se/.../lecture_6.../"vacuum"/., Lecture handouts Chalmers University of Technology).</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>PVD processing techniques: Sputter deposition in a vacuum and ion plating with an arc vaporization source (Bunshah, 1994.; Kerdel et al., 2014).</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical microstructure of PVD (Al, Ti) N coatings deposited by: arc evaporation (Paldey and Dee. 2003; Arslan et al. (2013).</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Improvement of surface morphology in a filtered cathodic arc system; Arndt and Kacsich (2003).</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of the influence of substrate temperature and argon pressure on the microstructure of metal coatings deposited, (Anders and Berkeley 2007; Zhu 2013)</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>(a) Ternary phase diagram and (b) TiN lattice parameter. Paldey and Dee, (2003).</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>The hardness and Young’s Modulus as a function of the Al concentration in the (Ti$_{1-x}$Al$_x$) N films (PalDey and Deev, 2003).</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) XRD patterns obtained on CrAlTiN and (b) carbon-doped CrAlTiCN coating (Wenwen Wu. 2010).</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>(a): The lateral crack diameter vs. applied load for TiAlN films with various Ti fractions. (b): The pictures of crack circle after a 150 kgf indentation test (Wu et al. 2000).</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Historical development of tribological coatings and solid films. Source: Ref; W. Wu (2010).</td>
<td>40</td>
</tr>
</tbody>
</table>
Crater and crater wear measurement method for tool insert in single point turning Operation based on ISO 3685:1993(E) standards.

Overall approach of PVD process design with experimental studies

Methodology of PVD process, ARC evaporation system development.

PVD ARC system technology made by J&L technology

Sumitomo SPGN120308S cutting tool dimension

Tungsten carbide cutting tool insert commercially made by Sumitomo (cutting tool tungsten carbide).

Process progress deposition of coating

Loading sample in holder jig on the chamber

Schematic diagram of the arc ion plating system

The cutting insert was cleaned by ultrasonic with a detergent bath for different mixed detergent and time

(a) and (b): Vickers micro hardness testing machine Vickers tester, (VLPACK-2000 Mitutoyo microwizard) was performed on the coatings.

Adhesion slope measurement plot at three different loads (a), and Crack diameter measurement using optical microscope (b).

OMAG 250-3302MRS Rockwell indentation tester.

Ball-on-Disc tester

Surftest SJ-310 contact stylus profiler by MITUTOYO

Bruker D-8 XRD apparatus with GIA capability as shown (a), (b) and (c).

Scanning electron microscopy imaging with Signals produced when electron beam interact with the sample.

CNC EDM Wire Cut Machine and Vise

AFM Shimadzu model SPM-9500J2 apparatus

Precision lathes model CNC Machine

Standard ISO 3685-1993

Brittle fracture micrograph and EDX spectrum of AlTiN, thickness
2.717 to 8.760 µm.

4.2 Correlation between coating thickness and deposition time.

4.3 Microparticle of AlTiN coatings with different thickness layer: (a) 2.717 µm, (b) 3.089 µm, (c) 3.912 µm, (d) 5.815 µm, (e) 8.760 µm (mag = 10,000 kx).

4.4 Surface SEM micrographs of AlTiN coatings with different layer thickness: (a) 2.717; (b) 3.089; (c) 3.912; (d) 5.815; (e) 8.760 µm with different deposition time: 45; 80; 100; 120; 135 mins (mag = 1,000 kx).

4.5 Correlation between thickness and AlTiN coating macro-particle.

4.6 EDX analysis of the deposited AlTiN coating with various thicknesses.

4.7 Thickness of AlTiN layer coatings with different Al/Ti ratio (%).

4.8 Ti/Al and Nitrogen atom ratio of AlTiN layer coatings with different thickness layers.

4.9 Deposition time and thickness with Al/Ti ratio at AlTiN coating.

4.10 Correlation between coating thickness on crystallographic preferred orientation.

4.11 XRD patterns of AlTiN layer coatings with different layer thicknesses and tungsten carbide substrate.

4.12 Variation of deposition time and Grain size.

4.13 Three-dimensional AFM image of tungsten carbide; a = 2.717 µm; b = 3.089 µm; c = 3.912 µm; d = 5.815 µm; e = 8.760818 µm surface various thicknesses with layer (AlTiN) coating, caption 10 x 10 µm.

4.14 Variation in graph between average roughness and coating thickness of AlTiN-coated tungsten carbide insert.

4.15 Hardness of AlTiN coating load 50g and indenter tip. Micro-hardness indentation test.

4.16 Hardness of AlTiN layer coatings with different thickness and deposition time.

4.17 Thickness vs. Adhesion slope.
4.18 Adhesion Load of AlTiN coatings with different layers thickness:
(a) 2.717µm, (b) 3.089 µm, (c) 3.912 µm, (d) 5.815 µm, (e) 8.7608 µm. (Load HRA= 588, HRD = 980, HRC = 1470).

4.19 Coefficient of friction of AlTiN, different layers thickness coatings as shown in hardness.

4.20 Coefficient of friction of AlTiN, different layers thickness coatings

4.21 Surface morphologies of the wear track on (a) Thickness: 2.717µm,
(b) Thickness: 2.089µm, (c) Thickness 3.912µm, (d) Thickness: 5.815µm, and (e) Thickness: 8.760µm.

4.22 Surface morphologies of the wear track as well as the EDX spectra of the adhesive debris on (a),(b),(c),(d),and (e) AlTiN coatings.

4.23 Profile of cross sections of the wear tracks of AlTiN coating after Pin-on-disc testing(a)-width, (b)- depth, (r3)- radius of sliding track (a),(b),(c), (d), and (e), (thickness various).

4.24 Variations of crater wear width with thickness layer

4.25 Variations of crater wear width with Al/Ti ratio

4.26 Correlation between crater width wear and I111/1200 ratio

4.27 Correlation between crater width wear and atomic percentage ratio of aluminum and titanium of AlTiN coating

4.28 Correlation between crater widths wear and grain size of AlTiN coating

4.29 Correlation between crater width wear and roughness of AlTiN coating

4.30 Correlation between crater width wear and TiAlN coating hardness
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SEM/ DATA macro-particle</td>
<td>131</td>
</tr>
<tr>
<td>B</td>
<td>XRD DATA</td>
<td>137</td>
</tr>
<tr>
<td>C</td>
<td>Surface Roughness</td>
<td>142</td>
</tr>
<tr>
<td>D</td>
<td>Adhesion of AITiN layers coating; Rockwell adhesion indentation test (Mercedes test).</td>
<td>147</td>
</tr>
<tr>
<td>E</td>
<td>Tribological tests</td>
<td>151</td>
</tr>
<tr>
<td>F</td>
<td>The wear rate (Tribological properties) and maximal depth of wear tracks of the AITiN layer Coatings at different thickness layers. Measured using optical Scanning Microscopy.</td>
<td>161</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Å Angstrom refer to in terms of measurement (1x10^{-10} meter or 0.1 nm) function

AFM Atomic Force Microscopy

Al Aluminum

AlTiN Aluminium Titanium Nitride

Amorphous Phases are important constituents of thin films, which are solid layers of a few nm to some tens of µm thickness deposited upon a substrate.

Anticorrosion Refers to the protection of metal surfaces from corroding in high-risk (corrosive) environments. When metallic materials are put into corrosive environments, they tend to have chemical reactions with the air and/or water. The effects of corrosion become evident on the surfaces of these materials. Therefore, metal equipment lacking any preventive (anticorrosive) measures, may become rusted both inside and out, depending upon atmospheric conditions and how much of that equipment is exposed to the air. There are a number of methods for preventing corrosion, especially in marine applications.

Ar Argon

C Carbon

CNC Computer Numerical Controll

Co Cobalt

COF Coefficient of Friction

Cr Chromium

CVD Chemical Vapour Deposition

DC Direct Current

DI water Purified water is water that is mechanically filtered or processed to be
cleaned for consumption. Distilled water and deionized (DI) water have been the most common forms of purified water.

DLC Diamond- Like Carbon

EHT Extra high tension, or high voltage

FCC Face Centre Cubic

GPa Giga-Pascal (1GPa = 1,000,000,000Pa)

HT 1170 Deconex is a liquid, mildly alkaline cleaning concentrate used in ultrasonic cleaning systems, with high surfactant content and high degreasing power.

HT 1233 Deconex is a mildly alkaline liquid, cleaning concentrate for the final cleaning step before rinsing and drying, for carbide and HSS parts. It is suitable for both pre-cleaning and final cleaning. However it is very frequently used in the final cleaning step prior to coating.

HT 1401 Deconex is a highly alkaline liquid cleaning concentrate for removing machining oils, corrosion proofing oils. Deconex HT 1401 is primarily used with ultrasonic cleaners during the pre-cleaning step. For use in soaking baths and ultrasonic cleaning systems, especially on corrosion-sensitive metals such as steel, HSS and carbides.

HV Hardness Vickers Pyramid Number

ICSD (Inorganic Crystal Structure Database)

MFC Mass Flow Controller

MPs Macro-particles

N₂ Nitrogen

Ni Nickel

PVD Physical Vapour Deposition

Rₐ Surface roughness

SCCM Is referring of standard cubic centimeters per minute indicating cc/min at a standard temperature and pressure. A flow measurement term indicating cc/min at a standard temperature and pressure.

SEM Scanning Electron Microscopy
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>TiN</td>
<td>Titanium Nitride</td>
</tr>
<tr>
<td>WC</td>
<td>Tungsten Carbide</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>Y</td>
<td>Yttrium</td>
</tr>
<tr>
<td>Zr</td>
<td>Zirconium</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATION

Conference

Journal

CHAPTER 1
INTRODUCTION

1.1 Background of study

Single, multi-layers, nitride coatings, are widely used to extend the lifetime of machine parts. The properties of nitride coating improve adhesion and hardness which minimize wear rate and coefficient of friction. This generates significant improvement in performance and prolonged life of the coated tools (Aihua et al., 2012; Biksa et al., 2010).

This research project is part of a program funded by the Iraqi Government to enable their oil companies to find appropriate solutions for the repair of oil drilling equipment. Since nitride coatings have proven to be superior in terms of performance, this research project was geared towards the study of the characteristics and performance of AlTiN coating on tungsten carbide (WC) inserts in cutting duplex stainless steel which was widely used material in oil drilling industry. The AlTiN coating was deposited using arc ion plating technique on to WC insert.

1.2 Introduction

Coating, technique known as physical vapor deposition (PVD), is a process which can be carried out by several techniques such as magnetron sputtering, ion beam assisted deposition, arc evaporation and pulsed laser deposition (PLD), has been successfully used to protect surfaces of mechanical components working under high wear loads during the last five decades (Abu-Shgair et al., 2010).

The coating of thin Ti and Al could be performed as monolayer (Jakubéczyová et al., 2012; Kottfer et al., 2013; Abd Rahman, 2009; Birol et al., 2010; Podgursky et al., 2011) multilayer (Ramadoss et al., 2013; Jianxin and Aihua, 2013), and gradient layers
The thin Ti coating in particular is widely used for its good properties of improving adherence, hardness, reducing wear rate and coefficient of friction (Thornton et al., 1994; Grips et al., 2006; William and Retwisch, 2010; Vamsi-Krishna et al., 2010). A recent work by (Yong-Qiang et al., 2011) suggested that TiN/TiAlN and TiN/AlTiN multilayer coatings deposited on cutting tools could improve mechanical and corrosion resistance. It has been shown that AlTiN coating has better mechanical properties compared to TiN due to the inclusion of aluminum atoms in TiN crystalline structure which results in increasing oxidation resistance by formation of the stable ternary material AlTiN (Verma et al., 2012; Cselle et al., 2009).

Recently, a new coating technology known as pulsed bias arc ion plating (PBAIP) which has advantages over other technologies due to its lower processing temperature requirement, lower residual stress, better grain refinement and particle purification (Soediono 1989; Bunshah, 1994; PalDey et al., 2003). PBAIP also provides the ideal conditions for the deposition of a multilayer film with excellent performance.

The process of ion plating is normally performed by using concurrent or periodic bombardment of the substrate and deposited film prior to deposition which is described as preliminary process called sputtering in order to prepare the substrate (Wei and Gong, 2011; Lackner et al., 2013). It is stated that (Ti, Al) N coating enhances wear and oxidation resistance of tools as, (Arslan et al., 2013; Yıldız et al., 2013).

Titanium Aluminum Nitride (TiAlN), known also as AlTiN, depends on the compositions of Ti and Al and is suitable for coating cutting tools for machining hard to cut materials because the coating can withstand extreme environments such as high temperature and high pressure condition. These properties made TiAlN suitable for use in dry machining and high-speed milling and turning where heat is generated (Chou et al., 2002; Siow et al. 2013; Li et al., 2013; Feng et al., 2013). When properly applied, it