Faculty of Manufacturing Engineering

IMPROVEMENT ON TEAR RESISTANCE OF RUBBER MOULDED MAT BY VARYING FILLER AND ACCELERATOR CONTENTS

Soh Tiak Chuan

Engineering Doctorate

2016
IMPROVEMENT ON TEAR RESISTANCE OF RUBBER MOULDED MAT
BY VARYING FILLER AND ACCELERATOR CONTENTS

SOH TIAK CHUAN

A thesis submitted
in fulfilment of the requirements for the degree of Engineering Doctorate

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Improvement on tear resistance of rubber moulded mat by varying filler and accelerator contents” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...
Name : ...
Date : ...

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Engineering Doctorate.

Signature :………………………………………………………………………..
Supervisor Name :………………………………………………………………
Date :………………………………………………………………………………
DEDICATION

To my beloved mother, father and wife.
ABSTRACT

An industrial baby product, rubber moulded mat, produced in Rubber Leisure Products Sendirian Berhad has encountered with tear problem at the complicated shape of suction cups when it is manually stripped after moulding process. Its tear resistance has been improved in this work to reduce the high rejection and reworking rates in production by focusing on the two parameters of fillers and accelerators. The effect of fillers was focused on the content of precipitated silica and calcined clay whereas the effect of accelerators was studied by using mercaptobenzothiazole disulphide (MBTS), Zn-2-mercaptobenzo thiazole (ZMBT) and diphenyl guanidine (DPG). Phase 1 of this research involved the analyses of different ratios and combinations of fillers and accelerators. Phase 2 involved the analyses of tensile strength and tear strength of vulcanizates with 5 levels of fillers and 4 levels of accelerators by using statistical factorial design of experiment. Phase 3 focused on the test mechanism of hot-tear-strength, mass production validation and benefit-cost analysis. A scorch-safe filled masterbatch added with silane coupling agent was formulated. Multiple-stage melt mixing method can disperse effectively the fillers into the smaller aggregated structure. The combination of accelerators MBTS:DPG:ZMBT enhanced better the rubber tear resistance than the conventional MBTS:DPG system. An optimum formulation was produced with the levels of fillers:accelerators at 0.65phr:1.77phr and reduced the content of calcium carbonate from 40 phr to 20 phr which have imparted better tear resistance. The finely dispersed and uniformly distributed fillers, optimum crosslink density and predominantly polysulphidic crosslink type improved primarily the rubber tear resistance especially on hot-tear-strength. The new formulation did not deteriorate the end-use function and colour aesthetic of the finished product as well as did not increase the product manufacturing cost.
ABSTRAK

ACKNOWLEDGEMENTS

In preparing this thesis, I would like to express my sincere acknowledgement to my supervisor Professor Dr. Qumrul Ahsan from the Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his supervision, support, critic and encouragement throughout the years of my Engineering Doctorate study. I would also like to express my gratitude to my co-supervisor Dr. Noraiham Mohamad for her continued advice and support during my research study. Their valuable guidance and motivations have always been informative and pragmatic.

I am also very thankful to my industrial supervisor who is also the Managing Director of Rubber Leisure Products Sdn. Bhd., Mr Tan Yan Di, permitted my application in pursuing this study and supportively allowing me to use the materials, machines and test equipments of company in fulfilling this research study. Special thanks to Kementerian Pengajian Tinggi Malaysia for granting me a three years scholarship under the Programme of Engineering Doctorate to carry out this study.

I would also like to take this opportunity to acknowledge all the lecturers who delivered lecture courses of six subjects which I had undertaken in this study. They are knowledgeable in their fields and conveyed the essential knowledge for the subjects. I would also like to extend my appreciation to all the laboratory technicians in UTeM, Lembaga Getah Malaysia and Quasi-S Sdn. Bhd. for their assistances pertaining to all the laboratory works. Special thanks to all my friends and course mates at UTeM for information sharing and motivations at various occasions during the accomplishment of this project.

Lastly, my personal gratitude to my wife, family members, also my late mother and father for their moral support in completing this research study.
TABLE OF CONTENTS

DECLARATION
DEDICATION
ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
LIST OF ABBREVIATIONS
LIST OF PUBLICATIONS

CHAPTER

1. INTRODUCTION
 1.1 Background
 1.2 Statement of problem
 1.3 Objectives of the research
 1.4 Alignment of thesis objectives to the problem statements
 1.5 Scope of study
 1.6 Contribution to the company

2. LITERATURE REVIEW
 2.1 Introduction of Literature Review
 2.2 Natural rubber (NR)
 2.2.1 Natural rubber and its properties
 2.3 Rubber fillers
 2.3.1 Precipitated silica (PSi)
 2.3.2 Strong filler-filler interaction of silica
 2.3.3 Cure retardation of silica
 2.3.4 Mixing of silica
 2.3.5 Silanes
 2.3.5.1 Silanes and rubber-filler interaction
 2.3.5.2 Silanes and prevention of cure retardation effect
 2.3.5.3 Bis(triethoxysilylpropyl)tetrasulphide (TESPT)
 2.3.6 Clays
 2.3.7 Calcined clay (ClCy)
 2.3.8 Organosilanes and clays
 2.3.9 Effect of CaCO₃ on cure characteristics and mechanical
 Properties of rubber
 2.3.10 Filler hybridization
 2.4 Homogenizing resins
 2.5 Metal soups
 2.6 Rubber cure accelerators
 2.7 Crosslink density on rubber properties
 2.8 Types of sulphidic crosslink on rubber properties
 2.9 Temperature effect on rubber properties

PAGE
1
1
2
5
5
6
10
12
12
14
15
18
21
23
25
26
28
28
29
31
33
34
38
39
40
42
43
44
44
47
49
50
2.10 Rubber mixing
 2.10.1 Mastication 53
 2.10.2 Incorporation 53
 2.10.3 Dispersion 54
 2.10.4 Distribution 56
 2.10.5 Two-roll-mill 56
 2.10.6 Internal mixer 57
2.11 Rubber compression moulding 58
2.12 Mechanical properties: tensile strength (TS), modulus, elongation at break (EB) and tear strength 59
2.13 Rheometer test 61
2.14 Fourier Transform Infrared (FTIR) 62
2.15 Bound rubber content 63
2.16 Factorial design of experiment 65
2.17 Summary of Literature Review 66

3. MATERIALS AND METHODOLOGY 68
3.1 Introduction to methodology 68
3.2 Materials and characterizations 71
 3.2.1 Moisture contents of PSi and ClCy 74
 3.2.2 Analysis of particle size distribution for PSi, ClCy and CaCO3 75
3.3 Protocol of tests 79
3.4 Rheometer test 80
3.5 Tensile tests 81
3.6 Tear test 82
3.7 Crosslink density by solvent penetration method 83
3.8 Fourier transform infrared (FTIR) 84
3.9 Scanning electron microscope (SEM) 85
3.10 Optical microscope 86
3.11 Bound rubber content 86
3.12 Observation on after-cured discolouration tendency 87
3.13 Slippery resistance test 87
3.14 Preparation of compounds 89
3.15 Preparation of vulcanizates 91
3.16 Phase 1: Different combinations of fillers and accelerators 94
 3.16.1 Preparation of main compound for fillers analyses (NRFMB) 95
 3.16.2 Preparation of main compound for accelerators analyses (NRAMB) 96
 3.16.3 Preparation of PSi and ClCy filled masterbatches (PSNMB and CCNMB) 96
 3.16.4 Preparation of different combinations of fillers 98
 3.16.5 Preparation of different combinations of accelerators 101
3.17 Phase 2: Different loadings of fillers and accelerators 104
 3.17.1 Preparation of large scale filled masterbatch (CSNMB) 106
 3.17.2 Preparation of different loadings of fillers and accelerators 108
 3.17.3 Analysis of after-cured discolouration tendency of the vulcanizates with and without TESPT 113
3.17.4 Factorial design of experiment
3.17.5 Affirmation on tear properties of optimum formulation
3.18 Storage safety tests for filled masterbatches (PSNMB, CCNMB and CSNMB)
3.19 Product validation
3.19.1 Fabrication of mold and mechanism of hot tear test
3.19.2 Hot tear test of OF and CF compounds
3.19.3 Comparison of tear reworking and rejection rates in mass production
3.20 Benefit-cost (B/C) analysis

4. RESULTS

4.1 Phase 1: Cure characteristics of compounds added with different combinations of fillers and accelerators
4.2 Phase 1: Crosslink density of vulcanizates added with different combinations of fillers and accelerators
4.3 Phase 1: Mechanical properties of vulcanizates added with different combinations of fillers and accelerators
4.4 Storage safety analyses of filled masterbatches PSNMB and CCNMB
4.5 Phase 2: Cure characteristics of compounds added with different loadings of fillers and accelerators
4.6 Phase 2: Crosslink density of vulcanizates added with different loadings of fillers and accelerators
4.7 Phase 2: Mechanical properties of vulcanizates added with different loadings of fillers and accelerators
4.8 Storage safety analyses of filled masterbatch CSNMB
4.9 Bound rubber content of filled masterbatch CSNMB conditioned for 6 months of prolonged storage
4.10 Phase 2: Bound rubber content of CM16 to CM21
4.11 Phase 2: Cure characteristics, crosslink density and mechanical properties of optimum (TM1) and current (TM2) formulations
4.12 Phase 2: CaCO₃ particle counts on SEM fractured surfaces of TM1 and TM2
4.13 Phase 3: Cure characteristics of compounds for hot tear test
4.14 Phase 3: Results of hot tear test
4.15 Phase 3: Results of punching holes displacements before and after slippery resistance tests for OF and CF
4.16 Phase 3: Cure characteristics of compounds for mass production analyses

5. DISCUSSION

5.1 Phase 1: Cure characteristics of compounds added with different combinations of fillers
5.2 Phase 1: Cure characteristics of compounds added with different combinations of accelerators
5.3 Phase 1: Crosslink density of vulcanizates added with different combinations of fillers
5.4 Phase 1: Crosslink density of vulcanizates added with different combinations of accelerators
5.5 Phase 1: Observation on after-cured discolouration tendency
5.6 Phase 1: Mechanical properties of vulcanizates added with different combinations of fillers
5.7 Phase 1: SEM on particles dispersion and distribution
5.8 Phase 1: Tear behaviour of vulcanizates added with different combinations of fillers
5.9 Phase 1: SEM on the fractured surfaces of vulcanizates added with different combinations of fillers
5.10 Phase 1: FTIR of vulcanizates added with different combinations of fillers
5.11 Phase 1: Mechanical properties of vulcanizates added with different combinations of accelerators
5.12 Phase 1: Tear behaviour of vulcanizates added with different combinations of accelerators
5.13 Phase 1: SEM on the fractured surfaces of vulcanizates added with different combinations of accelerators
5.14 Phase 1: FTIR of vulcanizates added with different combinations of accelerators
5.15 Statistical analyses on the scorch safety of PSNMB and CCNMB
5.16 Phase 2: Cure characteristics of compounds added with different loadings of fillers and accelerators
5.17 Phase 2: Crosslink density of vulcanizates added with different loadings of fillers and accelerators
5.18 Phase 2: Observation on after-cured discolouration tendency
5.19 Phase 2: FTIR of vulcanizates added with different loadings of fillers and accelerators
5.20 Phase 2: Bound rubber content of CM16 to CM21
5.21 Phase 2: Statistical factorial design of experiment (DoE)
5.22 Phase 2: Cure characteristics of optimum (TM1) and current (TM2) formulations
5.23 Phase 2: Crosslink density of TM1 and TM2
5.24 Phase 2: Observation on after-cured discolouration tendency of TM1 and TM2
5.25 Phase 2: Mechanical properties of TM1 and TM2
5.26 Phase 2: SEM analyses on the fractured surfaces of TM1 and TM2
5.27 Phase 2: Tear behaviour of TM1 and TM2
5.28 Phase 2: FTIR analyses of TM1 and TM2
5.29 Statistical and FTIR analyses on the scorch safety of CSNMB
5.30 Bound rubber content of CSNMB throughout 6 months of storage
5.31 Phase 3: Cure characteristics of hot tear test compounds
5.32 Discussions of hot tear test
5.33 Phase 3: Optical and SEM analyses on the fractured surfaces of OF and CF
5.34 Phase 3: Slippery resistance test
5.35 Phase 3: Comparison of colour shades
5.36 Discussion of benefit-cost analysis
6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 272
6.1 Conclusions 272
6.2 Research contributions 276
6.3 Recommendations for future research 278

REFERENCES 279
APPENDIX 298
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Rejection and reworking rates of rubber moulded mats from 2009 to 2011</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Technical parameters of TSR-L defined in ISO 2000</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Compositions of CV, semi-EV and EV sulphur vulcanization systems</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Material specifications and supplier sources</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Moisture content of ClCy</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Moisture content of PSi</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>List of tests</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>Test parameters of rheometer</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Machinery specifications of laboratory two-roll mill</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Machinery specifications of 110 litre internal mixer</td>
<td>90</td>
</tr>
<tr>
<td>3.8</td>
<td>Machinery specifications of production two-roll mill</td>
<td>91</td>
</tr>
<tr>
<td>3.9</td>
<td>Machinery specifications of 250 tonnage compression press</td>
<td>91</td>
</tr>
<tr>
<td>3.10</td>
<td>Process parameters of compression moulding</td>
<td>93</td>
</tr>
<tr>
<td>3.11</td>
<td>Formulation of NRFMB</td>
<td>95</td>
</tr>
<tr>
<td>3.12</td>
<td>Mixing parameters of NRFMB</td>
<td>95</td>
</tr>
<tr>
<td>3.13</td>
<td>Formulation of main compound for accelerators loading (NRAMB)</td>
<td>96</td>
</tr>
<tr>
<td>3.14</td>
<td>Mixing parameters of NRAMB</td>
<td>96</td>
</tr>
<tr>
<td>3.15</td>
<td>Formulation of PSNMB and CCNMB</td>
<td>97</td>
</tr>
<tr>
<td>3.16</td>
<td>Mixing parameters of PSNMB and CCNMB</td>
<td>97</td>
</tr>
<tr>
<td>3.17</td>
<td>Different combinations and identification codes of mixed fillers</td>
<td>98</td>
</tr>
<tr>
<td>3.18</td>
<td>Mixing parameters of different fillers combinations</td>
<td>99</td>
</tr>
<tr>
<td>3.19</td>
<td>Mixing parameters of sulphur adding for different combinations of fillers</td>
<td>100</td>
</tr>
<tr>
<td>3.20</td>
<td>Breakdown ingredients of different fillers combinations</td>
<td>101</td>
</tr>
</tbody>
</table>
3.21 Different combinations and identification codes of mixed accelerators 102
3.22 Mixing parameters of different accelerators combinations 102
3.23 Mixing parameters of sulphur adding for different accelerators combinations 102
3.24 Breakdown ingredients of different accelerators combinations 103
3.25 Formulation of BMCMB 104
3.26 Current formulation of rubber moulded mat 105
3.27 Mixing sequence and parameters of BMCMB 106
3.28 Formulation of CSNMB 107
3.29 Mixing sequence and parameters of CSNMB 108
3.30 Breakdown ingredients of Phase 2 analysis 109
3.31 Different combinations of CSNMB and accelerators in Phase 2 analysis 110
3.32 Mixing parameters in Phase 2 analysis 112
3.33 Mixing parameters of sulphur adding in Phase 2 analysis 113
3.34 Formulations of CSNMB with TESPT (CSNMB-T) and without TESPT (CSNMB-N) 114
3.35 Sequence and mixing parameters of CSNMB-T and CSNMB-N 114
3.36 Compounds added with CSNMB-T and CSNMB-N 115
3.37 Mixing parameters for compounds added with CSNMB-T and CSNMB-N 115
3.38 Mixing parameters of sulphur adding for compounds with CSNMB-T and CSNMB-N 116
3.39 Mixed compositions of TM1 and TM2 118
3.40 Breakdown ingredients of TM1 and TM2 118
3.41 Mixing parameters of TM1 and TM2 119
3.42 Mixing parameters of TM1 and TM2 with addition of sulphur 119
3.43 Formulation of NRSMB 120
3.44 Mixing parameters of NRSMB 120
3.45 Mixing parameters of storage safety for PSNMB and CCNMB 123
3.46 Mixing parameters of storage safety for CSNMB 124
3.47 Breakdown ingredients of OF and CF 133
3.48 Ingredients of mixing of OF and CF 134
3.49 Mixing parameters of OF and CF for hot tear test 134
3.50 Mixing parameters of sulphur adding for OF and CF for hot tear test
3.51 Process parameters of moulding for hot tear test
3.52 Mixing parameters of OF and CF for mass production validation
3.53 Mixing parameters of sulphur adding for OF and CF for mass production validation
3.54 Process parameters of moulding for mass production validation
3.55 Calculation of the values of compound specific gravity for OF and CF
3.56 Factors of benefits and disadvantage of B/C analysis
4.1 Cure characteristics of compounds with different combinations of fillers (Phase 1)
4.2 Cure characteristics of compounds with different combinations of accelerators (Phase 1)
4.3 Crosslink density of compounds with different combinations of fillers and accelerators (Phase 1)
4.4 Mechanical properties of vulcanizates with different combinations of fillers (Phase 1)
4.5 Mechanical properties of vulcanizates with different combinations of accelerators (Phase 1)
4.6 T₂ of PSNMB and CCNMB conditioned at cold and ambient storages
4.7 CRI of PSNMB and CCNMB conditioned at cold and ambient storages
4.8 Cure characteristics of compounds with different loadings of fillers and accelerators (Phase 2)
4.9 Crosslink density of vulcanizates with different loadings of fillers and accelerators (Phase 2)
4.10 Mechanical properties of vulcanizates with different loadings of fillers and accelerators (Phase 2)
4.11 T₂ and CRI of CSNMB conditioned for 6 months at ambient condition
4.12 Bound rubber content of CSNMB conditioned for 6 months at ambient condition
4.13 Bound rubber content of CM16-CM21 (Phase 2)
4.14 Cure characteristics, crosslink density and mechanical properties of TM1 and TM2 (Phase 2)
4.15 Cure characteristics of OF and CF for hot tear test (Phase 3)
4.16 Results of hot tear test in Phase 3 analysis
4.17 Distances of punching holes before and after slippery resistance tests for OF and CF

4.18 Cure characteristics of OF and CF for mass production analyses (Phase 3)

5.1 Storage period and T2 for PSNMB at cold and ambient storage conditions

5.2 Storage period and T2 for CCNMB at cold and ambient storage conditions

5.3 Storage period and CRI for PSNMB at cold and ambient storage conditions

5.4 Storage period and CRI for CCNMB at cold and ambient storage conditions

5.5 Input data of Design Expert for design of experiment (DoE)

5.6 ANOVA of TS with response surface quadratic model

5.7 ANOVA of tear strength with response surface quadratic model

5.8 Dependant responses fixed for statistical optimization

5.9 CSNMB on 6 months storage and the data of T2 and CRI

5.10 Calculation of chi-square statistic

5.11 Tabulation of partial-tear and full-tear of suction cups for OF and CF

5.12 Calculation of compound cost for per batch of CSNMB

5.13 Calculation on the increase of compound cost for per batch of OF

5.14 Reduction of rejection and reworking rates comparison between OF and CF

5.15 Cost calculation on the reductions of product rejection and reworking rates

5.16 Cost calculation on the reduction of compound input

5.17 Cost calculation of production cost before and after implementing OF
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic diagram of a suction cup of rubber moulded mat</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Synergistic effect of DPG/MBTS combination</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Chemical structure of natural rubber cis-1,4 polyisoprene</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Tetrahedron of silica and networks</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Particles formation during precipitation</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Absorption of moisture on silica surface</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>CRI vs silica content of rubber compounds measured by Idrus et al. (2011) [♦], Prasertsri and Rattanasom (2012) [■], Hassan et al. (2012) [▲], Hosseini and Kashani (2014) [●]</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Reaction of TESPT with silica during mixing</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Reaction of TESPT with rubber in the presence of elemental sulfur</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Structure of kaolinite clay</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>Forming of MBTS cure acceleration complex in the presence of soluble Zn(^{2+})</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Stress at different strains as a function of temperature</td>
<td>51</td>
</tr>
<tr>
<td>2.11</td>
<td>Stabilization of atmospheric oxygen during rubber mastication</td>
<td>53</td>
</tr>
<tr>
<td>2.12</td>
<td>Illustrations of filler incorporation for lamination mechanism (a) and comminuting mechanism (b)</td>
<td>54</td>
</tr>
<tr>
<td>2.13</td>
<td>Two-wing tangential internal mixer rotors with the primary circulation flow paths</td>
<td>58</td>
</tr>
<tr>
<td>2.14</td>
<td>Rheometer curve</td>
<td>61</td>
</tr>
<tr>
<td>2.15</td>
<td>Rubber chains absorption on filler aggregates in rubber-filler interaction. Single attachment (a), multiple attachments (b) and inter-aggregate attachments (b)</td>
<td>64</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of methodology</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>PSD and volume weighted mean of ClCy</td>
<td>76</td>
</tr>
</tbody>
</table>

xiii
5.11 Average crosslink density (V_e) for various combinations of accelerators
5.12 Comparisons of vulcanizates for various combinations of fillers and accelerators against the standard references ND6 and MD respectively to determine the after-cured discoloration tendency
5.13 Average tensile strength (TS) for various combinations of fillers
5.14 Average elongation at break (EB) for various combinations of fillers
5.15 Average modulus 300 % ($T_{300%}$) for various combinations of fillers
5.16 Average tear strength for various combinations of fillers
5.17 SEM back scattered micrograph with magnification of 1000x showing ClCy raw powder (a) and EDX on elemental compositions (b)
5.18 SEM back scattered micrograph (a) with magnification of 1000x showing PSi raw powder and EDX on elemental compositions (b)
5.19 SEM micrograph (BSE) of ND6 (a) with magnification of 1000x, accelerating voltage of 20 kV and EDX analyses on ZnO (b) and CaCO$_3$ (c)
5.20 SEM micrograph (BSE) of NC (a) with magnification of 1000x, accelerating voltage of 20 kV and EDX analysis on ClCy (b)
5.21 SEM micrograph (BSE) of NS (a) with magnification of 1000x, accelerating voltage of 20 kV and EDX analysis on PSi (b)
5.22 SEM micrograph (BSE) of ND3 (a) with magnification of 1000x, accelerating voltage of 20 kV and EDX analyses on ClCy (b) and PSi (c)
5.23 Vicinity of the tear tip and the overall tear path of trouser tear piece observed for the analysis of tear behaviour
5.24 Optical micrographs (20x) and digital photographs for tear behaviours at crack tips and the overall tear paths for ND6 (a), NC (b), ND2 (c), ND4 (d) and NS (e)
5.25 SEM fractured surface micrograph (SEI) of ND6 (a) with magnification of 1000x, accelerating voltage of 15 kV and EDX analysis on CaCO$_3$ (b)
5.26 SEM fractured surface micrograph (SEI) of NC (a) with magnification of 1000x, accelerating voltage of 15 kV and EDX analyses on CaCO$_3$ (b) and ClCy (c)
5.27 SEM fractured surface micrograph (SEI) of NS (a) with magnification of 1000x, accelerating voltage of 15 kV and EDX analyses on CaCO$_3$ (b) and PSi (c)
5.28 SEM fractured surface micrograph (SEI) of ND2 (a) with magnification of 1000x, accelerating voltage of 15 kV and EDX analyses on ClCy (b) and PSi (c)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.29</td>
<td>SEM fractured surface micrograph (SEI) of ND4 (a) with magnification of 1000x, accelerating voltage of 15 kV and EDX analyses on PSi (b) and ClCy (c)</td>
</tr>
<tr>
<td>5.30</td>
<td>FTIR spectra of CaCO₃, PSi and ClCy</td>
</tr>
<tr>
<td>5.31</td>
<td>FTIR spectra for ND6, NC, ND2, and NS</td>
</tr>
<tr>
<td>5.32</td>
<td>Average TS for various combinations of accelerators</td>
</tr>
<tr>
<td>5.33</td>
<td>Average EB for various combinations of accelerators</td>
</tr>
<tr>
<td>5.34</td>
<td>Average $T_{300%}$ for various combinations of accelerators</td>
</tr>
<tr>
<td>5.35</td>
<td>Average tear strength for various combinations of accelerators</td>
</tr>
<tr>
<td>5.36</td>
<td>Optical micrographs (20x) and digital photographs for tear behaviour at the crack tips and the overall tear paths of MD (a), MZ (b) and MZD (c)</td>
</tr>
<tr>
<td>5.37</td>
<td>SEM micrographs (SEI) with magnification of 1000x, accelerating voltage of 15 kV at crack tips and centre tear paths of MD (a & b), MZ (c & d) and MZD (e & f)</td>
</tr>
<tr>
<td>5.38</td>
<td>FTIR spectra for MD, MZ and MZD</td>
</tr>
<tr>
<td>5.39</td>
<td>T_2 for different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.40</td>
<td>T_{90} for different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.41</td>
<td>CRI for different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.42</td>
<td>Δtorque for different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.43</td>
<td>Crosslink density for different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.44</td>
<td>Comparison of the compounds and vulcanizates for CM16 to CM21 to determine the discoloration tendencies</td>
</tr>
<tr>
<td>5.45</td>
<td>Comparison of the compounds and vulcanizates for CM17 to CM20 without added (a) and added (b) with TESPT against CM16 to determine the after-cured discoloration tendencies</td>
</tr>
<tr>
<td>5.46</td>
<td>FTIR spectra of different loadings of fillers and accelerators</td>
</tr>
<tr>
<td>5.47</td>
<td>Response surface diagram (a) and contour plot (b) of tensile strength, TS</td>
</tr>
<tr>
<td>5.48</td>
<td>Response surface diagram (a) and contour plot (b) of tear strength</td>
</tr>
<tr>
<td>5.49</td>
<td>Perturbation of factors fillers (X_1) and accelerators (X_2) at the reference point (fillers = 9.14 phr, accelerators = 1.77 phr) for tensile strength, TS</td>
</tr>
<tr>
<td>5.50</td>
<td>Perturbation of factors fillers (X_1) and accelerators (X_2) at the reference point (fillers = 9.14 phr, accelerators = 1.77 phr) for tear strength</td>
</tr>
<tr>
<td>5.51</td>
<td>Normal probability plot of residual for tensile strength, TS</td>
</tr>
<tr>
<td>5.52</td>
<td>Normal probability plot of residual for tear strength</td>
</tr>
</tbody>
</table>
5.53 Characteristics of optimum (TM1) and current (TM2) formulations 232
5.54 Crosslink density of TM1 and TM2 233
5.55 Comparison of compounds and vulcanizates on discoloration tendency for TM1 and TM2 234
5.56 Mechanical properties of TM1 and TM2 235
5.57 SEM fractured surface micrographs (SEI) with magnification of 1000x, accelerating voltage of 15 kV for TM1 (a) and TM2 (b) and EDX analyses on CaCO₃ 237
5.58 Optical micrographs (20 X) and digital photographs for tear behaviour at the crack tips and the overall tear paths for TM1 (a) and TM2 (b) 239
5.59 FTIR spectra of TM1 and TM2 240
5.60 FTIR spectra of CSNMB conditioned for one, three and six month(s) 242
5.61 Bound rubber content for CSNMB throughout 6 months of storage period 243
5.62 Cure characteristics of optimum (OF) and current (CF) formulations 245
5.63 Percentages of samples with fractured suction cups (a) and overall fractured suction cups (b) 247
5.64 Partial-tear (a) and full-tear (b) of suction cups 251
5.65 Bottom view of the hot tear test vulcanize showing the 7th row of suction cups 253
5.66 Trends of release of suction cups from the mould for OF at the respective mould opening distance 254
5.67 Trends of release of suction cups from the mould for CF at the respective mould opening distance 255
5.68 Diagram to illustrate the different fractured regions of a suction cup 257
5.69 Optical fractured surface micrographs (20 X) for OF (a) and CF (b) on the fractured side 1, centre and side 2 258
5.70 SEM fractured surface micrographs (SEI) for CF (a, c, e) and OF (b, d, f) at magnification of 1000x, accelerating voltage of 15 kV on fractured side 1, centre and side 2 260
5.71 Slippery resistance test for 3 samples of the finished products produced from OF 262
5.72 Colour shade comparison between the finished products of CF (a,c,e) and OF (b,d,f) 264
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDICE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data of cure characteristics – Phase 1</td>
<td>298</td>
</tr>
<tr>
<td>B</td>
<td>Data of crosslink density – Phase 1</td>
<td>299</td>
</tr>
<tr>
<td>C</td>
<td>Data of mechanical properties – Phase 1</td>
<td>300</td>
</tr>
<tr>
<td>D</td>
<td>Detailed breakdowns of formulations – Phase 2</td>
<td>309</td>
</tr>
<tr>
<td>E</td>
<td>Data of cure characteristics – Phase 2</td>
<td>317</td>
</tr>
<tr>
<td>F</td>
<td>Data of crosslink density – Phase 2</td>
<td>319</td>
</tr>
<tr>
<td>G</td>
<td>Data of mechanical properties – Phase 2</td>
<td>321</td>
</tr>
<tr>
<td>H</td>
<td>Main computer interfaces of Design Expert</td>
<td>324</td>
</tr>
<tr>
<td>I</td>
<td>Data of storage safety and bound rubber content of CSNMB</td>
<td>327</td>
</tr>
<tr>
<td>J</td>
<td>Bound rubber content of CM16 – CM21</td>
<td>328</td>
</tr>
<tr>
<td>K</td>
<td>Detailed breakdowns of formulations – TM1 and TM2</td>
<td>329</td>
</tr>
<tr>
<td>L</td>
<td>Data of cure characteristics and crosslink density – TM1 and TM2</td>
<td>330</td>
</tr>
<tr>
<td>M</td>
<td>Data of mechanical properties – TM1 and TM2</td>
<td>331</td>
</tr>
<tr>
<td>N</td>
<td>Data of cure characteristics – Phase 3</td>
<td>332</td>
</tr>
<tr>
<td>O</td>
<td>Table of critical values for Pearson’s r</td>
<td>333</td>
</tr>
<tr>
<td>P</td>
<td>Table of Critical Values for Pearson’s Chi-square χ^2</td>
<td>334</td>
</tr>
<tr>
<td>Q</td>
<td>Analysis of particle size distribution</td>
<td>335</td>
</tr>
<tr>
<td>R</td>
<td>Spectra of FTIR</td>
<td>337</td>
</tr>
<tr>
<td>S</td>
<td>Pictures of research</td>
<td>338</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

NR - Natural rubber
EPDM - Ethylene propylene diene terpolymer
SBR - Styrene butadiene rubber
ENR - Epoxidized natural rubber
TSR - Technically specified rubber
PS - Precipitated silica
ClCy - Calcined clay
CaCO₃ - Calcium carbonate
CB - Carbon Black
ZnO - Zinc oxide
TiO₂ - Titanium dioxide
KBr - Potassium bromide
TESPT - Bis(triethoxysilylpropyl)tetrasulphide
MBTS - Mercaptobenzothiazole disulphide
ZMBT - Zn-2-mercaptobenzo thiazole
dPG - Diphenyl guanidine
PEG - Polyethylene glycol
A/S - Accelerator to sulphur ratio
phr - Part per hundred rubber
EV - Efficient vulcanization
CV - Conventional vulcanization
FTIR - Fourier transform infrared
ATR - Attenuated total reflectance
T₂ - Scorch time
T₉₀ - Optimum 90 % cure time
CRI - Cure rate index
Mₗ - Minimum torque
Mₜₗ - Maximum torque