Faculty of Electronic and Computer Engineering

ENHANCEMENT PERFORMANCE OF SPLIT RING RESONATOR STRUCTURE ON MICROSTRIP PATCH ANTENNA

Nornikman Hassan

Doctor of Philosophy

2016
ENHANCEMENT PERFORMANCE OF SPLIT RING RESONATOR STRUCTURE ON MICROSTRIP PATCH ANTENNA

NORNIKMAN HASSAN

A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled "Enhancement Performance of Split Ring Resonator Structure on Microstrip Patch Antenna" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature:
Name:
Date:
APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Doctor of Philosophy (PhD)

Signature :é é é é é ...
Supervisor Name :é é é é é é é é é é é
Date :é é é é é é é é ...
DEDICATION

Thanks to Allah S.W.T and Rasulullah S.A.W. Thanks also to my beloved mother, Puan Asmah bt Abu, my father, Mej (B) Hassan b. Mahadi and to all my siblings.
Metamaterial is a type of artificial structure that is not found in the nature. This structure has become an interest among many due to its extraordinary response to electromagnetic waves. The split ring resonator is an example of a metamaterial structure, which has the potential to improve the performances of components in microwaves without changing the materials or with additional radiators. First, the possibility to reduce the size of patch antenna while maintaining the acceptable performance at 2.4 GHz with various split ring resonator configurations studied. Next, the ability to produce multi bandwidth performance for Minkowski Island antenna with Minkowski Island split ring resonator had performed. The antenna had designed and simulated with Microwave CST software. Then, the proposed antenna had been fabricated and measured. Meanwhile, the Minkowski Island split ring resonator possessed the ability to reduce the overall physical size of Minkowski patch antenna up to 75.6 % compare with basic rectangular antenna. Then, the Minkowski Island split ring resonator could create multiband resonant frequency at 2.4 GHz, 3.5 GHz, and 5.2 GHz for the Minkowski Island antenna with return loss of - 21.945 dB, - 17.154 dB and - 16.536 dB with gain of 0.874 dB, 1.410 dB and 2.940 dB, respectively. Besides, the resonant frequency could also be controlled by using different combinations size and location of Minkowski Island split ring resonators. The overall size of the antenna still could be maintained although additional split ring resonators were used. Therefore, the multiband system with compact design can be realized to improve the mobility of wireless communication system devices.
ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Professor Madya Dr. Badrul Hisham Ahmad, for encouragement, guidance critics and friendship. I am also very thankful to my co-supervisors Professor Madya Dr. Abdul Rani Othman for their guidance, advices and motivation. I also would like to express my deep and sincere thanks to Dr. Mohamad Zoinol Abidin Abd Aziz and Dr. Mohd Ridhuan Ahmad for his guidance, support and encouragement. His door has always been opened and I could always talk to them no matter how busy they were. I also wanted to say thanks to Prof Madya Dr. Fareq Malek from UniMAP for his helps. Without their continued support and interest, this thesis would not have been same as presented here. I am also indebted to government of Malaysia for funding, my UTeM also deserve special thanks for their assistance in supplying the relevant literatures. My fellow postgraduate students should also be recognized for their support ì Dr. Azwan, Saiful, Ammar, Jitvinder, Sam, Ariffin, Khairy Zahari, Mohan, En. Sani, Khairy Ismail, Zaki, Hafize, Fadhli, Hafiz, Haffiz, Hairi, Thoriq, Hanif, Zuhair, Syafiq, Yusof, Thailis, Hasbullah, Ong and Mizan. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.
TABLE OF CONTENTS

DECLARATION i
APPROVAL ii
DEDICATION iii
ABSTRACT iv
ABSTRAK v
ACKNOWLEDGEMENT vi
TABLE OF CONTENTS vii
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF ABBREVIATION x
LIST OF PUBLICATIONS xi
LIST OF AWARDS xii

CHAPTER

1. INTRODUCTION 1
 1.0 Research Background 1
 1.1 Problem Statement 3
 1.2 Objectives 5
 1.3 Scope of Research 6
 1.4 Research Methodology 6
 1.5 Contributions 7
 1.6 Thesis Organization 8

2. LITERATURE REVIEW 10
 2.0 Introduction 10
 2.1 Metamaterial 11
 2.2 Split Ring Resonator (SRR) 13
 2.3 Types of Split Ring Resonator (SRR) 14
 2.3.1 Edge Couple Split Ring Resonator (EC-SRR) 15
 2.3.2 Broadside Couple Split Ring Resonator (BC-SRR) 19
 2.3.3 Nonbianistropic Couple Split Ring Resonator 19
 2.3.4 Spiral Split Ring Resonator (S-SRR) 20
 2.3.5 Other Types of Split Ring Resonator (SRR) 21
 2.4 Microwave Applications Technology with SRR 23
 2.4.1 Frequency Selective Surface with SRR 23
 2.4.2 Microwave Filter with SRR 26
 2.4.3 Oscillator with SRR 30
2.4.4 Microwave Absorber with SRR 31
2.4.5 Amplifier with SRR 38
2.4.6 Patch Antenna with SRR 39
2.5 Patch Antenna Technology 45
 2.5.1 Basic Patch Antenna 46
 2.5.2 Bow-tie Antenna 50
 2.5.3 Fractal Antenna 52
2.6 Patch Antenna Parameters 57
 2.6.1 Return Loss 57
 2.6.2 Radiation Pattern 58
 2.6.3 Polarization 58
 2.6.4 Gain 59
 2.6.5 Bandwidth 60
 2.6.6 Input Impedance 60
2.7 Summary 65

3. METHODOLOGY 67
 3.0 Introduction 67
 3.1 Characterization of SRR 69
 3.1.1 Single Split Ring Resonator Type (Design SRR 1) 71
 3.1.2 Double Split Ring Resonator Type (Design SRR 2) 76
 3.1.3 Array Split Ring Resonator Type (Design SRR 3) 77
 3.2 Input Impedance of SRR 78
 3.3 Simulation of SRR Unit Cell 79
 3.4 Design Process of Patch Antenna 80
 3.4.1 Basic Microstrip Patch Antenna (Design Antenna P) 84
 3.4.2 Bow-tie Microstrip Patch Antenna (Design Antenna Q) 87
 3.4.3 Minkowski Patch Antenna (Design Antenna R) 88
 3.4.4 Minkowski Island Patch Antenna (Design Antenna S) 91
 3.5 Simulation Setup for Patch Antenna 92
 3.6 Fabrication of Patch Antenna 93
 3.7 Measurement of Patch Antenna 97
 3.8 Summary 100

4. RESULT, ANALYSIS AND DISCUSSION 101
 4.0 Introduction 101
 4.1 Microstrip Patch Antenna (Design Antenna P) 102
 4.1.1 Rectangular Microstrip Patch Antenna (Design Antenna Pa) 103
 4.1.2 Square Microstrip Patch Antenna (Design Antenna Pb) 106
 4.1.3 Rectangular Microstrip Patch Antenna with Single SRR (Design Antenna Pa1) 111
 4.1.4 Rectangular Microstrip Patch Antenna with Double SRR (Design Antenna Pa2) 128
 4.1.5 Rectangular Microstrip Patch Antenna with Array SRR (Design Antenna Pa3) 131
 4.1.6 Input Impedance of Rectangular Patch Antenna 134
 4.1.7 Comparison and Optimization of the Rectangular Patch Antenna 139
 4.2 Bow-tie Microstrip Patch Antenna (Design Antenna Q) 142
4.2.1 Bow-tie Microstrip Patch Antenna (Design Antenna Q) 143
4.2.2 Bow-tie Microstrip Patch Antenna with Single SRR (Design Antenna Q1) 147
4.2.3 Bow-tie Microstrip Patch Antenna with Double SRR (Design Antenna Q2) 154
4.2.4 Input Impedance of Bow-tie 157
4.2.5 Comparison and Optimization of the Bow-tie Patch Antenna 162
4.3 Minkowski Patch Antenna (Design Antenna R) 165
4.3.1 Minkowski Patch Antenna (Design Antenna Ra) 166
4.3.2 Minkowski Patch Antenna (Design Antenna Rb) 170
4.3.3 Minkowski Patch Antenna with SRR (Design Antenna Rb1 & Rb3) 174
4.3.4 Input Impedance of the Minkowski Patch Antenna 179
4.4 Minkowski Island Patch Antenna (Design Antenna S) 184
4.4.1 Minkowski Island Patch Antenna (Design Antenna S) 185
4.4.2 Minkowski Island Patch Antenna with Array SRR (Design Antenna S3) 187
4.5 Summary 194

5. CONCLUSION 195
5.0 Conclusion 195
5.1 Suggestion and Future Work 196

REFERENCES 198
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Review of size reduction effect on antenna design with split ring resonator</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>Review of multiband effect on antenna design with split ring resonator</td>
<td>44</td>
</tr>
<tr>
<td>2.3</td>
<td>Effect of input impedance matching in smith chart</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>FR-4 substrate properties for SRR structure</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>The dimension of the several parameters for various designs of S-SRR on FR-4 substrate</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Antenna designs specification</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>FR-4 substrate properties</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>Dimension of the basic microstrip patch antenna</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Different results for parameters in the basic microstrip patch antenna, Design Antenna Pa</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Dimension of the square microstrip patch antenna, Design Antenna Pb</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>The results for different parameters in the square shaped microstrip patch antenna, Design Antenna Pb</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>The dimension of the microstrip patch antenna with different</td>
<td>112</td>
</tr>
</tbody>
</table>
4.6 Comparison of different parameters between basic patch antenna and single split ring resonator patch antenna

4.7 The dimension of the microstrip patch antenna with spiral resonator, Design Antenna Pa1-iv

4.8 Return loss of basic microstrip patch antenna and microstrip patch antenna with spiral split ring resonator, Design Antenna Pa1-iv

4.9 Dimension of the microstrip patch antenna with different locations of quadruple P-spiral split ring resonator structure

4.10 Comparison of different parameters for microstrip patch antenna with different locations of quadruple P-spiral split ring resonators, Design Antenna Pa1-v

4.11 The dimension of the microstrip patch antenna with different locations of Minkowski Island split ring resonators, Design Antenna Pa1-vi

4.12 Comparison of different parameters between the basic patch antenna and the microstrip patch antenna with different locations of Minkowski Island split ring resonators, Design Antenna Pa1-v

4.13 The dimension of the microstrip patch antenna with double square split ring resonator, Design Antenna Pa2-ii.

4.14 Comparison of different parameters between the basic patch antenna and the microstrip patch antenna with double square split ring resonator, Design Antenna Pa2-i.

4.15 Comparison of different parameters between the basic patch antenna
and the microstrip patch antenna with an array of split ring resonator structures

4.16 Input impedance (real and imaginary value) of rectangular patch antenna with array double square split ring resonator, Design Antenna, $Pa3-i-i$

4.17 Comparison of the return loss of different stage of square split ring resonator structure on rectangular patch antenna

4.18 The dimension of the basic bow-tie microstrip patch antenna, Design Antenna Q

4.19 The performance of parameter for the basic bow-tie microstrip patch antenna, Design Antenna Q

4.20 The dimension of the bow-tie microstrip patch antenna with different structures in the single split ring resonators, Design Antenna $Q1$

4.21 Comparison of different parameters for bow-tie microstrip patch antenna with different single split ring resonator structures (simulation and measurement)

4.22 Comparison of different parameters for bow-tie microstrip patch antenna with different folded split ring resonator structures

4.23 The dimension of the bow-tie microstrip patch antenna with different structures of the double square split ring resonators, Design Antenna $Q3-ii$

4.24 Comparison of different parameters between the basic bow-tie microstrip patch antenna, Design Antenna Q, and the bow-tie microstrip patch antenna with double square split ring resonator
4.25 Input impedance of the bow-tie patch antenna with double square split ring resonator, Design Antenna, $Q2-i$

4.26 Design comparisons between different stages of square split ring resonator structure

4.27 Simulation and measurement result of the bow-tie antenna with double square split ring resonator structure (optimize), Design Antenna $Q2-i$ (optimize)

4.28 The dimension of the bow-tie microstrip patch antenna with split ring resonator, (Design Antenna Ra)

4.29 Comparison of different parameters between the square microstrip patch antenna and the first iteration Minkowski patch antenna (simulation and measurement)

4.30 The dimensions of the second iteration of Minkowski patch antenna, Design Antenna Rb

4.31 Comparison of different parameters between the square microstrip patch antenna and the first and the second iterations of Minkowski patch antenna

4.32 The dimension of the second iteration of the Minkowski patch antenna with quadruple p-spiral split ring resonator structure, Design Antenna $Rb1-vi$ and $Rb1-vi$

4.33 Comparison of different parameters for the second iteration of the Minkowski patch antenna, and the second iteration of the Minkowski patch antenna with quadruple p-spiral split ring resonator structure
4.34 Input impedance (real and imaginary value) of Minkowski patch antenna with 2-N quadruple P-spiral split ring resonator, Design Antenna R3b-vi

4.35 The dimension of the basic Minkowski Island patch antenna, Design Antenna S

4.36 The comparison of performance for the different parameters of the basic Minkowski Island patch antenna, Design Antenna S

4.37 The dimension of the Minkowski Island microstrip patch antenna with split ring resonator Design Antenna S3-vi-4N and Design Antenna S3-vi-64N

4.38 The comparison of different parameters of the Minkowski Island patch antenna with Minkowski Island split ring resonator structure (Design Antenna S3-vi-4N and Design Antenna S3-vi-6N)

4.39 The parametric study of different widths of Minkowski Island split ring resonator at the Minkowski Island patch antenna, Design Antenna S3-vi-6N

4.40 The comparison of performance for the Minkowski Island patch with Minkowski Island split ring resonator, Design Antenna S3-vi-6N (simulation and measurement)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The methodology for the overall process on the structure of SRR and its applications</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>(a) Array structure of split ring resonator by (Pendry et al., 1999), (b) the different designs of split ring resonator and closed ring resonator</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The structure of split ring resonator with wire lines (Padilla et al., 2006)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>The capacitance across the rings causes the structure to be resonant for (a) SRR, and (b) swiss roll structure, (Ramakrishna et al., 2005)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>SRR structure and its equivalent circuit, (a) SRR, (b) Complementary SRR (Baena et al., 2005)</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Equivalent circuits of EC-SRR and complementary EC-SRR (Marques et al., 2003b). (a) EC-SRR, and (b) complimentary split ring resonator</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>The current intensity flow on BC-SRR (Marques et al., 2002)</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>(a) The structure of nonbianistropic split ring resonator structure, (b) equivalent circuit for basic structure of NB-SRR, and (c) equivalent circuit for complementary structure of NB-SRR (Baena, et al., 2005)</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>The capacitance across the rings causes the structure to be resonant</td>
<td>20</td>
</tr>
</tbody>
</table>
for (a) spiral resonator structure, (Ramakrishna et al., 2005)

2.9 (a) The structure of S-SRR, (b) equivalent circuit for basic structure of S-SRR, (c) equivalent circuit for complementary structure of S-SRR (Baena et al., 2005)

2.10 Open split ring resonator (Karthikeyan et al., 2010)

2.11 Open split ring resonator (He et al., 2010)

2.12 Various shapes of hexagon and square SRR by (Bingham et al., 2008)

2.13 (a) SRR-FSS, (b) unit cell configuration of the SRR-FSS (Ucar et al., 2008)

2.14 (a) FSS with I-SRR, and (b) unit cell of FSS with I-SRR (Ortiz et al., 2013)

2.15 A novel frequency selective surface with strips of split ring resonator, (a) top view of the SRR structure, and (b) frequency selective surface with strips of split ring resonator structure (Zhang et al., 2010)

2.16 SRR based microstrip band-reject filter (Oznazli et al., 2006)

2.17 Structure of SRR-DGS band-pass filter (a) Simulation, (b) Fabricated (front view), and (c) Fabricated (ground view) (Hou et al., 2008)

2.18 (a) Bandpass waveguide filter with EC-SRR structure, and (b) single unit of EC-SRR structure (Bahrami et al., 2008)

2.19 Dual band filter with nested SRR structure, (a) simulation stage, and (b) fabricated stage (Liu et al., 2013)

2.20 The VCO using a tunable metamaterial transmission line based on VLSRR by (Choi et al., 2007), (a) simulation stage, and (b)
2.21 The dual band terahertz metamaterial absorber with dual band ELC resonator (a) Perspective view of the absorber, (b) Top view of the absorber, and (c) Photograph of a portion of the fabricated absorber (array structure) (Tao et al., 2010)

2.22 (a) Geometrical sketch of a microwave absorber based on SRR resonant magnetic inclusions, and (b) The single unit of SRR structure (Bilotti et al., 2009)

2.23 Metamaterial absorber based on split ring resonator structure (Singh et al., 2013), (a) Array structure of split ring resonator metamaterial absorber, single unit of SRR, and (b) Plan view of the SRR

2.24 SRR structures with different angles between the gaps and electric field (Ye et al., 2011)

2.25 Dual-band metamaterial microwave absorber with new structure of SRR (Li et al., 2010), (a) plan view, (b) Perspective view of array structure, and (c) Fabricated version of the dual-band metamaterial microwave absorber

2.26 Three metal layers of terahertz (THz) for metamaterial absorber with cross SRR structure, (a) perspective view, and (b) plan view (Hu et al., 2013)

2.27 Broadband low-reflection metamaterial absorber using ELC-SRR structure, (a) simulation stage, and (b) fabricated stage (Gu et al., 2010)

2.28 Bandwidth enhanced ultra-thin circular metamaterial absorber
(Ghosh et al., 2013)

2.29 (a) Fan shaped SRR, and (b) X-Band Metamaterial Radar Absorber

(Abdalla et al., 2012)

2.30 Band notched UWB amplifier, (a) Simulation stage, and (b) fabricated antenna stage (Chen et al., 2010)

2.31 Plan view and side view of the triple band meandered split ring resonator antenna with $L = 100$ mm, and $W = 48$ mm (Zhu et al., 2011)

2.32 A compact SRR antenna for wireless communication system, (a) simulation, and (b) fabricated (Mrabet et al., 2013)

2.33 UWB antennas with SRR structure, (a) Simulation, and (b) Measurement (Yu et al., 2011)

2.34 Band notched UWB antenna, (a) Simulation stage, and (b) fabricated antenna stage (Kim et al., 2006)

2.35 Broadband periodic endfire antenna with split ring resonator structures (Chao et al., 2012), (a) plan view, and (b) split ring resonator structure

2.36 Basic Shapes of Microstrip Antennas

2.37 Plan view of the patch antenna with microstrip line feed

2.38 Coaxial or probe feed configuration at patch antenna design

Coplanar waveguide (CPW) antenna with several iterations of the Minkowski stage (a) zero iteration, (b) the first iteration, (c) the second iteration, and (d) third iteration (Suganthi et al, 2011)
2.39 Radiating process of rectangular microstrip patch antenna 50
2.40 Basic bow-tie patch antenna 50
2.41 Planar bow-tie dipole array antenna (Kaswiati et al., 2012) 51
2.42 Octagonal ring shaped fractal antenna for wideband application with (a) the first iteration, (b) the second iteration, and (c) the third iteration (Lincy et al., 2013) 53
2.43 Iteration stages of Sierpinski carpet antenna, a) zero iteration, (b) the first iteration, and (c) the second iteration (Ahmad et al., 2012) 53
2.44 Miniaturized dual band patch antenna using Sierpinski fractal (Shrestha et al., 2014), (a) layout, (b) fabricated 54
2.45 Stage development of the Minkowski fractal shaped, (a) zero iteration (initiator), (b) the first iteration, (c) the second iteration, and (d) the third iteration 54
2.46 Coplanar waveguide (CPW) antenna with several iterations of the Minkowski stage (a) zero iteration, (b) the first iteration, (c) the second iteration, and (d) third iteration (Suganthi et al., 2011) 55
2.47 Types of polarization in patch antenna design 59
2.48 Equivalent circuit for matching the lossless antenna to the generator 62
2.49 Matching system of the input impedance in smith chart 64
3.1 Flow chart of the overall process on the SRR structure and its applications 68
3.2 Different stages of SRR structures with its representative symbols 69
3.3 Different shapes of SRR structures with its symbols 70
3.4 The example of square S-SRR structure, Design SRR 1-I, (a) front 71
view, and (b) side view with copper as its conducting material

3.5 The equivalent circuit of the square S-SRR, Design SRR 1-i using an inductor and a capacitor, (a) front view of square SRR, Design SRR 1-i, and (b) equivalent circuit of square SRR, Design SRR 1-i

3.6 The S-SRR structure design with different shapes, (a) circular open SRR structure, Design SRR 1-i, (b) square SRR structure, Design SRR 1-ii, (c) triangular SRR structure, Design SRR 1-iii, spiral SRR structure, Design SRR 1-iv, quadruple P-shaped SRR structure, Design SRR 1-v, and Minkowski Island SRR structure, Design SRR 1-vi

3.7 Resistance and reactance over length (mm) with varying parameters of width, W_x of single unit cell of square SRR structure, (a) resistance over width, W_x, and (b) reactance over width, W_x

3.8 Resistance and Reactance over length (mm) with varying parameters of length of single unit cell of square SRR structure, (a) resistance over length, L_x, and (b) reactance over length, L_x

3.9 The D-SRR structure design, (a) front view of double circular SRR, Design SRR 2-i, (b) front view of double square SRR, Design SRR 2-ii, (c) side view with two layers of substrate and copper conductor

3.10 The array square SRR (A-SRR) structure design, Design C-ii (a) front view of A-SRR, and (b) front view of double circular SRR side view with two layers of substrate and copper conductor

3.11 Flow chart of the overall process of impedance modeling the split ring resonator structure
3.12 Analysis the real and imaginary (resistance and reactance) value of the split ring resonator using matlab programming

3.13 The simulation setup of the SRR structure

3.14 Flow chart of the process (the works on the SRR structure for the design of pyramidal microwave absorber)

3.15 Rectangular microstrip patch antenna, Design Antenna Pa (a) front view of rectangular patch shaped, and (b) side view with three layers of substrate and copper conductor

3.16 Square microstrip patch antenna (optimized design), Design Antenna Pb (a) front view of a rectangular patch shaped, and (b) side view with three layers of substrate and copper conductor

3.17 Microstrip patch antenna with different structures of S-SRR, (a) circular SRR, Design Antenna Pa1-i, (b) square SRR, Design Antenna Pa1-ii, (c) rhombic SRR, Design Antenna Pa1-iii, (d) spiral SRR, Design Antenna Pa1-iv, (e) quadruple P-spiral SRR, Design Antenna Pa1-v, and (f) Minkowski Island square SRR, Design Antenna Pa1-vi

3.18 Bow-tie microstrip patch antenna, Design Antenna Q, (a) Front view of the bow-tie patch shape, and (b) side view with three layers of substrate and copper conductor

3.19 Bow-tie microstrip patch antenna with D-SRR, Design Antenna Q2-ii, (a) front view of bow-tie patch shape, and (b) side view with three layers of substrate and copper conductor

3.20 The first iteration of Minkowski patch antenna, Design Antenna Ra
(a) front view of Minkowski shape, and (b) side with three layers of substrate and copper conductor

3.21 The second iteration of Minkowski patch antenna, Design Antenna Rb (a) front view of Minkowski shape, and (b) side with three layers of substrate and copper conductor

3.22 The second iteration Minkowski patch antenna with quadruple P-spiral SRR structure, (a) Minkowski patch antenna with 1-N of quadruple P-spiral SRR, Design Antenna Rb1-v, (b) Minkowski patch antenna with 2-N of quadruple P-spiral SRR, Design Antenna Rb3-v and (c) Minkowski patch antenna with 3-N of quadruple P-spiral SRR, Design Antenna Rb3-v

3.23 The Minkowski microstrip patch antenna, Design Antenna Sa, (a) front view of Minkowski Island shape, and (b) side with three layers of substrate and copper conductor

3.24 The Minkowski patch antenna with Minkowski Island SRR structure (a) front view of Minkowski Island shape with 4-N Minkowski Island SRR, Design Antenna Sb3-vi, (b) front view of Minkowski Island shape with 6-N Minkowski Island SRR, Design Antenna Sb3-vi, and (c) side with three layers of substrate and copper conductor

3.25 The Minkowski Island patch antenna with Minkowski Island SRR structure, Design Antenna Sb3-vi

3.26 The fabrication process of patch antenna

3.27 Ultra Violet exposure process, (a) printed film using CorelDraw software, (b) Ultra Violet exposure machine