Faculty of Mechanical Engineering

SOUND RADIATION FROM VIBRATING PLATE WITH DIFFERENT BOUNDARY CONDITIONS USING DISCRETE SOURCE TECHNIQUE

Nurain Shyafina binti Ab. Latif

Master of Science in Mechanical Engineering

2016
SOUND RADIATION FROM VIBRATING PLATE
WITH DIFFERENT BOUNDARY CONDITIONS
USING DISCRETE SOURCE TECHNIQUE

NURAIN SHYAFINA BINTI AB. LATIF

A thesis submitted
in fulfillment of the requirements for the degree of Master of Science
in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Sound radiation from vibrating plate with different boundary conditions using discrete source technique” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...

Name : ...

Date : ...

i
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature : ...

Supervisor Name : ...

Date : ...
“To my beloved parents”
ABSTRACT

The study of sound radiation from vibrating plate is an important subject in acoustic and being widely explored throughout years. The aims of this thesis are first to develop sound radiation model from a vibrating plate using discrete elementary source for different boundary conditions such as free-free, simply-supported and clamped-clamped. Secondly, the aim is to validate the radiation efficiency model between the proposed method and the experimental data. Analytical models of the sound radiation a rectangular plate are often based on simply supported edges for its mathematical convenience. Models for other boundary conditions also exist, but mostly these employ rather complicated analytical calculations.

This study presents a mathematical model of the radiation efficiency for a baffled plate using a discrete elementary source model. The plate velocity from each element on the plate has been determined from Finite Element Analysis (FEA) then was inserted into MATLAB for radiation efficiency calculation. The model requires only the knowledge of the spatial distribution vibration velocity of the panel and hence, the surface velocity can be calculated conveniently by using the established mobility equations for different boundary conditions. The model from FEA has validated with theoretical model. After the validation, which the model from FEA shows good agreement with the theoretical model, then the radiation efficiency can be determined using velocity data from FEA modeling. For validation, the experiment was done in small chamber and reverberation chamber. The sound power was measured using reciprocal technique because of its convenient (time efficient, less cost) compared to direct method which needs the use of shaker. The experimental results are presented for free-free and clamped-clamped boundary conditions which show reasonable agreement with the predicted results. On the basis of the results of this research, it can be concluded that the clamped-clamped boundary condition has the highest radiation efficiency compared to free-free and simply-supported boundary conditions. The model to calculate the radiation efficiency from vibrating plate using discrete elementary source has been successfully modeled and validated with the experimental data.
ABSTRAK

ACKNOWLEDGEMENTS

In the name of Allah, The Beneficent, The Merciful

This research was made possible through contributions, support, and encouragement from many individuals. Unfortunately, it is not possible to acknowledge each of them here. First and foremost, I would like to thank ALLAH SWT for the blessing and ability given to me to eventually complete my Master thesis. I would like to give sincere tribute to my supervisor, Assoc. Prof. Dr. Azma Putra for everything. From preliminary ideas to data processing, invaluable guidance, continuous encouragement, and excellent supervision in making this research possible. I really appreciate the consistent support he provided me throughout the research. The good advise, support, and friendship of my second supervisor, Mr. Hairul bin Bakri has been invaluable on both academic and personal level for which I am extremely grateful.

I wish to express my gratitude towards my parents, Ab. Latif bin Ab. Majid and Asmah binti Surip, for their unlimited love. It is because of their prayer that I have become what I am. I could not find a appropriate words that could properly describe my appreciation for their devotion, support, and faith in pursuing my dreams.

Also not to forget staff in the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka and Faculty of Engineering and Built Environment of Universiti Ke-bangsaan Malaysia, Bangi which their names are too numerous to mention, who help me
directly or indirectly throughout the whole project. For my colleagues in ’Acoustics and Vibration Group’, thank you for the brilliant discussion which gives much input to my work.

Finally and most importantly, to all my friends that always encourage me to never give up in my study and always being good friends throughout my 4 years here.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF PHYSICAL CONSTANT</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOL</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Scope of study</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Thesis outline</td>
<td>4</td>
</tr>
<tr>
<td>1.7 Thesis contributions</td>
<td>5</td>
</tr>
<tr>
<td>1.8 Chapter summary</td>
<td>5</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Past researches on radiation efficiency of vibrating structure</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Chapter summary</td>
<td>14</td>
</tr>
</tbody>
</table>
3 METHODOLOGY
3.1 Introduction
3.2 Analytical model
 3.2.1 Sound power and radiation efficiency
 3.2.2 Plate mobility
3.3 Discrete version of Rayleigh integral
3.4 Finite element modeling
3.5 Experimental setup
 3.5.1 Plate parameter
 3.5.2 Mobility measurements
 3.5.3 Sound power measurement using reciprocal technique
 3.5.3.1 Measurement in small acoustic chamber
 3.5.3.2 Measurement in reverberation chamber
 3.5.3.3 Schoeder frequency
 3.6 Chapter summary

4 SIMULATION RESULTS AND ANALYSIS
4.1 Introduction
4.2 Plate mobility of single point excitation from established model
4.3 Validation between Finite Element Analysis (FEA) and theoretical model
4.4 Radiation efficiency of single point excitation
4.5 Average radiation efficiency across excitation locations
 4.5.1 Normal modes of plate
 4.5.2 Results for simply supported plate
 4.5.3 Results for free-free and clamped-clamped boundary conditions
4.6 Sound radiation by non-uniform plate structure: Beam-stiffened plate
4.7 Chapter summary

5 EXPERIMENTAL VALIDATION
5.1 Introduction
5.2 Mobility measurement
 5.2.1 Mobility of free-free boundary condition
 5.2.2 Clamped-clamped boundary condition mobility results
5.3 Radiation efficiency measurement
 5.3.1 Results in small acoustic chamber
 5.3.2 Results in reverberation chamber
5.4 Chapter summary

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORKS
6.1 Introduction
6.2 Conclusions
6.3 Recommendations

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values for the constant G_x, H_z, J_z</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Characteristic beam functions</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Zeros of the gamma-function γ</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Plate parameter</td>
<td>33</td>
</tr>
<tr>
<td>3.8</td>
<td>Coordinate of the excitation points across plate surface</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Noise are from various sources (Bruel and Kjaer, 2000).</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Example of plate-like structure in car panels (Weyman, 2006).</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Location of the numerical examples for $m=22$, $n=14$. Line I, $a=3$, $b=1$; line II, $a=1.5$, $b=1$; line III, $a=1$, $b=2$. (Leppington et. al., 1982).</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Behaviour of radiation efficiency, σ at large acoustic wavelength, k along path: (a) I (b) II (c) III (black line: numerical integration; dashed line: asymptotic evaluation) (Leppington et. al., 1982).</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Normalised mutual-radiation resistances of modes: (1,1)(1,3) (black line), (1,1)(1,5) (long dashed line), (1,1)(1,7) (short dashed line), and (1,1)(1,9) (dashed dotted line) (Li and Gibeling, 2000).</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Radiation efficiency of a rectangular plate driven by center unit force: a) simply-supported and clamped edges; b) free and guided edges. (Berry et. al., 1990).</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Radiated sound power of a rectangular plate into water: (a) simply-supported; (b) free-free : far-field (black), $K = 4$ (black-dashed), $K = 0$ (dashed-dotted) (Berry, 1994).</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Radiation efficiency of a rectangular plate with same boundary conditions along the four edges. (Squicciarini et. al., 2014) : FFFF (free-free boundary condition at four edges), SSSS (Simply-supported at four edges) and CCCC (Clamped-clamped at four edges).</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>The flowchart of research methodology.</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Coordinate system vibrating plate.</td>
<td>17</td>
</tr>
</tbody>
</table>
3.3 Example of radiation efficiency curve for plate dimension (0.65 × 0.5) m with 3 mm thickness.

3.4 Illustration of positive and negative inter-cells for vibrating simply supported plates.

3.5 Radiation efficiency of rectangular plate with different dimension such as:
 (a) (0.3 × 0.2) m with 1.5 mm thickness (b) (0.65 × 0.5) m with 1.5 mm thickness (c) (0.3 × 0.2) m with 3 mm thickness (d) (0.65 × 0.5) m with 3 mm thickness (average (black solid line) and modal radiation efficiency (blue lines)).

3.6 Illustrated figure of the rectangular plate for (a) free-free, (b) simply-supported, and (c) clamped-clamped boundary conditions.

3.7 A vibrating plate lying in xy plane where \(p(z) \) is the sound pressure at any point of observation and \(v_p \) is the velocity of the plate: a) before discretization and b) after discretization.

3.8 Diagram for mobility measurement setup using a frame (clamped-clamped boundary condition).

3.9 Mobility measurement setup using frame for clamped-clamped boundary condition (beam-screwed plate).

3.10 Mobility measurement setup using frame for free-free boundary condition.

3.11 Schematic view for the a) direct measurement and b) reciprocity method.

3.12 The comparison between the direct method and reciprocity method.

3.13 Experimental setup for reciprocity technique in the small acoustic chamber.

3.14 Sound pressure measurement in small acoustic chamber.

3.15 Illustration of sound power measurement setup for reciprocity technique in reverberation chamber at UKM.

3.16 Actual experimental setup for reciprocity technique in reverberation chamber in UKM.

3.17 Experimental setup for free-free boundary condition in reverberation chamber.

3.18 Close-up view of plate with different boundary conditions such as (a) free-free and (b) clamped-clamped.
4.1 Point mobility of a rectangular plate for dimension of (0.3 × 0.2) m and 1.5 mm thick for (a) free-free, (b) simply supported, and (c) clamped-clamped boundary conditions.

4.2 Point mobility of a rectangular plate with simply-supported boundary condition for: (a)-(b) (0.3 × 0.2) m for 1.5 mm and 3 mm plate thickness (c)-(d) (0.65 × 0.5) m for 1.5 mm and 3 mm plate thickness.

4.3 Point mobility of a rectangular plate with clamped-clamped boundary condition for: (a)-(b) (0.3 × 0.2) m for 1.5 mm and 3 mm plate thickness (c)-(d) (0.65 × 0.5) m for 1.5 mm and 3 mm plate thickness.

4.4 Point mobility of a rectangular plate with free-free boundary condition for: (a)-(b) (0.3 × 0.2) m for 1.5 mm and 3 mm plate thickness (c)-(d) (0.65 × 0.5) m for 1.5 mm and 3 mm plate thickness.

4.5 Coordinate for excitation point.

4.6 Sample of mobility curve using velocity from FEA and theoretical modelling from [Gardonio and Brennan (2004)] of simply supported boundary condition for dimension (0.3 × 0.2) m with 1.5 mm thickness between theoretical (blue) and FEA (grey-dashed).

4.7 Sample of radiation efficiency curve calculated from FEA and theoretical modelling from [Cremer et al. (2005)] of simply supported boundary condition for dimension (0.3 × 0.2) m with 1.5 mm thickness between theoretical (blue) and FEA (grey-dashed).

4.8 Point mobility of rectangular plate with dimension (0.3 × 0.2) m of 1.5 mm and 3 mm for: (a)-(b) simply-supported boundary condition (c)-(d) clamped-clamped boundary condition (e)-(f) free-free boundary condition: theoretical (blue) and FEA (grey-dashed).

4.9 Point mobility of rectangular plate with dimension (0.65 × 0.5) m with simply supported boundary condition for: (a) 1.5 mm (b) 3 mm plate thickness: theoretical (blue) and FEA (grey-dashed).
4.10 Point mobility of a rectangular plate with a dimension \((0.65 \times 0.5)\) m of 1.5 mm and 3 mm thickness for (a) and (b) clamped-clamped boundary condition; and (c) and (d) free-free boundary condition: theoretical (blue) and FEA (grey-dashed).

4.11 Radiation efficiency of rectangular plate with dimension \((0.3 \times 0.2)\) m of 1.5 mm and 3 mm for: (a)-(b) simply supported boundary condition (c)-(d) clamped-clamped boundary condition and (e)-(f) free-free boundary condition: theoretical (blue) and FEA (grey-dashed).

4.12 Radiation efficiency of a rectangular plate with dimension \((0.65 \times 0.5)\) m with simply supported boundary condition for: (a) 1.5 mm (b) 3 mm plate thickness: theoretical (blue) and FEA (grey-dashed).

4.13 Grid for 10 excitation locations across the plate surface.

4.14 Normal mode shapes for the first ten modes of plate for simply supported boundary condition.

4.15 Normal mode shapes for the first ten modes of plate for clamped-clamped boundary condition.

4.16 Normal mode shapes for the first ten modes of plate for free-free boundary condition.

4.17 Radiation efficiency of a baffled plate of 1.5 mm and 3 mm thickness for dimensions: (a)-(b) \((0.3 \times 0.2)\) m, (c)-(d) \((0.4 \times 0.3)\) m, (e)-(f) \((0.65 \times 0.5)\) m. Thin line: radiation efficiency at 10 different excitation points; blue line: average radiation efficiency.

4.18 Radiation efficiency of plate for dimensions of \((0.3 \times 0.2)\) m with 1.5 mm and 3 mm thickness for (a)-(b) free-free (c)-(d) clamped-clamped boundary conditions. Thin line: radiation efficiency at 10 different excitation points; blue line: average radiation efficiency.

4.19 Radiation efficiency of plate for dimensions of \((0.4 \times 0.3)\) m with 1.5 mm and 3 mm thickness for (a)-(b) free-free (c)-(d) clamped-clamped boundary conditions. Thin line: radiation efficiency at 10 different excitation points; blue line: average radiation efficiency.
4.20 Radiation efficiency of plate for dimensions of \((0.65 \times 0.5)\) m with 1.5 mm and 3 mm thickness for (a)-(b) free-free (c)-(d) clamped-clamped boundary conditions. Thin line: radiation efficiency at 10 different excitation points; blue line: average radiation efficiency.

4.21 Comparison of measured radiation efficiency of 1 mm thickness between plain plate and plate with beam-stiffened \(\text{[Fahy and Gardonio, 2007]}\).

4.22 Dimension of the I-profile beam on aluminum plate as a stiffener.

4.23 Simulation of 2 mm thickness aluminum plate with clamped-clamped boundary condition.

4.24 Normal mode shapes for the first ten modes of plate for beam-stiffened (I-profile) with clamped-clamped boundary condition.

4.25 Normal mode shapes for first ten modes of plate for five beam-stiffened (I-profile) with clamped-clamped boundary condition.

4.26 Simulated radiation efficiency of 2 mm thickness plate with clamped-clamped boundary condition. flat plate (blue line); plate with three beam-stiffened (black line); plate with five beam-stiffened (red line).

5.1 Point mobility measurement for free-free boundary condition for dimension \((0.3 \times 0.2)\) m for thickness: a) 1 mm, b) 2 mm and c) 3 mm: experimental (black-dashed) and theoretical (blue).

5.2 Power spectrum of excitation signal.

5.3 Experimental results of spatially averaged squared transfer velocities for free-free boundary condition for dimension \((0.3 \times 0.2)\) m for thickness: a) 1 mm, b) 2 mm and (c) 3 mm: full band (black-dashed) and one-third octave (red-dashed).

5.4 Point mobility measurement for free-free boundary condition for dimension \((0.65 \times 0.5)\) m for thickness: a) 1 mm and b) 2 mm: experimental (black-dashed) and theoretical (blue).

5.5 Transfer mobility measurement for free-free boundary condition for dimension \((0.65 \times 0.5)\) m for thickness: a) 1 mm and b) 2 mm: one-third octave band (black-dashed) and narrow bandwidth (red-dashed).
5.6 Frame and plate being clamped using beam screw.

5.7 Point mobility measurement for clamped-clamped boundary condition for dimension \((0.3 \times 0.2)\) m for thickness: a) 1 mm, b) 2 mm and c) 3 mm: experimental (black-dashed) and theoretical (blue).

5.8 Experimental results of spatially averaged squared transfer velocities for clamped-clamped boundary condition for dimension \((0.3 \times 0.2)\) m for thickness: a) 1 mm, b) 2 mm and (c) 3 mm: one-third octave band (black-dashed) and narrow bandwidth (red-dashed).

5.9 Point mobility measurement for clamped-clamped boundary condition for dimension \((0.65 \times 0.5)\) m for thickness: a) 1 mm and b) 2 mm: experimental (black-dashed) and theoretical (blue).

5.10 Experimental results of spatially averaged squared transfer velocities for clamped-clamped boundary condition for dimension \((0.65 \times 0.5)\) m for thickness: a) 1 mm and b) 2 mm: one-third octave band (black-dashed) and narrow bandwidth (red-dash).

5.11 The sound pressure level in the small acoustic chamber (grey-dashed) and its floor noise (blue-dashed).

5.12 Sound pressure measured using the reciprocity method in small acoustic space of \((0.3 \times 0.2)\) m plate for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (blue), 2 mm thickness (red), 3 mm thickness (black) and noise floor (blue-dashed).

5.13 Plate acceleration measured using the reciprocity method in small acoustic space for plate of \((0.3 \times 0.2)\) m for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (blue), 2 mm thickness (red), 3 mm thickness (black) and noise floor (grey-dashed).

5.14 Sound power measured using the reciprocity method in small acoustic space for plate of \((0.3 \times 0.2)\) m for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (blue), 2 mm thickness (red) and 3 mm thickness (black).
5.15 Radiation efficiency results in small acoustic chamber of plate \((0.3 \times 0.2) \text{ m}\) for free-free boundary condition for thickness (a) 1 mm, (b) 2 mm and (c) 3 mm: theoretical (blue) and experimental (black-dashed).

5.16 Radiation efficiency results in small acoustic space of plate \((0.3 \times 0.2) \text{ m}\) for clamped-clamped boundary condition for thickness (a) 1 mm, (b) 2 mm and (c) 3 mm: theoretical (blue) and experimental (red-dashed).

5.17 The sound pressure level in the reverberation chamber in UKM (blue line) and its floor noise (black line).

5.18 Sound pressure measured using the reciprocity method in reverberation chamber of \((0.65 \times 0.5) \text{ m}\) plate for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (black), 2 mm thickness (red) and noise floor (blue-dashed).

5.19 Plate acceleration measured using the reciprocity method in reverberation chamber of \((0.65 \times 0.5) \text{ m}\) plate for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (black), 2 mm thickness (red) and noise floor (blue-dashed).

5.20 Sound power measured using the reciprocity method in reverberation chamber of \((0.65 \times 0.5) \text{ m}\) plate for: a) free-free boundary condition and b) clamped-clamped boundary condition: 1 mm thickness (grey) and 2 mm thickness (blue).

5.21 Experimental results in reverberation chamber for clamped-clamped boundary condition for dimension \((0.65 \times 0.5) \text{ m}\) with thickness for: (a) 1 mm and (b) 2 mm: theoretical (blue) and experimental (red-dashed).

5.22 Experimental results in reverberation chamber for free-free boundary condition for dimension \((0.65 \times 0.5) \text{ m}\) with thickness for: (a) 1 mm and (b) 2 mm: theoretical (black) and experimental (red-dashed).
LIST OF ABBREVIATIONS

FEA Finite Element Analysis
FFT Fast Fourier Transform
SPL Sound Pressure Level
kHz kilo Hertz
CAD Computer Aided Design
LIST OF PHYSICAL CONSTANT

<table>
<thead>
<tr>
<th>Physical Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of sound</td>
<td>$c_o = 343 \text{ ms}^{-1}$</td>
</tr>
<tr>
<td>Density of the air</td>
<td>$\rho = 1.2 \text{ kgm}^{-3}$</td>
</tr>
<tr>
<td>Density of aluminium</td>
<td>$\rho_{al} = 2700 \text{ kgm}^{-3}$</td>
</tr>
<tr>
<td>Poisson’s ratio of aluminium</td>
<td>$\nu = 0.334$</td>
</tr>
<tr>
<td>Young’s Modulus of aluminium</td>
<td>$E = 7.1 \times 10^{10} \text{ Nm}^{-2}$</td>
</tr>
</tbody>
</table>
LIST OF SYMBOL

\(a\) Length of panel
\(b\) Width of panel
\(E\) Young’s modulus
\(F\) Force
\(h\) Thickness of plate
\(i, j = \sqrt{-1}\) Imaginary unit
\(I\) The second mass moment inertia of the structure
\(k\) Acoustic wavenumber
\(M\) Total mass of panel
\(m\) Odd modes
\(n\) Even modes
\(\text{Re}\) Real part
\(v\) Velocity
\(v_p\) Plate velocity
\(W\) Radiated power
\(Y_p\) Point mobility
\(Y_t\) Transfer mobility
\(\langle v^2 \rangle\) Spatial average of mean-squared velocity

\(\omega\) Angular frequency or natural frequency
\(\rho\) Density
\(\eta\) Damping loss factor
\(\nu\) Poisson’s ratio
\(\varphi\) Relative phase
\(\lambda\) Wavelength
\(\phi, \theta\) Phase
\(\mu\) Mean

xx
\(\sigma \) Sound radiation

\(\Phi \) Normalised mode shape
LIST OF PUBLICATIONS

Proceedings

