Faculty of Mechanical Engineering

SINGLE PHASE AND TWO PHASE FLOW FOR HEAT TRANSFER
IN MICRO CHANNEL HEAT SINK

Ahmed Jassim Shkarah

Doctor of Philosophy of Mechanical Engineering

2016
SINGLE PHASE AND TWO PHASE FLOW FOR HEAT TRANSFER IN MICRO CHANNEL HEAT SINK

AHMED JASSIM SHKARAH

A thesis submitted
in fulfillment of the requirements for the degree of Doctor of Philosophy
in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this thesis entitled “Single Phase and Two Phase Flow for Heat Transfer in Micro Channel Heat Sink” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ...

Name : ...

Date: ...
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy of Mechanical Engineering.

Signature : ..

Supervisor Name : ..

Date : ..
DEDICATION

To a man who tasted the bittersweet to make me sip from his love. To the one who has made of my academic journey possible; To my father, May God Bless His Soul.

To my source of patience and inspiration. To the one and only one after God and His Prophet; my mother. To my soul twin and best companion

To the one I was blessed to be with; Who has always been beside me from the beginning of my life; and who assisted and stood by me during moments of loneliness

Who withstood everything for the sake of me; my wife Sabah. To the one who opened new life horizons for us, Who has shown us the real life. To the second father if he is not the first; The big brother if he is not a twin. To the most faithful friend Dr. Mustafa Mouchanan. To my source of inspiration and strength after God the Almighty

To those who sacrificed precious things for the sake of me. For them and because of them, I have steadily walked all my way; My brothers and my sisters. To a man with dedication, distinction and generosity Hassan Qassim. To those who lit my way by their erudition and knowledge Dr. Yussoff and Prof. Razali
ABSTRACT

Advancements in microprocessors and other high power electronics have resulted in increased heat dissipation from those devices. In addition, to reduce cost, the functionality of microprocessor per unit area had been increasing. The increase in functionality accompanied by reduction in chip size had caused its thermal management to be challenging. In order to dissipate the increase in heat generation, the size of conventional microchannel heat sinks had to be increased. As a result, the performance of these high heat flux generating electronics was often limited by the available cooling technology and space to accommodate the larger conventional microchannel heat sink. One way to enhance heat transfer from electronics without sacrificing their performance was the use of heat sink with many microchannels and liquid passing through it recently, the microchannel heat sink have been widely used to transfer heat from the microprocessors in the computer industry. As the heat flux increases, the thin film evaporation occurring in the evaporator plays a key role in a heat transfer. It had been shown that most of the heat input to the evaporator of the microchannel heat sink was transferred through the evaporating thin film region. A better understanding of heat transfer characteristics in the evaporating thin film region will lead to develop new equation in the thin film region and enhancing the evaporating heat transfer in the heat pipe. An analytical model describing thin film evaporation was developed including the thin film interface and disjoining pressure. A mathematical equation was then developed to investigate the effect of heat flux on film thickness in the thin film evaporation region. Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics. The calculated results from the current model match closely with those of analytical results of Wang et al. (2008) and Wayner jr. et al. (1976). This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness. numerical analysis and experimental tests to predict the heat transfer and chf are the focus of this work. The experimental test section had three microchannels with having of 30 mm x 25.4 mm x 53.34 mm in size. The effect of flow instabilities in microchannels was investigated of each microchannel to stabilize the water flow boiling process. Water flow boiling was investigated in this study using degassed, deionized water in an aluminum, copper and a graphene rectangular microchannel with a hydraulic diameter of 540 µm and 426 µm for Re 650-3000. The power input was adjusted for constant heat flux (630-520) kw/m² for each flow rate. High speed images were taken periodically for water flow boiling. The change in regime timing revealed the effect of deposition on the onset of nucleate boiling (ONB) cycle duration and bubble frequencies are reported for different flow boiling durations. The addition bubble formation was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.
ABSTRAK

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere acknowledgement to my supervisors Dr. Mohd Yusoff Bin Sulaiman and Professor Dr. Md Razali Bin Ayob from the Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for their essential supervision, support and encouragement towards the completion of this thesis.
TABLE OF CONTENT

DECLARATION

APPROVAL

DEDICATION

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENT iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF APPENDIX xvii

LIST OF SYMPOLES xix

LIST OF PHOTOGRAPHS xxiii

LIST OF PUBLICATIONS xxiv

CHAPTER

1. INTRODUCTION 1

1.1 Overview 1

1.2 Research background 5

1.3 Hypothesis and motivation 8

1.4 Objectives of research 11

1.5 Scope of the work 11

1.6 Thesis organization 12

2. LITERATURE REVIEW 13

2.1 Overview 13

2.2 Single-phase micro-channels 13

2.3 Pressure drop 22

2.4 Thermal properties of graphene 23

2.5 Single-phase pressure drop 23

2.6 Two-phase pressure drop 25

2.7 Boiling in micro-channels 30

2.8 Phase change phenomena in the meniscus 31

2.9 Evaporation models 34

2.9.1 Slug-annular flow model 34

2.9.2 Homogeneous model -slug flow without liquid film 36

2.10 Two-phase flow patterns 37

2.10.1 Flow patterns in micro-channels 37

2.10.2 Flow patterns in micro and mini-channels 40

2.10.3 Flow regime transition 49

2.11 Onset of nucleate boiling (ONB) 56

2.12 Bubble departure diameter 60

2.13 Bubble departure frequency 61

2.14 Forced convection flow boiling numerical simulation method 63

2.14.1 Governing equations 63

2.15 Numerical method 64

2.15.1 Finite volume method (FVM) 64
7. EXPERIMENTAL WORK

7.1 Overview
7.2 Experimental setup
 7.2.1 Flow loop system
 7.2.2 Microchannel evaluation parts
 7.2.3 Visual image system
 7.2.4 Data acquisition system
7.3 Experimental processes
 7.3.1 Single-phase flow tests
 7.3.2 Two phase flow boiling tests
 7.3.3 Procedures of heat loss measurement
7.4 Calibration
7.5 Data reduction
 7.5.1 Single phase reduction of data
 7.5.2 Flow boiling data reduction
7.6 Single-phase flow experimental results
 7.6.1 Pressure drop
 7.6.2 Walls and fluid temperature distributions
7.7 Two phase flow experimental results
 7.7.1 Effect of microchannel dimensions on flow patterns
7.8 Effect of heat flux on flow patterns
7.9 Effect of mass flux on flow patterns
7.10 Effect of hydraulic diameter \((D_h)\) the local heating transfer coefficient
7.11 Effect of heat flux on localized heat transfer coefficient
7.12 Error between numerical and experimental results
7.13 Chapter summary

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions
8.2 Recommendations

REFERENCES
APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Empirical parameter c in lockhart-martinelli correlation (Chisholm, 1983)</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of channel dimensions (Kandlikar and Grande, 2003)</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Liquid properties and operating conditions</td>
<td>102</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of previous studies on evaporating extended meniscus.</td>
<td>104</td>
</tr>
<tr>
<td>4.1</td>
<td>Dimensions of all the simulated micro-channel cases</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Results from the grid independent study</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Numerical validation of the thermal resistances using both experimental data (Tuckerman, 1984) and numerical data (Toh et al., 2002).</td>
<td>125</td>
</tr>
<tr>
<td>5.1</td>
<td>Thermo physical properties of working fluid and heat sinks used in computational simulation</td>
<td>141</td>
</tr>
<tr>
<td>6.1</td>
<td>Dimensions of all the simulated micro-channel cases</td>
<td>165</td>
</tr>
<tr>
<td>6.2</td>
<td>All cases</td>
<td>168</td>
</tr>
<tr>
<td>7.1</td>
<td>L_{ehn} and L_e for all microchannel</td>
<td>207</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Micro-channel heat sinks</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Heat transfer coefficient variations for different flow phases of</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>two-phase forced convection for different coolants (Mudawar, 2000).</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Vapour reverse flow occurring in parallel micro-channels</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of the experiments employed by researchers</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>for pressure drop measurements in microchannels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Steinke and Kandlikar, 2005).</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the axial conduction model by Lin and Kandlikar (2012a)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>with the experimental data of (Tiselj et al., 2004) for water flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in 160 μm diameter triangular silicon micro-channels. Source: adapted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from Lin and Kandlikar (2012a).</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Flow regions through a liquid thin film in a micro-channel</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Interline junction of vapour, adsorbed evaporating liquid thin film</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>and non-evaporating adsorbed liquid film (Wayner et al., 1976)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Physical geometry of a slug flow model (Qu et al. 2006).</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Slug-annular flow model with a homogeneous core [homogeneous model]</td>
<td>36</td>
</tr>
</tbody>
</table>
2.7 Schematic representations of flow regimes observed in horizontal, co-current gas liquid flow (Carey and phenomena, 1992).

2.8 General classification of flow patterns. The main transitional patterns, churn and Taylor–annular, are represented, whereas the others are assigned to the main patterns that they are morphologically close to Shao et al. (2009).

2.9 Flow patterns in small parallel rectangular channels

2.10 Two-phase flow patterns and transitions of flow boiling in microchannels:
 a) bubbly flow, b) bubbly/slug flow, c) slug flow, d) slug/semi-annular flow, e) semi-annular flow, f) wavy annular flow and g) smooth annular flow (Revellin et al., 2006).

2.11 Classification of flow patterns in rectangular micro-channels (Choi et al., 2011).

2.12 New adiabatic coalescing bubble map for evaporating flow in circular microchannels (Revellin et al., 2006)

2.13 Growth, bubble nucleation ebullition process and departure from heated surface at an active cavity site.

2.14 Bubble release frequency with the waiting time and growth time.

2.15 Control volume of governing equations discretized

2.16 Two-phase cell with an immersed phase interface.

2.17 Measurement of the contact angle near a heated wall (Fluent, 2005).

2.18 Liquid-vapor interface using a volume fraction in each cell. a) actual interface shape. b) interface shape represented by the geometric reinstruction scheme using piecewise-linear interpolation
2.19 Calculations of volume flux through the computational face
(Welch and Wilson, 2000).

3.1 Schematic of an evaporating thin film

3.2 Comparison of total heat transfer rate through thin film region with
Schonberg and Wayner (1992) and Wang et al. (2008c)

3.3 Dimensionless evaporative film thickness profile

3.4 Dimensionless evaporative film thickness profile at a superheat of 0.5 k

3.5 Dimensionless evaporative film thickness profile at a superheat of 1 k

3.6 Dimensionless evaporative film thickness profile at a superheat of 2 k

3.7 Dimensionless evaporative film thickness profile at a superheat of 5 k

3.8 Dimensionless evaporative film thickness profile at a superheat of 10 k

3.9 Dimensionless heat flux profile at a superheat of 0.3 k

3.10 Dimensionless heat flux profile at a superheat of 0.7 k

3.11 Dimensionless heat flux profile at a superheat of 1 k

3.12 Dimensionless heat flux profile at a superheat of 2 k

3.13 Dimensionless heat flux profile at a superheat of 5 k

3.14 Dimensionless heat flux profile at a superheat of 10 k

3.15 Dimensionless heat flux profile at a $\beta=0$ nm

3.16 Dimensionless heat flux profile at a $\beta=0.5$ nm

3.17 Dimensionless heat flux profile at a $\beta=1$ nm

3.18 Dimensionless heat flux profile at a $\beta=3$ nm

3.19 Dimensionless evaporative film thickness profile at a $\beta=0$ nm

3.20 Dimensionless evaporative film thickness profile at a $\beta=0.5$ nm

3.21 Dimensionless evaporative film thickness profile at a $\beta=1$ nm

3.22 Dimensionless evaporative film thickness profile at a $\beta=3$ nm
3.23 Flow chart flow for theoretical solution

4.1 A schematic model of micro-channel heat sink

4.2 Temperature distribution for case 1 at heat sink base (using graphene) for different fluid flow rates at $q'' = 181 \text{ W/cm}^2$

4.3 Temperature distribution for case 3 at heat sink base (using graphene) for different heat fluxes at $Q = 6.5 \text{ cm}^3/\text{s}$

4.4 Temperature distribution for case 3 at heat sink base (using graphene) for different heat fluxes at $Q = 8.6 \text{ cm}^3/\text{s}$

4.5 Temperature distribution for case 2 in the fluid (using graphene) at $Q = 8.6 \text{ cm}^3/\text{s}$

4.6 Thermal resistance for case 1 at different volume flow rates at $q'' = 790 \text{ W/cm}^2$

4.7 Thermal resistance for case 2 at different volume flow rates and $q'' = 277 \text{ W/cm}^2$

4.8 Thermal resistance for case 3 at different volume flow rates and $q'' = 181 \text{ W/cm}^2$

4.9 Thermal resistance for silicon at different volume flow rates and $q'' = 181 \text{ W/cm}^2$

4.10 Thermal resistance for graphene at different volume flow rates and $q'' = 181 \text{ W/cm}^2$

4.11 Thermal resistance for aluminum at different volume flow rates and $q'' = 181 \text{ W/cm}^2$

4.12 Thermal resistance for silicon at different volume flow rates and $q'' = 277 \text{ W/cm}^2$
4.13 Thermal resistance for graphene at different volume flow rates and
\[q'' = 790 \text{ W/cm}^2 \]

4.14 Temperature contours for case 1 using a. Silicon, b. Aluminum and
c. Graphene at \(q'' = 790 \text{ W/cm}^2 \) and \(Q = 4.7 \text{ cm}^3/\text{s} \)

4.15 Temperature contours for case 1 using aluminum at
\[q'' = (a: 181 \text{ b: 277 c: 790}) \text{ W/cm}^2 \text{ and } Q = 4.7 \text{ cm}^3/\text{s} \]

4.16 Temperature contours for case 1 using graphene at
\[q'' = (a: 181 \text{ b: 277 c: 790}) \text{ W/cm}^2 \text{ and } Q = 4.7 \text{ cm}^3/\text{s} \]

5.1 Model of the flow boiling in microchannels

5.2 Wall temperature profiles at incipient boiling (h=1 mm).

5.3 Wall temperature profiles at incipient boiling (h_{ch}=0.710 mm).

5.4 Effects of fluid velocity on wall temperature profile during incipient boiling at \(H_{ch} = 0.5 \text{ mm} \).

5.5 Effects of heat flux on wall temperature profile during incipient boiling for \(H_{ch} = 0.25 \text{ mm} \).

5.6 VOF onset of nucleate boiling on a heated surface for \(H_{ch} = 1\text{mm} \) for
\(V=0.5136 \text{ m/s} \). a) at \(t = 45.05 \text{ ms} \) b) at \(t = 47 \text{ ms} \)

5.7 Procedure of bubble departure in a microchannel with \(h_{ch} = 0.71 \text{ mm} \)

5.8 Procedure of bubble departure in a microchannel with \(h_{ch} = 0.5 \text{ mm} \)

5.9 Procedure of bubble departure in a microchannel with \(h_{ch} = 0.25 \text{ mm} \) at
\(q'' = 500 \text{ w/cm}^2 \), \(v=0.6933\text{m/s} \) for different simulation times. a) \(t_0 + 0\text{ms}, \)
b) \(t_0+ 49 \text{ ms}, \) c) \(t_0 + 49.5 \text{ ms}, \) d) \(t_0 + 49.7 \text{ ms} \)

5.10 Two-phase flow in 1000 \(\mu \text{m} \) height microchannel

5.11 Two-phase flow in 30 mm height microchannel

5.12 Two-phase flow pattern (wu and cheng, 2003b)
6.1 Ledinegg instability based on pressure difference and mass flow rate (Ledinegg, 1938).

6.2 A schematic model of micro-channel heat sink

6.3 Dimensions of a two-dimensional microchannel.

6.4 Symmetric flow channel geometry used in a computational simulation.

6.5 Grid system of a three-dimensional cfd model

6.6 Flow patterns in the rectangular microchannel for case 1. a) bubbly flow at $t = 49$ ms, b) experimental c) transition from bubbly flow to slug flow at $t = 80$ ms, d) experimental, e) elongated slug flow at $t = 96$ ms, f) experimental, g) periodic flow boiling, h) experimental, i) periodic flow boiling at $t = 716$ ms and j) experimental.

6.7 Flow patterns in the microchannel for case 2. a) bubbly flow at $t = 55$ ms, b) isolated bubble (experimental), c) bubbly-elongated transition at $t = 60$ ms, d) bubble coalescence (experimental), e) elongated slug flow at $t = 110$ ms, f) elongated bubble (experimental)

6.8 Flow patterns in the microchannel for case 2. a) bubbly flow at $t = 50$ ms, b) isolated bubble (experimental), c) bubbly-elongated transition at $t = 82.224$ ms, d) bubble coalescence (experimental), e) elongated slug flow at $t = 100.75$ ms, f) elongated bubble (experimental)

6.9 Wall temperature fluctuations with small amplitude and short-period oscillation and flow patterns for case 1. A) current result, b) experimental investigation, c) bubbly flow at $t = 49$ ms, d) bubbly-elongated transition at $t = 80$ ms, e) elongated slug flow at $t = 96$ ms, f) experimental investigation by Qu and Mudawar (2004)
6.10 Wall temperature fluctuations with large amplitude and short-period oscillation and flow patterns for case 2. A) wall temperature fluctuations, b) isolated bubbly flow at t = 55 ms, c) transition from bubbly flow to slug flow at t = 60 ms, and d) elongated slug flow at t = 110 ms. 177

6.11 Wall temperature fluctuations with large amplitude and Tc1-Tc4 for different materials for 0.371x1 mm microchannel, heat flux= 450 kw/m² and mass flow rate=2.04x10⁻⁵ kg/s. 178

6.12 Wall temperature fluctuations on Tc1-tc4 for heat flux= 404 kw/m² and mass flow rate=5x10⁻⁵ kg/s 179

6.13 Wall temperature fluctuations on Tc1-tc4 for heat flux= 450 kw/m² and mass flow rate=2.04x10⁻⁵ kg/s 180

6.14 Wall temperature fluctuations on Tc1-tc4 for heat flux= 450 kw/m² and mass flow rate=2.04x10⁻⁵ kg/s 181

6.15 Wall temperature fluctuations on Tc1-tc4 for heat flux= 496.4 kw/m² and mass flow rate=1.05x10⁻⁵ kg/s 182

6.16 Inlet and outlet pressure fluctuations with small amplitude and short-period oscillation for case 1. A) inlet pressure oscillations, b) outlet pressure oscillation 183

6.17 Inlet pressure fluctuations with large amplitude and short-period oscillation for case 2. a) inlet pressure oscillations, b) outlet pressure oscillation 184

6.18 Inlet pressure fluctuations with large amplitude and short-period oscillation for case 3. a) inlet pressure oscillations, b) outlet pressure oscillation. 185

6.19 Inlet pressure fluctuations for different materials for 0.371x1 mm microchannel, heat flux= 450 kw/m² and mass flow rate=2.04x10⁻⁵ kg/s. a) inlet pressure oscillations, b) outlet pressure oscillation 186
6.20 Inlet pressure fluctuations for different microchannels for
heat flux= 450 kw/m² and mass flow rate=5x10⁻⁵ kg/s

6.21 Inlet pressure fluctuations for different microchannels for
heat flux= 450 kw/m² and mass flow rate=2.04x10⁻⁵ kg/s

6.22 Inlet pressure fluctuations for different microchannels for
heat flux= 496 kw/m² and mass flow rate=1.05x10⁻⁵ kg/s

6.23 Stability map in subcooling number versus phase change number

7.1 Schematic diagram of the test rig.

7.2 Photograph of experimental facility

7.3 Evaluation section illustrating its major parts: 1-cover plate; 2-housing;
3-heat sink;4-insulating layers;5-insulating block; 6-support plate;

7.4 Visualization system

7.5 Data acquisition system

7.6 Experimental friction elements for fully developed flows

7.7 Experimental friction elements for fully created flows

7.8 Experimental friction elements for fully created flows

7.9 Effect of hydraulic size on channel pressure droplets.

7.10 Temperature distribution of channel wall in a single-phase flow for
the (0.37x1) mm channel at a heat flux of 450 kw/m².

7.11 Temperature distribution of channel wall in single-phase flow for
the (0.27x1) mm channel at a heat flux of 450 kw/m².

7.12 Temperature distribution channel wall in single-phase circulation for the
(0.27x0.71) mm channel at a heat flux of 450 kw/m².

7.13 Temperature distribution of channel wall in single-phase circulation for
the different channel at a heat flux of 325 kw/m² and re=650.
7.14 Deviation of nusselt number with reynolds numbers at constant
7.15 Flow patterns observed in the (0.271x0.710)mm channel at mass
7.16 Flow patterns noticed in the (0.271x0.710) mm channel at mass flow
7.17 Flow pattern noticed in the (0.37x1) mm channel at size flow
7.18 Effect of heat flux on the flow pattern in (0.27x0.71) mm microchannel
 at a nominal mass flow of 1.8 ml/s, inlet temperature of 29ºc
7.19 Effect of heat flux on the flow pattern in (0.27x1)
7.20 Effect of heat flux on the flow pattern in (0.37x1) mm microchannel at
 a nominal mass flow of 1.8 ml/s, inlet temperature of 29ºc
7.21 Effect of mass flux on flow pattern at q’’=186 kw/m² heat flux
7.22 Effect of mass flux on flow pattern at q’’=685 kw/m² heat flux
7.23 Effect of hydraulic diameter and local thermodynamic quality on the
 local heat transfer coefficient for the three test sections at a nominal
 mass flux of 512 kg/m²s, and heat flux 590 kw/m²
7.24 Effect of heat flux and local thermodynamic quality on the local
7.25 Effect of heat flux and local thermodynamic quality on the local
7.26 Effect of heat flux and local thermodynamic quality on the local
7.27 Error on numerical and experimental for local thermodynamic quality
 on the local heat transfer coefficient for the 0.27x0.71 mm microchannel
 at a nominal mass flux of 512 kg/m²s
7.28 Temperature distribution error of channel wall in single-phase circulation
 for the experimental and numerical at a heat flux of 325 kw/m² and Re=650.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Photography</td>
<td>272</td>
</tr>
<tr>
<td>B</td>
<td>Matlab Code</td>
<td>276</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(A \) - Total surface area of micro-channel \((m^2)\)

\(A_c \) - Area of cross-section of micro-channel \((m^2)\)

\(C_p \) - Specific heat capacity \((J/kg \, K)\)

\(D \) - Diameter \((m)\)

\(D_h \) - Hydraulic diameter \((m)\)

\(H \) - Height of channel \((m)\)

\(h \) - Convective heat transfer coefficient

\(K \) - Thermal conductivity \((W/m \, K)\)

\(L \) - Heat sink length \((m)\)

\(P \) - Total pressure \((Pa)\)

\(q^* \) - Heat flux \((W/cm^2)\)

\(Q \) - Volumetric flow rate \((cm^3/s)\)

\(R_{th} \) - Thermal resistance \((K/W)\)

\(T \) - Temperature \((K)\)

\(t \) - Wall thickness at bottom \((m)\)

\(u \) - Fluid x-component velocity \((m/s)\)

\(v \) - Fluid y-component velocity \((m/s)\)

\(w_c \) - Channel width \((m)\)

\(w_w \) - Wall thickness at bottom \((m)\)

\(w \) - Fluid z-component velocity \((m/s)\)
x - Axial coordinate
y - Vertical coordinate
z - Horizontal coordinate
ΔP - Pressure drop (Pa)
P - Pressure
ρ - Density (kg/m³)
μ - Dynamic viscosity (m²/s)
A - Dispersion constant (J)
h_{fg} - Heat of vaporization (J/kg)
k - Conductivity (W/mK)
\dot{m}_e - Interface net evaporative mass transfer (kg/(m² s))
\dot{m}_x - Mass flow rate (kg/ms)
p_c - Capillary pressure (N/m²)
p_l - Liquid pressure (N/m²)
p_v - Vapor pressure (N/m²)
p_d - Disjoining pressure (N/m²)
Δp - \(p_1 - p_2 \) (N/m)
q'' - Heat flux (w/m²)
q''_o - Characteristic heat flux (w/m²)
ϕ - Dimensionless heat flux