ELECTRICAL CHARACTERISTICS OF HIGH-K DIELECTRICS FOR THE 19NM GATE LENGTH NMOS DEVICE

NUR FATIN BINTI MOHD SABKI

This Report is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree Of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

JUNE 2016
Tajuk Projek : Electrical Characteristics of High-K Dielectrics for the 19nm Gate Length NMOS Device

Sesi Pengajian : 1 5 / 1 6

Saya NUR FATIN BINTI MOHD SABKI

mengaku membentuk Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓) :

 [] SULIT* *(Mengandungi maklumat yang berdara keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 [] TERHAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 [] TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

(COP DAN TANDATANGAN PENYELIA)

DR. FAUZIYAH BINTI SALIERUDDIN

Pensyarah Kanan
Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Penang: ____________________________
Tarikh: ____________________________

Universiti Teknikal Malaysia Melaka

76100 Djerantut, Tengah, Melaka.
“I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge.”

Signature : ...

Author : NUR FATIN BINTI MOHD SABKI
Date : 14th JUNE 2013
"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics/Computer Engineering/Electronic Telecommunication/Wireless Communication)* with Honours."

Signature

Supervisor’s Name: DR. FAUZIYAH BINTI SALEHUDDIN

Date: 15th JUNE 2016
For my beloved father, Mohd Sabki Ibrahim, my beloved mother Norhayati Mohd Lod and my beloved siblings
ACKNOWLEDGEMENT

I feel very grateful toward Allah the Almighty for His blissful blessings in completing this thesis for my final project year project. I would like to thank for those whom involved directly and indirectly help making sure the success of my project.

First and foremost I offer my sincerest gratitude to my supervisor Dr. Fauziyah Salehuddin for the help and effort she put through in completing this project. Another thank you notes for supporting me with her patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my bachelor degree to her encouragement and effort which without her this thesis too would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

I am also indebted to many friends who support me through thick and thin. Some of them offered a hand and kindness that can’t be paid for my entire life.

Finally thank you to my beloved family for everything, for their nonstop prayer that keeping me strong and for being there when I need someone to hold on to. Nothing can be replaced the love you gave. Deep in my soul, I’m promising myself to make you proud for being part of my journey life.
ABSTRACT

Aggressive scaling of n-channel metal oxide semiconductor (NMOS) device will increase the transistor density and performance. However, continual gate oxide scaling will require high-k gate dielectric, since the leakage current (I_{OFF}) is increasing with reducing physical thickness of gate oxide (SiO$_2$). In this project, the effect of high-k dielectrics for electrical characteristic in 19nm NMOS device were investigated. The two electrical characteristics that were considered are threshold voltage (V_{TH}) and I_{OFF}. The device was virtual fabricated by using the ATHENA simulation module while the electrical characteristic response was stimulated using ATLAS module. The performance of Titanium Oxide (TiO$_2$) and Hafnium Oxide (HfO$_2$) as high-k dielectric materials with different metal gates such as Tungsten Silicides (WSix) and Titanium Silicides (TiSix) have been made. As conclusion, the TiO$_2$ has been recognized to be the most suitable high-k dielectric material for metal gate, WSix. This is because TiO$_2$/WSix device has the lowest leakage current (1.92pA/µm) and the highest drive current (578.8µA/µm) if compare with other devices include SiO$_2$/Poly device. The result obtained are well within International Technology Roadmap Semiconductor (ITRS) prediction for the year 2015. Moreover, the TiO$_2$/WSix device has an excellent power consumption due to its higher I_{ON}/I_{OFF} ratio.
ABSTRAK

Pengecilan agresif peranti n-saluran logam oksida semikonduktor saluran -n(NMOS) akan meningkatkan ketumpatan transistor dan prestasi. Walau bagaimanapun, pengecilan beterusan get oksida akan memerlukan high-k get dielektrik, kerana arus bocor (I\textsubscript{OFF}) semakin meningkat dengan mengurangkan ketebalan fizikal get oksida (SiO\textsubscript{2}). Dalam projek ini, kesan dielektrik high k untuk ciri elektrik bagi peranti NMOS 19nm telah disiasat. Kedua-dua ciri-ciri elektrik yang dipertimbangkan adalah ambang voltan (V\textsubscript{TH}) dan I\textsubscript{OFF}. Peranti telah difabrikasi secara maya menggunakan modul simulasi ATHENA manakala sambutan ciri elektrik dirangsang menggunakan modul ATLAS. Prestasi Titanium Oxide (TiO\textsubscript{2}) dan Hafnium Oxide (HfO\textsubscript{2}) sebagai bahan high-k dengan get logam yang berbeza seperti Tungsten Silicides (WSi\textsubscript{x}) dan Titanium Silicides (TiSi\textsubscript{x}) telah dibuat. Sebagai kesimpulan, TiO\textsubscript{2} telah diiktiraf untuk sebagai bahan high-k paling sesuai untuk get logam, WSi\textsubscript{x}. Ini adalah kerana peranti TiO\textsubscript{2}/WSi\textsubscript{x} mempunyai arus bocor paling rendah (1.92pA/\mu m) dan arus salir yang tinggi (578.8\mu A/\mu m) jika dibandingkan dengan peranti lain termasuk peranti SiO\textsubscript{2}/Poli. Hasil lingkungan International Technology Roadmap Semiconductor (ITRS)2013 ramalan bagi tahun 2015. Selain itu, peranti TiO\textsubscript{2}/WSi\textsubscript{x} mempunyai penggunaan kuasa yang sangat baik kerana nisbah I\textsubscript{ON}/I\textsubscript{OFF} yang lebih tinggi.
CONTENTS

<table>
<thead>
<tr>
<th>CHAP</th>
<th>CONTENTS</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VERIFICATION OF STATUS REPORT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>WRITER’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>SUPERVISOR’S DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>CONTENT</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SHORTFORMS</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 BACKGROUND 1

1.2 OBJECTIVE 2

1.3 PROBLEM STATEMENT 2

1.4 SCOPE OF PROJECT 2

1.5 REPORT STRUCTURE 3

2 LITERATURE REVIEW 4

2.1 INTRODUCTION 4

2.2 BASIC MOSFET STRUCTURE 5
2.3 TYPES OF MOSFET
 2.3.1 Depletion-mode mosfet
 2.3.2 Enhancement-mode mosfet
2.4 NMOS TRANSISTOR
2.5 SCALING
 2.5.1 SHORT CHANNEL EFFECT
 2.5.1.1 Subthreshold current
 2.5.1.2 Gate oxide tunneling current
2.6 HIGH-K MATERIAL
2.7 METAL GATE ELECTRODES
2.8 EQUIVALENT OXIDE THICKNESS (EOT)

3 METHODOLOGY
 3.1 INTRODUCTION
 3.2 SIMULATION USING TCAD
 3.2.1 Atlas simulator
 3.2.2 Athena simulator
 3.3 ATHENA – FABRICATION STEPS OF 19NM NMOS TRANSISTOR WITH HIGH-K
 3.3.1 Mesh and substrate material establishment
 3.3.2 Well Oxidation
 3.3.3 Trenching and Gate Oxide growth
 3.3.4 Threshold voltage adjustment implantation
 3.3.5 High –k dielectric deposition
 3.3.6 Halo implantation
 3.3.7 Sidewall spacer
 3.3.8 Source/drain implantation
 3.3.9 PECVD & BPSG Oxide deposition
 3.3.10 Pattern Source and Drain contact and compensate implantation
 3.3.11 Aluminium metallization
RESULT AND ANALYSIS

4.1 ELECTION OF HIGH K MATERIAL

4.2 SIMULATION RESULT OF STRUCTURE

4.2.1 Simulation result of structure and graph of Poly electrode

4.2.2 Graph of high-k material and metal gate and simulation result of structure.

4.2.2.1 Titanium oxide as high-k dielectric and titanium silicide as metal gate.

4.2.2.2 Hafnium as high-k dielectric and Titanium silicide as metal gate

4.2.2.3 Titanium oxide as high-k dielectric and Tungsten silicide as metal gate.

4.2.2.4 Hafnium as high-k dielectric and Tungsten silicide as metal gate.

4.3 ANALYSIS THE EFFECT OF HIGH-K DIELECTRICS FOR ELECTRICAL CHARACTERISTIC OF 19NM NMOS DEVICES.
FIGURE LISTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1: MOSFET Structure</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2: Channel and Symbols of n-channel MOSFET and p-channel MOSFET</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3: (I_D-V_{DS}) graph n-channel MOSFET</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.4: (I_d-V_{ds}) graph N-Channel MOSFET</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.5: Physical structure of the enhancement-type NMOS transistor</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3.1: Flow of the method that use to design NMOS devices with high-k material</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.2: Simulation Using TCAD</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.3: Flowchart for n-channel MOSFET device with the High-K</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.4: P type substrate doping concentration</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.5: Source code to build the P-type substrate structure</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.6: 19nm structures after oxide deposition</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.7: source code to develop p-well oxidation</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.8: 19nm NMOS structure after gate oxide growth</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.9: Source code to do gate oxide growth process</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.10: 19nm NMOS structure after Vth adjustment implantation</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.11: Source code to do Vth adjustment implantation process</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.12: 19nm NMOS structure after high-k deposition</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.13: Source code to do high-k deposition</td>
<td>27</td>
</tr>
</tbody>
</table>
Figure 3.14: Source code to do halo implantation process 28
Figure 3.15: 19nm structure NMOS structure after halo implantation 28
Figure 3.16: 19nm NMOS structure after sidewall spacer 29
Figure 3.17: Source code to do sidewall spacer process 29
Figure 3.18: 19nm NMOS structure after source/drain implantation 30
Figure 3.19: Source code to do source/drain implantation process 30
Figure 3.20: 19nm NMOS structure after PECVD & BPSG Oxide deposition 31
Figure 3.21: Source code to do PECVD & BPSG Oxide deposition process 31
Figure 3.22: 19nm NMOS structure after Pattern Source and Drain contact and compensate implantation process 32
Figure 3.23: Source code to do Pattern Source and Drain contact and compensate implantation process 33
Figure 3.24: 19nm NMOS structure after Aluminium metallization 34
Figure 3.25: Source code to do Aluminium metallization process 34
Figure 3.26: 19nm NMOS structure after aluminium etching 35
Figure 3.27: Source code to do Aluminium Etching process 35
Figure 4.1: 19nm NMOS Structure with Polysilicon and Silicon Oxide 38
Figure 4.2 The Id–Vg overlay each device with different materials of high-K and different metal gate 39
Figure 4.3: 19nm NMOS Structure with titanium oxide as high –k dielectric and titanium silicide as metal gate. 40
Figure 4.4: The graph of Id versus Vg for NMOS 19nm with titanium oxide as high –k dielectric and titanium silicide as metal gate device. 40
Figure 4.5: The Extract of Atlas Simulation Result Windows
Figure 4.6: 19nm NMOS Structure with hafnium as high –k dielectric and titanium silicide as metal gate.
Figure 4.7: The graph of \(I_D \) versus \(V_G \) for NMOS 19nm with hafnium as high –k dielectric and titanium silicide as metal gate device.
Figure 4.8: The Extract of Atlas Simulation Result Windows
Figure 4.9: 19nm NMOS Structure with titanium oxide as high –k dielectric and tungsten silicide as metal gate.
Figure 4.10: The graph of \(I_D \) versus \(V_G \) for NMOS 19nm with titanium oxide as high –k dielectric and tungsten silicide as metal gate device.
Figure 4.11: The Extract of Atlas Simulation Result Windows
Figure 4.12: The 19nm NMOS Structure with hafnium as high –k dielectric and tungsten silicide as metal gate.
Figure 4.13: The graph of \(I_D \) versus \(V_G \) for NMOS 19nm with hafnium as high –k dielectric and tungsten silicide as metal gate device.
Figure 4.14: The Extract of Atlas Simulation Result Windows
Figure 4.15: \(I_{ON} \) for 19nm NMOS Devices
Figure 4.16: \(I_{ON} \) for HfO\(_2\) and TiO\(_2\) dielectrics with metal gate TiSix
Figure 4.17: \(I_{ON} \) for HfO\(_2\) and TiO\(_2\) dielectrics with metal gate WSix
Figure 4.18: \(I_{OFF} \) current for NMOS Devices
Figure 4.19: \(I_{OFF} \) for HfO\(_2\) and TiO\(_2\) dielectrics with metal gate TiSix
Figure 4.20: \(I_{OFF} \) for HfO\(_2\) and TiO\(_2\) dielectrics with metal gate WSix
LIST OF SHORT FORM

<table>
<thead>
<tr>
<th>SHORTFORM</th>
<th>FULL WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF2</td>
<td>Boron Difluoride</td>
</tr>
<tr>
<td>BPSG</td>
<td>Boron Phosphor Silicate Gate</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide-Semiconductor</td>
</tr>
<tr>
<td>CMP</td>
<td>Chemical Mechanical Polishing</td>
</tr>
<tr>
<td>D</td>
<td>Drain</td>
</tr>
<tr>
<td>DIBL</td>
<td>Drain Induced lowering Barrier</td>
</tr>
<tr>
<td>G</td>
<td>Gate</td>
</tr>
<tr>
<td>GIDL</td>
<td>Gate Induced Drain Leakage</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
</tr>
<tr>
<td>IMD</td>
<td>Intel Metal Dielectric</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductor</td>
</tr>
<tr>
<td>LPCVD</td>
<td>Low Pressure Chemical Vapour Deposition</td>
</tr>
<tr>
<td>NMOS</td>
<td>N Channel MOSFET</td>
</tr>
<tr>
<td>PMD</td>
<td>Premetal Dielectric</td>
</tr>
<tr>
<td>S</td>
<td>Source</td>
</tr>
<tr>
<td>SCE</td>
<td>Short Channel Effect</td>
</tr>
<tr>
<td>TCAD</td>
<td>Technology Computer Aided Design</td>
</tr>
<tr>
<td>v_D</td>
<td>Drain Voltage</td>
</tr>
<tr>
<td>v_{DS}</td>
<td>Drain to Source Voltage</td>
</tr>
<tr>
<td>v_G</td>
<td>Gate Voltage</td>
</tr>
<tr>
<td>v_{GS}</td>
<td>Gate To Source Voltage</td>
</tr>
<tr>
<td>v_S</td>
<td>Source Voltage</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>v_{sub}</td>
<td>Sub Threshold Voltage</td>
</tr>
<tr>
<td>v_{th}</td>
<td>Threshold Voltage</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

With new technologies, many industries rely on manufacturing of smaller, faster, cheaper and good quality of the MOSFET. With increasing global competition, modern industries have to adapt their production process to be more efficient and competitive. In order to more advanced technologies have to employ to scale down the MOSFET into nanoscale [1]. Silicon oxide (SiO$_2$) has been used as the gate dielectric material over the years. Nowadays, high-k dielectric is widely accepted as a better approach for the gate dielectric of the MOSFET.

In this project, the fundamental understanding of the physical and the electrical characteristics of the 19nm gate length NMOS device containing high dielectric constant will be investigated. For this project, the performance of high-k dielectric Titanium Oxide (TiO$_2$) will be compared with SiO$_2$ as gate dielectric. Besides, design nanoscale of NMOS transistor device using ATLAS module in generating the current-voltage (I-V) Characteristic, structure and the value of threshold voltage. Meanwhile, the NMOS transistor will be stimulated by using fabrication tools ATHENA module SILVACO software. In order to know how it is a good affected on the electrical characteristics of 19nm gate length NMOS device.
1.2 Objectives of this project

The objectives of this project are:

i) To design the 19nm gate length NMOS device by using SILVACO TCAD Tools.

ii) To analyze the effect of high-k dielectrics for electrical characteristic of 19nm NMOS devices.

iii) To compare the performance of Titanium Oxide (TiO_2) and Hafnium Oxide (HfO_2) as high-k dielectric with Silicon Oxide (SiO_2) dielectric with different metal gate which are Titanium Silicides (TiSi$_x$) and Tungsten Silides (WSi$_x$)

1.3 Problem Statement

In trend of global competition, modern industries have to adjust their production process to be more efficient and competitive. Regarding that, more advanced technologies have to employ to scale down the MOSFET into nanometer. A few decades ago, SiO$_2$ known as widely used as the gate dielectric material and it requires the film thickness to be as thin. However, the further scaling of SiO$_2$ is below 2nm gate layer thickness which can result in a large increase of the leakage current and short channel effect. In order to overcome this problem, many researchers are focusing on the metal gate with high –k materials that have the ability to be integrated in MOSFET flow. Among the high-K materials are compatible with silicon and also materials have too low or high dielectrics constant may not be an adequate choice for alternative gate dielectric [1]. Therefore, replacing the SiO$_2$ with a high-K materials allows increased gate capacitance [2].

1.4 Scope of Project

First and foremost, based on the journal, previous research and reference books will be reviewed in more detail. The literature review of this project regarding of objective this project will be covered. The physical and electrical characteristics of
19nm gate length NMOS device will be learned through out of this project. During this project, TiO$_2$ and HfO$_2$ will be used as the material gate dielectric with gate oxide thickness is scaled to get the same Equivalent Oxide Thickness (EOT) for physical models of 19nm NMOS. Besides, process design of the NMOS device also will be learned. Then, the virtual design and fabrication of the device will be performed by using Athena module. Meanwhile, electrical characteristic performance will be stimulated by using an Atlas module of SILVACO software.

1.5 Report Structure

This thesis is a combination of five chapters that contain the introduction, literature review, methodology, result and discussion and the last chapter is the conclusion and recommendation of the project.

Chapter 1 is an introduction to the project. In this chapter, we will explain the background and objectives of the project. The concept behind the project and an overall overview of the project also will be discussed within this chapter. Chapter 2 discuss about the literature review of the effect of high-k dielectric value based upon previous research done.

Chapter 3 will explain about the project methodologies of the project. This chapter will show the steps and flow for problem solving in such a specific method used to design and develop the NMOS MOSFET structure, also the other factor and characteristic need to be focused on.

Chapters 4 describe the expected result from this project and justify its performance to make sure it meets the objectives of the research. Finally, Chapter 5 concludes the whole research and proposes the future progress of the project.
2.1 Introduction

MOSFET stands for Metal-Oxide Semiconductor Field-Effect-Transistor. MOS (Metal-Oxide-Semiconductor) shows the basic physical device materials. The metal is used for contact electrodes and interconnections, the oxide is present for barriers. For developing the characteristics the isolation and semiconductor substrate with a specified doping profile provides the necessary physics. A MOSFET is referred at as a unipolar device because the nature of its design it. Specifically, the majority carriers in the channel region can be of only one type (electrons or holes). The MOSFET with electrons as the majority carriers in the channel is entitled a n-channel MOSFET or NMOS. Similarly, the MOSFET with holes as the majority carriers in the channel is a p-channel MOSFET or PMOS [3].

Since the 1970s the MOSFET has been the prevailing device in microprocessors, memory circuits and logic applications of many kinds. The fabrication process for MOSFET has become very mature over the 25 to 30 year lifetime of this device [3]. These mature fabrication processes leads to less errors and variances in circuit construction and gives rise to a higher yield of good devices. Size cost reduction has followed the MOSFET through its history. In the initial stages of
the MOSFETs development at 10-micron gate length was a standard design goal [3]. This length would prove to decrease significantly as time past with engineers striving to increase speed and component count per unit area. The gate length (the natural measure of the device technology) has been reduced by a factor 2 about every 5 years [3]. Since 2001, when bulk MOSFET was fabricated with the technology node of 130 nm by Intel as Under this technology, the device was produced using gate length and oxide thickness of 60 nm and 1.5 nm respectively.

2.2 Basic Mosfet Structure

The construction of the Metal Oxide Semiconductor FET is very different to that of the Junction FET. Both the Depletion and Enhancement type MOSFETs use an electrical field produced by a gate voltage to alter the flow of charge carriers, electrons for n-channel or holes for P-channel, through the semi conductive drain-source channel. The gate electrode is placed on top of a very thin insulating layer and there are a pair of small n-type regions just under the drain and source electrodes. The gate of a junction field effect transistor (JFET) must be biased in such a way as to reverse-bias the pn-junction. With an insulated gate MOSFET device no such limitations apply so it is possible to bias the gate of a MOSFET in either polarity, positive (+ve) or negative (-ve). This makes the MOSFET device valuable as electronic switches because with no bias they are normally non-conducting and this high gate input resistance means that very little or no control current is needed as MOSFETs are voltage controlled devices [4].
2.3 Types of MOSFET

Both the p-channel and the n-channel MOSFETs are available in two basic forms, which are the Enhancement type and the Depletion type. Figure 2.2 shows the channel and symbol of n-channel MOSFET and p-channel MOSFET [4].
2.3.1 Depletion-mode MOSFET

The Depletion-mode MOSFET, which is less common than the enhancement mode types is normally switched “ON” (conducting) without the application of a gate bias voltage. That is the channel conducts when $V_{GS}=0V$ makes it a ‘normally-closed’ device. The circuit symbol shown in Figure 2.2 for a depletion MOS transistor uses a solid channel line to signify a normally closed conductive channel. For the n-channel
depletion MOS transistor, a negative gate-source voltage (-V_{GS}) will deplete (hence its name) the conductive channel of its free electrons switching the transistor ‘OFF’. Likewise for a p-channel depletion MOS transistor a positive gate-source voltage (+V_{GS}) will deplete the channel of its free holes turning it ‘OFF’. In other words, for a n-channel depletion mode MOSFET: +V_{GS} means more electrons and more current. Meanwhile a -V_{GS} means less electrons and less current. The opposite is also true for the p-channel types. Then the depletion mode MOSFET is equivalent to a ‘normally-closed’ switch. The depletion-mode MOSFET is constructed in a similar way to their JFET transistor counterparts were the drain-source channel is inherently conductive with the electrons and holes already present within the n-type or p-type channel. This doping of the channel produces a conducting path of low resistance between the Drain (D) and Source (S) with zero Gate (G) bias. Figure 2.3 shows graph of drain current (I_D) versus drain voltage (V_{DS}) for n-channel MOSFET device [4].

![Figure 2.3: I_D-V_{DS} graph n-channel MOSFET](image-url)