Faculty of Mechanical Engineering

ENERGY AUDIT FOR LIGHTING AND A/C IN ACADEMIC BUILDING – CASE STUDY IN IKM BINTULU

Nurul Basyirah Binti Samat

Master of Mechanical Engineering (Energy Engineering)

2016
ENERGY AUDIT FOR LIGHTING AND A/C IN ACADEMIC BUILDING – CASE STUDY IN IKM BINTULU

NURUL BASYIRAH BINTI SAMAT

A master project report submitted in partial fulfilment of the requirements for the degree of Master of Mechanical Engineering (Energy Engineering)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016
DECLARATION

I declare that this report entitled “Energy Audit for Lighting and A/C in Academic Building – Case Study in IKM Bintulu” is the result of my own research except as cited in the references. The report has not been accepted for any master and is not concurrently submitted in candidature of any other master.

Signature :
Name : Nurul Basyirah Binti Samat
Date :

© Universiti Teknikal Malaysia Melaka
APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality as a partial fulfilment of Master of Mechanical Engineering (Energy Engineering).

Signature :

Name of Supervisor : Dr. Mohd Zaid Bin Akop

Date : 14.11.2016
ABSTRACT

In recent years, extensive research and studies have been focused on energy efficiency with the common target to reduce the energy consumptions against the backdrop of challenging of modern days. Various emerging technologies have been developed to reduce the energy consumptions even though there are still some sectors that are not concerned with the important of the energy management at all. Lighting and air conditioning is a key part of energy use in commercial and industrial sector. In fact, it’s verified that lighting and air conditioning plays a very important role which affecting the profit margin by energy conservation. Major electrical energy utilization in building is affected by lighting. Lighting required approximately 25% energy consumptions in building. Even worst, in commercial business, 70% to 80% of electricity bills are consumed by lighting. Besides, in view of Malaysian context, major uses of electricity consumed by lighting and approximately 17% of national electricity usage utilized by lighting purposes. Both lighting and air-conditioning plays a very important role in increasing the profit margin by energy conservation. Thus, effective energy management has been considered as the main way to reduce energy consumption by lighting and air-conditioning. Energy audit is an effective management tool to reduce cost. Initially, the existing lighting system and air conditioning system in Block C is analyzed in term of total power, energy consumption, and electricity payment per month and per year. Therefore, the project concentrates on energy audit for lighting and air conditioning system in the Institut Kemahiran Malaysia (IKM) Bintulu case study for academic building. Most of the appliances in the IKM Bintulu building use electricity. As the result, several methods of energy saving proposed. The total cost, annual profit, and payback period for each method are also studied. These appliances have label on them stating how much power they used. The unit tariff charged by SESCO (Sarawak Electricity Supply Corporation) will be reviewed and analyzed. The calculation on the energy consumptions were based on the amount of power utilization.
ABSTRAK

Kebelakangan ini, penyelidikan dan kajian yang menyeluruh telah diberi tumpuan dalam kecepatan tenaga dengan sasaran untuk mengurangkan penggunaan tenaga dalam era yang mencabar pada masa kini. Pelbagai teknologi baru telah dibangunkan untuk mengurangkan penggunaan tenaga walaupun masih terdapat beberapa sektor yang tidak mempedulikan kepentingan dalam pengurusan tenaga. Lampu dan penghawa dingin adalah bahagian terpenting dalam penggunaan tenaga dalam sektor perdagangan dan perindustrian. Malah, lampu dan penyaman udara memainkan peranan yang amat penting yang memberi kesan kepada margin keuntungan dengan pemulihan tenaga. Penggunaan tenaga elektrik utama di bangunan dipengaruhi oleh lampu. Ia digunakan kira-kira 25% daripada penggunaan tenaga dalam bangunan. Malah, dalam perniagaan komersial, 70% kepada 80% daripada bil elektrik digunakan oleh lampu. Selain itu, dalam konteks Malaysia, kegunaan tenaga elektrik yang digunakan oleh lampu kira-kira 17% daripada penggunaan elektrik. Kedua-dua lampu dan penyaman udara memainkan peranan yang amat penting dalam meningkatkan margin keuntungan dengan pemulihan tenaga. Oleh itu, pengurusan tenaga yang berkesan telah dianggap sebagai cara utama untuk mengurangkan penggunaan tenaga untuk lampu dan penghawa dingin. Tenaga audit adalah cara pengurusan yang berkesan untuk mengurangkan kos. Dalam usaha untuk menjalankan pengurusan tenaga audit, kos bil penggunaan tenaga terdahulu di kawasan-kawasan tertentu mesti disiasat. Oleh itu, projek ini menumpukan tenaga audit untuk pencahkan perubahan dan sistem penyaman udara di bangunan akademik (IKM) Bintulu Institut Kemahiran Malaysia. Kebanyakan peralatan di dalam bangunan IKM Bintulu menggunakan elektrik. Oleh itu, audit tenaga untuk lampu dan penghawa dingin di Blok C telah dianalisis. Kos bil terdahulu telah dijadikan sebagai rujukan untuk menjalankan tenaga audit di Blok C. Perkakas yang berlabel ada menunjukkan jumlah penggunaan kuasa. Tarif unit yang dikenakan oleh SESCO (Sarawak Electricity Supply Corporation) akan dikaji dan dianalisis. Pengiraan penggunaan tenaga adalah berdasarkan kepada jumlah penggunaan kuasa.
ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Mohd Zaid Bin Akop from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would like to thanks to MARA to give me to the opportunity and financial support to complete my study. Also thanks goes to my Director, Tn.Hj Azman bin Ali for his moral support, kind, and understanding spirit in carrying out this project work.

My appreciation also goes to my family who has been so tolerant and supports me all these years. Thanks for their encouragement, love, and emotional support that they had given to me especially my husband Saparudin bin Wasimin.

Besides that, millions of thanks to all my friends who helped me a lot by giving an idea while completing this project.

Special thanks to my parent and siblings for their moral support. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Overview
1.2 Research Background
1.3 Problem Statement
1.4 Project Purpose
1.5 Scope of Work
1.6 Expected Outcome
1.7 Thesis Outline

2 **LITERATURE REVIEW**

2.1 Overview
2.2 Energy Consumption Development
2.3 Electrical Appliances Characteristics
2.3.1 Light-Emitting-Diodes (LEDs) Technology
2.3.2 Air-Conditioner Behavior
2.3.3 Monitoring System Management
2.4 Energy Audit Management
2.4.1 Preliminary Audit
2.4.2 Detailed Audit
2.4.2.1 Pre-Audit
2.4.2.2 Audit
2.4.2.2 Post-Audit
2.5 Importance of Energy Audit
2.5.1 Cost Analysis
2.5.2 Energy Analysis
2.5.2.1 Potential of Renewable Energy Development
2.5.3 Existing Building Analysis
2.5.4 Industrial Analysis
2.5.5 Reflector
2.5.6 Sensor
2.5.7 Motion Sensor
2.5.8 Infrared Sensor

© Universiti Teknikal Malaysia Melaka
3 METHODOLOGY
3.1 Overview 28
3.2 Project Methodology 28
 3.2.1 Site Background 30
 3.2.2 Fluorescent Lights 36
 3.2.3 Air-Conditioner 39
3.3 Energy Audit Approach 40
 3.3.1 The Unit Tariff Charge 47
3.4 Existing Lighting System Analysis 48

4 IMPROVEMENT STRATEGIES 50
4.1 Introduction 50
4.2 Strategy to Reduce Energy Consumption 53
 4.2.1 Adding Sensor to the existing system lighting 53
 4.2.2 Replacing T8 Fluorescent Lamp with T5 Retrosaver Lamp 55
 4.2.3 Adding Sensor to the T5 Retrosaver Lamp 57
 4.2.4 Replacing T8 Fluorescent with LED T8 18W 59
 4.2.5 Adding sensor to the LED T8 18W 60
4.3 Air Conditioning System 64
4.4 Economic Engineering Analysis 71

5 CONCLUSION AND RECOMMENDATIONS 76
5.1 Overview 76
5.2 Conclusion 76
5.3 Recommendation 78

REFERENCES 79

APPENDICES 85
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Annual Electricity Bill per Year</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Analysis Data</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>General Load Consumptions at Jabalpur Hospital</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison for Energy Consumption Analysis</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Calculation of Existing and Replacement Fluorescent Tube</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of Preliminary and Detailed Audit Methodology</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) Total Lighting and Air-Conditioning System (Upper Level)</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>(b) Total Lighting and Air-Conditioning System (Lower Level)</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Malaysian Standard Lighting Luminance Level MS 1525:2007</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Lighting Data from Luxmeter</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of the Preliminary Data (Temperature Setting 160°C)</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Commercial Pricing & Tariff by SESCO</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Total of Existing Lamps, Hours Usage and type of existing lamps for Upper Level</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Total of Existing Lamps, Hours Usage and type of existing lamps for Lower Level</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for Existing Lamp</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Total of Existing Lamps, Hours Usage and type of existing lamps for Upper Level</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Total of Existing Lamps, Hours Usage and type of existing lamps for Lower Level</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for Existing Lamp</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Total of Existing Lamps, Hours Usage and type of T5 Retrosaver for Upper Level</td>
<td>55</td>
</tr>
</tbody>
</table>
4.8 Total of Existing Lamps, Hours Usage and type of T5 Retrosaver for Lower Level
4.9 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for T5 Retrosaver
4.10 Total of Existing Lamps, Hours Usage and type of T5 Retrosaver with Sensor for Upper Level
4.11 Total of Existing Lamps, Hours Usage and type of T5 Retrosaver with Sensor for Lower Level
4.12 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for T5 Retrosaver with Sensor
4.13 Total of Existing Lamps, Hours Usage and type of LED T8 for Upper Level
4.14 Total of Existing Lamps, Hours Usage and type of LED T8 with Sensor for Lower Level
4.15 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for LED T8
4.16 Total of Existing Lamps, Hours Usage and type of LED T8 with sensor for Upper Level
4.17 Total of Existing Lamps, Hours Usage and type of LED T8 with sensor for Lower Level
4.18 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for LED T8 with sensor
4.19 Reduction in energy consumption by considering various saving strategies
4.20 Existing Air Conditioning System for Upper Level
4.21 Existing Air Conditioning System for Lower Level
4.22 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for Air Conditioning System
4.23 Existing Air Conditioning System for Lower Level
4.24 Existing Air Conditioning System for Upper Level
4.25 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for Air Conditioning System
4.26 Existing Air Conditioning System for Upper Level
4.27 Existing Air Conditioning System for Lower Level
4.28 Power (kW), Energy Consumption (kWh/month) and Electricity Bill Payment (RM)/month for Air Conditioning System
4.29 Air Conditioning Energy Consumption comparison with various saving strategies
68
4.30 Total Electricity Bill Payment Estimation for Lighting and Air Conditioning System with various strategies
70
4.31 Cost of T5, reflector and LED T8
71
4.32 Reflector and T5 Retrosaver cost for Block C
71
4.33 Comparison of Electricity Bill Payment (RM) before and after installing T5
71
4.34 Comparison of Electricity Bill Payment (RM) before and after installing LED T8 18W
72
4.35 Total Sensor Cost
73
4.36 Annual Profit of Installing Sensor Method at T5 Retrosaver
74
4.37 Annual Profit of Installing Sensor Method at LED T8
74
4.38 Payback Period for Each Method
75
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Experimental Setup between Two Lighting System</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Experimental Results between Two Lighting Systems</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Base Load in the Building</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison by Normal Consumption with Energy Efficient Equipment</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Methodology of Industrial Energy Audit</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Motion Sensor (Left) and Infrared Sensor (Right)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>General Research Flow Chart</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Building of Block C</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Existing Fluorescent Lights</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>(b) Existing Air-conditioning System</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>(a) Ground Floor Internal View</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>(b) Upper Floor Internal View</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Lux measurement</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Thermalgrapher</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Thermal Measurement Flow Chart</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>(a) Preliminary Test (Luxmeter)</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>(b) Preliminary Test (Luxmeter)</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>(a) Initial Temperature</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>(b) Final Temperature</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>(a) Initial Temperature</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>(b) Final Temperature</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Total Electricity Bill Payment (RM/Month)</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of Reduction Energy Consumption (kWh/month) for Lighting System in Block C</td>
<td>63</td>
</tr>
</tbody>
</table>
4.3 Analysis Electricity Bill Payment per month with various saving strategies

4.4 Total Electricity Bill Payment Estimation for Lighting and Air Conditioning System with various strategies
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>hP</td>
<td>Horse Power</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilating and Air Conditioning</td>
</tr>
<tr>
<td>IKM</td>
<td>Institut Kemahiran MARA</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt per hour</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitted Diod</td>
</tr>
<tr>
<td>Lux</td>
<td>Iluminance Level</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>SESCO</td>
<td>Sarawak Electricity Supply Corporation</td>
</tr>
<tr>
<td>SPP</td>
<td>Simple Payback Period</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

°C - Temperature in celsius
A - Ampere
Hz - Hertz
Lux - Illuminance of light
m² - Meter square
nos - Luminance of fluorescent lamp
V - Voltage
W - Watt
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Specification between T8 fluorescent Tube and T8 LED Fluorescent Tube</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>T5 Retrosaver</td>
<td>91</td>
</tr>
<tr>
<td>C</td>
<td>Sensor Block Diagram</td>
<td>92</td>
</tr>
</tbody>
</table>

© Universiti Teknikal Malaysia Melaka
CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter introduces the background of the project, problem statement, objectives, and scope of works as well as report organization. In general, it states out a general introduction of energy audit of lighting and air-conditioning system at Block C, Institit Kemahiran (IKM) Bintulu.

1.2 Research Background

This paper concentrates on energy audit for lighting and air conditioning system which implementation of energy saving measure in the IKM Bintulu academic building. Most of the appliances in the IKM Bintulu building use electricity. These appliances have label on them stating how much power they used. The unit tariff charged by SESCO (Sarawak Electricity Supply Corporation) is in kW.hr. Based on this the amount of power, it can be calculated using the following formula:

\[
\frac{X(\text{Watt}) \times Y(\text{hour})}{1000} = Z(\text{kW.hr})
\]

To reduce the electricity bill means the buildings needs to reduce amount of Z. This can be done by two methods. First method is by reducing the amount of Y, meaning the duration of usage. Second method is by using energy efficient appliance which requires less X. In
this project the energy audit focuses on the lighting system and air conditioner in Block C (Laboratory Building)

1.3 Problem Statement

Due to lack of dedicated utilities meters, the electricity tariff measured is inclusive of both energy consumption of air conditioning and lighting system. The electricity bill cannot calculate separate. Critical evaluation and advanced studies are needed to provide measures to achieve optimum energy efficiency in buildings. Misconduct electrical energy usage leads to waste energy. The effect of the wastage is not only involves cost, but also affecting nature.

1.4 Project Purpose

All barriers as in the previous section mentioned derived the objectives as below:

i) To analyze the existing lamps and air conditioner in Block C (Laboratory Building)

ii) To propose several methods to reduce electricity energy consumption (kWh) and total electricity bill payment (RM) per month

1.5 Scope of Work

The project was conducted at IKM Bintulu which was operated in 2010. The total space of IKM Bintulu industry is about 12,000 m². This project focuses on lighting and air conditioning system in 17 lab rooms in the building (Block C). Therefore, history billing cost energy consumption for each month will be investigated. The total unit of lighting and air-conditioning system will be discovered and study. The measurement for the daily energy consumption was conducted and the data collected will be recorded. Hence, at the
end of the project, energy audit for lighting and air-conditioning system at Block C was conducted and the results will be observed and analyzed.

1.6 Expected Outcome

At the end of this project, the following outcomes are expected:

- The existing of lighting and air-conditioning system at Block C are identify
- Methods to reduce electricity energy consumption (kWh) and total electricity bill payment (RM) per month are discovered.

1.7 Thesis Outline

The thesis divided into five chapters. The first chapter elaborates the project background, problem statements, objectives, and scope of work as well as report organizations.

Chapter two presents the literature study related to the project background. All the past related works are reviews in this chapter. Particularly, this chapter presents the past literature study related to the energy consumption in a building or household appliances. Moreover, past energy audit works were discussed and remarks as a references to the achievement of the project implementation.

Chapter 3 describes the framework and methodology of the project workflow. The detailed project workflow is presented in the project.

Chapter 4 discussed the results and discussion of the project. The proposed method toward energy audit specifically for Block C is presented in the chapter. The data obtained are compiled for data analysis. In fact, any difficulties in the results is also discussed in this chapter.

Chapter 5 summarizes and concludes thesis outcomes. The final paragraph of this chapter addresses the recommendation to be made for future work on the research findings.
CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The chapter of literature review presents all related past literature studies related with the project. The literature studies will be studied and reviewed as a reference for the project development. Thus, the improvement on the energy consumption will be emphasized in this chapter. All the related method to reduce the energy consumptions will be taken into consideration to improve the existing method. The most suitable and applicable research approach in the past literature studies will be taken into consideration as references for this project.

2.2 Energy Consumptions Development

Currently, energy becomes vital in route to rapid growth of economic stability of the country. In fact, world population has reached seven billion in October 2011 and it is estimated that in recent years the world population reach one billion in less than twelve year. Consequently, energy has always been the most important thing that influences the quality of human life. Thus, in conjunction with the acceleration of energy requirement, an urgent need is required to find the reasonable solutions to find out energy saving opportunities and reduce energy consumption per day.
In recent years, extensive research and studies have been focused on energy efficiency with the common target to reduce the energy consumptions against the backdrop of challenging of modern days. Thus, effective energy management has been considered as the main way to reduce energy consumption. On the other hand, building and electrical appliances characteristic plays the significant role which effect the total electricity bill payment per month.

2.3 Electrical Appliances Characteristic

Nowadays, various emerging technologies have been developed to reduce the energy consumptions. Among various type of electrical appliances, lighting and air conditioning is a key part of energy use in commercial and industrial sector. Gan et al. (2013) and Horgan and Dwan (2014) found that lighting and air conditioning plays a very important role which affecting the profit margin by energy conservation. On the other hand, major electrical energy utilization in building is affected by bulbs. It's required approximately 25% energy consumptions in building. Gan et al. (2013) stated commercial business, 70% to 80% of electricity bills are consumed by bulbs. Jain and Kaur (2013) stated, in fact, in view of Malaysian context, major uses of electricity consumed by lighting and approximately 17% of national electricity usage utilized by lighting purposes. Horgan and Dwan (2014) in their past literature review and industrial tests were conducted in order to determine the feasibility of Light-Emitting-Diode (LED) for a widespread uses. The LED became one of a way which shows a great potential to reduce the energy consumptions compared to the energy consumptions by bulbs.
2.3.1 Light-Emitting-Diodes (LEDs) Technology

Horgan and Dwan (2014) shown that development in LEDs technology entered in lighting market as an alternative way to reduce electricity daily use to replace the traditional light sources for instance incandescent and fluorescent bulbs. Hence, in order to properly compare the technical dissimilarity between LED and traditional light sources, laboratory works has been conducted. Particularly, the comparison was conducted to evaluate the energy consumptions for each type of light sources.

The case study was carry out at Universiti Teknikal Malaysia Melaka (UTeM) building as energy saving strategies was proposed and evaluated on two lighting systems. The comparison involved laboratory measurement and verification between LED and fluorescent tube. Figure 2.1 shows the experimental setup between two lighting systems.

![Experimental Setup between Two Lighting Systems](image)

Figure 2.1: Experimental Setup between Two Lighting Systems (Gan et al., 2013)

Gat et al. (2013) carried out the experimental between two lighting: the LED was setup at the top, meanwhile the fluorescent lamp at the bottom as shows in Figure 2.1. Both lighting system consist of eight T8 type lighting tube with 36W for fluorescent and 18W
for LED respectively. The experimental works was conducted for 31 days. Figure 2.2 presents the experimental results between these two lighting systems.

![Graph showing energy consumption over duration (Day)](image)

Figure 2.2: Experimental Results between Two Lighting Systems (Gan et al., 2013)

Based on the literature study as presents as in Figure 2.1, the performance of LED is proved which consumed minimum energy consumption compare to fluorescent tube. Throughout the experimental results as in Figure 2.1, the LED lighting shows the great potential to replace the traditional lighting systems in term of energy saving while also reduce the carbon dioxide emissions.