Library Declaration and Deposit Agreement

1. STUDENT DETAILS
 Please complete the following:
 Full name: ZAITON BINTI ABDUL MUTALIP
 University ID number: 1159078

2. THESIS DEPOSIT
 2.1 Under your registration at the University, you are required to deposit your thesis with the University in both hard copy and in digital format. The digital copy should normally be saved as a single pdf file.
 2.2 The hard copy will be housed in the University Library. The digital copy will be deposited in the University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.6 below), this will be made immediately openly accessible on the Internet and will be supplied to the British Library to be made available online via its Electronic Theses Online Service (ETHOS) service. [At present, those submitted for a Master’s degree by Research (MA, MSc, LLM, MS or MMedSci) are not being deposited in WRAP and not being made available via ETHOS. This may change in future.]
 2.3 In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission for an embargo to be placed on public access to the thesis in excess of two years. This must be applied for when submitting the thesis for examination (further information is available in the Guide to Examinations for Higher Degrees by Research.)
 2.4 If you are depositing a thesis for a Master’s degree by Research, the options below only relate to the hard copy thesis.
 2.5 If your thesis contains material protected by third party copyright, you should consult with your department, and if appropriate, deposit an abridged hard and/or digital copy thesis.
 2.6 Please tick one of the following options for the availability of your thesis (guidance is available in the Guide to Examinations for Higher Degrees by Research):
 [X] Both the hard and digital copy thesis can be made publicly available immediately
 [] The hard copy thesis can be made publicly available immediately and the digital copy thesis can be made publicly available after a period of two years (should you subsequently wish to reduce the embargo period please inform the Library)
 [] Both the hard and digital copy thesis can be made publicly available after a period of two years (should you subsequently wish to reduce the embargo period please inform the Library)
 [] Both the hard copy and digital copy thesis can be made publicly available after (insert time period in excess of two years). This option requires the prior approval of the Chair of the Board of Graduate Studies (see 2.3 above)
 2.7 The University encourages users of the Library to utilise theses as much as possible, and unless indicated below users will be able to photocopy your thesis.
 [] I do not wish for my thesis to be photocopied

3. GRANTING OF NON-EXCLUSIVE RIGHTS
 Whether I deposit my Work personally or through an assistant or other agent, I agree to the following:
Rights granted to the University of Warwick and the British Library and the user of the thesis through this agreement are non-exclusive. I retain all rights in the thesis in its present version or future versions. I agree that the institutional repository administrators and the British Library or their agents may, without changing content, digitise and migrate the thesis to any medium or format for the purpose of future preservation and accessibility.

4. DECLARATIONS

I DECLARE THAT:

- I am the author and owner of the copyright in the thesis and/or I have the authority of the authors and owners of the copyright in the thesis to make this agreement. Reproduction of any part of this thesis for teaching or in academic or other forms of publication is subject to the normal limitations on the use of copyrighted materials and to the proper and full acknowledgement of its source.

- The digital version of the thesis I am supplying is either the same version as the final, hard-bound copy submitted in completion of my degree once any minor corrections have been completed, or is an abridged version (see 2.5 above).

- I have exercised reasonable care to ensure that the thesis is original, and does not to the best of my knowledge break any UK law or other Intellectual Property Right, or contain any confidential material.

- I understand that, through the medium of the Internet, files will be available to automated agents, and may be searched and copied by, for example, text mining and plagiarism detection software.

- At such time that my thesis will be made publicly available digitally (see 2.6 above), I grant the University of Warwick and the British Library a licence to make available on the Internet the thesis in digitised format through the Institutional Repository and through the British Library via the EThOS service.

- If my thesis does include any substantial subsidiary material owned by third-party copyright holders, I have sought and obtained permission to include it in any version of my thesis available in digital format and that this permission encompasses the rights that I have granted to the University of Warwick and to the British Library.

5. LEGAL INFRINGEMENTS

I understand that neither the University of Warwick nor the British Library have any obligation to take legal action on behalf of myself, or other rights holders, in the event of infringement of intellectual property rights, breach of contract or of any other right, in the thesis.

Please sign this agreement and ensure it is bound into the final hard bound copy of your thesis, which should be submitted to Student Reception, Senate House.

Student’s signature: ... Date: .. 31/10/2016
Investigation of optical wireless for employment
within a vehicular environment

Zaiton Abdul Mutalip

A thesis presented for the degree of

Doctor of Philosophy

School of Engineering

March 2016
To my family, for their unconditional support
Table of Contents

Table of Contents ... i
List of figures .. vi
List of tables .. x
Acronyms ... xiii
Acknowledgements ... xv
Declaration .. xvi
Abstract .. xvii
Publications associated with this research work .. xx

Chapter 1 : Introduction .. 1
1.1 General overview ... 1
1.2 Motivation ... 3
1.3 Contribution to knowledge .. 4
1.4 Outline of the thesis ... 5

Chapter 2 : Background Research and Related Work .. 7
2.1 Introduction ..7

2.2 Overview of Optical Wireless Communication Systems...7

2.2.1 Optical Wireless Mathematical Model ...8

2.2.2 Optical Wireless Channel Model ...8

2.2.3 Optical Wireless configurations ..12

2.2.4 Modulation Format ...13

2.3 Overview of Automotive Network ...16

2.4 Wired Intra Vehicle Communication Networks..18

2.4.1 Controller Area Network (CAN) ..20

2.4.2 Time-triggered CAN (TTCAN) ..20

2.4.3 Local Interconnect Network (LIN) ..20

2.4.4 Time-Triggered Protocol (TTP) ...21

2.4.5 Byteflight ..21

2.4.6 FlexRay ..21

2.4.7 MOST ..22

2.4.8 IDB-1394 ..22

2.5 Wireless Intra Vehicle Communication Networks ..22

2.5.1 Wi-Fi ..23

2.5.2 Bluetooth ..24

2.5.3 Ultra-Wideband (UWB) ...24

2.5.4 ZigBee ..25
3.7 Conclusion..52

Chapter 4 : Channel Characterization – Line-of-Sight Transmission54

4.1 Introduction..54

4.2 Ideal LOS link ..55

4.3 The tubes ..58

4.4 Channel measurement setup..61

4.5 Channel characterisation by measurements ...61

4.5.1 Divergence angle..61

4.5.2 Frequency response ...63

4.5.3 Optical power ...68

4.6 Conclusions..78

Chapter 5 : Channel Characterization – Non Line-of-Sight Transmission80

5.1 Introduction..80

5.2 NLOS Channel model...81

5.3 Reflection characteristics ..81

5.4 Received power ..82

5.5 Straight tubes..82

5.5.1 Received optical power at different transmission angles.............................83

5.5.2 Path loss ...85

5.6 Bend tube measurements ..87

5.6.1 Plastic tubes...90
5.6.2 Metal tubes .. 95

5.7 Conclusions .. 111

Chapter 6 : Digital System Transmission – a prototype 113

6.1 Introduction ... 113

6.2 Methodology .. 114

6.3 Eye pattern ... 119

6.3.1 SNR .. 141

6.3.2 Relationship between SNR, Q-factor and BER 143

6.4 Conclusion.. 149

Chapter 7 : Conclusions and future work .. 151

7.1 Summary of the work ... 151

7.2 Improvements and suggestions for further work 155

References ... 157

Appendix A ... 167

Appendix B.. 169

Appendix C ... 184
List of figures

Figure 2-1 OW communication system ...8
Figure 2-2 Lambertian reflection pattern [19] ...9
Figure 2-3 Typical Phong’s reflection pattern [19] ...10
Figure 2-4 OW link configurations [39] ..13
Figure 2-5 Embedded Automotive Subsystems ...17
Figure 2-6 Intra-vehicle networks ...19
Figure 2-7 Common In-vehicle Network Protocols [56]20
Figure 3-1 OW communication system ...33
Figure 3-2 Fundamental transmitter ...36
Figure 3-3 Fundamental receiver ...37
Figure 3-4 SFH205F CV characteristic ...38
Figure 3-5 Relative response of VISHAY VSLY585039
Figure 3-6 Analogue drive circuit ...40
Figure 3-7 Darlington IRLED driver ...41
Figure 3-8 Darlington IRLED driver normalised response42
Figure 3-9 IRLED transmitter with pre-emphasis.................................43
Figure 3-10 Normalised response of the system.................................44
Figure 3-11 High-impedance front-end receiver with amplifier..........47
Figure 3-12 Waveforms of the test signal..49
Figure 3-13 Optical power intensity at a distance.............................50
Figure 4-1 LOS link model [94]...55
Figure 4-2 Vertical assessment scenarios...57
Figure 4-3 Representative tubes...58
Figure 4-4 Reflection coefficient measurement setup......................60
Figure 4-5 Channel measurement experimental setup.....................61
Figure 4-6 Divergence angle...62
Figure 4-7 Determination of the number of reflections in a straight tube.62
Figure 4-8 Circular cardboard tube normalised response...............64
Figure 4-9 Circular plastic tube normalised response.......................64
Figure 4-10 Circular mild steel tube normalised response...............64
Figure 4-11 Square aluminium tube normalised response...............65
Figure 4-12 Square aluminium tube normalised response...............65
Figure 4-13 Circular aluminium tube normalised response...............65
Figure 4-14 Circular galvanised aluminium tube normalised response.66
Figure 4-15 Square mild steel tube normalised response...............66
Figure 4-16 Free space normalised response.................................66
Figure 4-17 Normalised response at 0.5 metre range ...69
Figure 4-18 Normalised response at 1 metre range ..70
Figure 4-19 Radiometric output power for different IRLED forward currents.71
Figure 4-20 Photometric output power for different IRLED forward currents........71
Figure 4-21 Received optical power plotted against separation distance73
Figure 4-22 Received optical power plotted against tube diameter at 0.5 metre and 1 metre range ..75
Figure 4-23 Received optical power plotted against reflection coefficient at 0.5 metre and 1 metre range ...76
Figure 4-24 LOS path loss at different separation distances77
Figure 5-1 Transmitter and receiver orientation experimental setup83
Figure 5-2 Received power at different angles (0.5 metre distance)84
Figure 5-3 Received power at different angles (1 metre distance)84
Figure 5-4 Path loss at different angle (0.5 metre distance)85
Figure 5-5 Path loss at different angle (1 metre distance)86
Figure 5-6 Array of four IrLEDs arrangement ..88
Figure 5-7 Frequency response of array IrLEDs transmitter88
Figure 5-8 Array of four IrLEDs transmitter circuit ...89
Figure 5-9 Experimental materials bent through different angles – Plastic90
Figure 5-10 Normalised response of plastic tube ..91
Figure 5-11 Waveforms of B1 ..92
Figure 5-12 Waveforms of B2...92
Figure 5-13 Waveforms of B3...93
Figure 5-14 Waveforms of B4...93
Figure 5-15 Experimental setup for identifying best angle selection........95
Figure 5-16 Waveforms of best angle selection..96
Figure 5-17 Determination of the number of reflections in 20 mm bent tube.98
Figure 5-18 Circular mild steel tube captured waveform at 30° bend........99
Figure 5-19 Received optical power plotted against number of reflections.108
Figure 5-20 Signal to noise ratio (measured using power meter)..............109
Figure 5-21 Signal to noise ratio (measured using photo meter)...............109
Figure 5-22 Calculated path loss (based on measurement using power meter)110
Figure 5-23 Calculated path loss (based on measurement using photo meter)110
Figure 6-1 Pulse waveform at the oscillator input, and the system output.115
Figure 6-2 Pulse waveform at the receiver output.................................116
Figure 6-3 SNR at the receiver at different frequency..............................142
Figure 6-4 relationship between BER and Q-factor...............................145
Figure 6-5 relationship between BER and SNR.................................146
List of tables

Table 2-1 Main properties of OW configurations [42] ...13
Table 2-2 Comparison between PPM, DPPM and DPIM [50]15
Table 2-3 Common wireless network drawbacks ..27
Table 2-4 Network bandwidth requirements ..28
Table 3-1 Technical features of optical sources and detectors35
Table 4-1 experimental materials ..59
Table 4-2 power loss ..63
Table 5-1 Received optical power for plastic tubes ...94
Table 5-2 Consequent path loss for plastic tubes ..94
Table 5-3 Experimental metal tube bends ..97
Table 5-4 Estimation number of reflections in bent tubes98
Table 5-5 Square aluminium tube normalised response and waveforms100
Table 5-6 Square aluminium tube normalised response and waveforms102
Table 5-7 Circular aluminium tube normalised response and waveforms104
Table 5-8 Circular galvanised aluminium normalised response and waveforms ...106
Table 6-1 Transmitted and received pulse with eye pattern at different frequency. 118

Table 6-2 Free space transmission: back-to-back - transmitted and received pulse with eye pattern at different frequency...120

Table 6-3 Free space transmission: 1 metre distance - transmitted and received pulse with eye pattern at different frequency ...121

Table 6-4 Transmission within 35mm circular mild steel tube at 30° bend - transmitted and received pulse with eye pattern at different frequency..............................123

Table 6-5 Transmission within 35mm circular mild steel tube at 45° bend - transmitted and received pulse with eye pattern at different frequency...............................124

Table 6-6 Transmission within 35mm circular mild steel tube at 60° bend - transmitted and received pulse with eye pattern at different frequency..............................125

Table 6-7 Transmission within 40 mm square aluminium tube at 30° bend - transmitted and received pulse with eye pattern at different frequency............................126

Table 6-8 Transmission within 40 mm square aluminium tube at 45° bend - transmitted and received pulse with eye pattern at different frequency............................127

Table 6-9 Transmission within 40 mm square aluminium tube at 60° bend - transmitted and received pulse with eye pattern at different frequency............................128

Table 6-10 Transmission within 20 mm square aluminium tube at 30° bend - transmitted and received pulse with eye pattern at different frequency.........................129

Table 6-11 Transmission within 20 mm square aluminium tube at 45° bend - transmitted and received pulse with eye pattern at different frequency.........................130

Table 6-12 Transmission within 20 mm square aluminium tube at 60° bend - transmitted and received pulse with eye pattern at different frequency.........................131
Table 6-13 Transmission within 20 mm circular aluminium tube at 30° bend - transmitted and received pulse with eye pattern at different frequency 132

Table 6-14 Transmission within 20 mm circular aluminium tube at 45° bend - transmitted and received pulse with eye pattern at different frequency 133

Table 6-15 Transmission within 20 mm circular aluminium tube at 60° bend - transmitted and received pulse with eye pattern at different frequency 134

Table 6-16 Transmission within 35 mm circular galvanised aluminium tube 135

Table 6-17 Transmission within 35 mm circular galvanised aluminium tube 136

Table 6-18 Transmission within 35 mm circular galvanised aluminium tube 137

Table 6-19 Transmission within 40 mm square mild steel tube 138

Table 6-20 Transmission within 40 mm square mild steel tube 139

Table 6-21 Transmission within 40 mm square mild steel tube 140

Table 6-22 performance summary ... 147
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>DD/IM</td>
<td>Direct Detection / Intensity Modulation</td>
</tr>
<tr>
<td>DH-PIM</td>
<td>Double-Pulse Interval Modulation</td>
</tr>
<tr>
<td>DPIM</td>
<td>Digital Pulse Interval Modulation</td>
</tr>
<tr>
<td>DPPM</td>
<td>Differential Pulse-Position Modulation</td>
</tr>
<tr>
<td>ECU</td>
<td>Electronics Control Unit</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association</td>
</tr>
<tr>
<td>IRLED</td>
<td>Infrared Light Emitting Diode</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LIN</td>
<td>Local Interconnect Network</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MOST</td>
<td>Media Oriented Systems Transport</td>
</tr>
<tr>
<td>MSM</td>
<td>Multiple-Subcarrier Modulation</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non Line of Sight</td>
</tr>
<tr>
<td>OOK</td>
<td>On Off Keying</td>
</tr>
<tr>
<td>SNR</td>
<td>Optical Signal to Noise Ratio</td>
</tr>
<tr>
<td>OW</td>
<td>Optical Wireless</td>
</tr>
<tr>
<td>OWC</td>
<td>Optical Wireless Communication</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PM</td>
<td>Pulse Modulation</td>
</tr>
<tr>
<td>PPM</td>
<td>Pulse Position Modulation</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio-Frequency Identification</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RZ</td>
<td>Return to Zero</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SSM</td>
<td>Single-Subcarrier Modulation</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>TTP</td>
<td>Time-Triggered Protocol</td>
</tr>
<tr>
<td>TTCAN</td>
<td>Time-Triggered CAN</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-Wide Band</td>
</tr>
<tr>
<td>V2I</td>
<td>Vehicle-to-Infrastructure</td>
</tr>
<tr>
<td>V2V</td>
<td>Vehicle-to-Vehicle</td>
</tr>
</tbody>
</table>
Acknowledgements

First of all, I thank Allah, for giving me knowledge and strength to complete this PhD thesis. The completion of the thesis would not be possible without the support and encouragement of many individuals. I thank all the people who have supported me throughout my PhD course.

I am very grateful to the Ministry of Higher Education of Malaysia (MOHE) and Universiti Teknikal Malaysia Melaka, Malaysia (UTeM) for providing me with a scholarship. I would not have completed a PhD without this financial assistance. I wish to express my gratitude to The University of Warwick for the facilities for this research.

I would like to extend my sincere thanks my research advisor, Professor Roger J. Green, Dr Mark S. Leeson and Dr Matthew Higgins for their guidance, ideas patient advising, understanding and continuous support.

In addition, I wish to thank the secretaries and technical assistants in the engineering department, for assisting me in many different ways. Kerrie, Ian, Will and Huw deserve special mention.

Last but not least, without my family’s endless love, this quality research work would not be possible. Thanks for the ‘dua’, love, patience, and encouragement.
Declaration

This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy under the regulations set out by the Graduate School at the University of Warwick. This thesis is solely composed of research completed by ZAITON ABDUL MUTALIP, except where stated, under the supervision of Professor Roger J. Green, Dr Mark S. Leeson and Dr Matthew Higgins, between the dates of January 2012 and March 2016. No part of this thesis has been previously submitted to the University of Warwick or any other academic institution for admission to a higher degree.

Zaiton Abdul Mutalip
March 2016
Abstract

The substantial increase in powerful electronic systems and functions has produced significant implications for the vehicular industry, where the amount of wiring infrastructure has increased the vehicle weight, weakened performance, and made adherence to reliability standards difficult. Eventually, connecting the electronics infrastructure was mostly complicated and costly in vehicular domain systems. Thus, little research has been conducted to explore appropriate wireless technologies that may be suitable with the emerging network standard within the context of vehicular networks.

This thesis describes an in-depth investigation of deploying an optical wireless communication system within the vehicular environment, particularly in confined spaces. A wide variety of measurements has been performed using tubes of various materials and geometries, in a laboratory setup. The principle objective is to provide a primary knowledge of optical wireless channel characterization within a laboratory vehicular setting. The work presented is a study on directed line-of-sight (LOS) and non-LOS (NLOS) links, and focuses on frequency response, power efficiencies, and path losses in different experimental settings. Further, a variety of experimental settings was used in respect to different receiver/transmitter orientations and various bent tubes angles in order to investigate the channel conditions. The noise analysis,
SNR, path loss and the eye pattern for the digital system prototype designed were also analysed.

The system requirement for the LOS link were based on the transmission of the sinusoidal signal at a distance of 1 m with 13 MHz signal and approximately 15.6 dB SNR. Successful demonstration of the OWC within smaller size and high reflection coefficient material are promising. In addition to good transmitter and high sensitivity receiver.

The NLOS link also demonstrated a good indication, both in straight tube with angled transmitter/receiver orientation and bend tubes. Detail studies on NLOS link with pulse signal transmission, which replicates a digital system transmission with 54.48 mW or 44.58 mW/cm² output power, 6 MHz signal transmission with the aim of 10^{-4} to 10^{-6} BER. Although, the operational functionality of digital system has successfully demonstrated, however achieving the desired BER is a bit difficult with the designed system. Further improvement on the highly sensitive receiver design, a proper modulation scheme is required in order to improve the quality of the transmitted signal in terms of SNR and BER.

The study also suggested that the transmission within the metal tubes is better than in plastic tubes in addition to minimum bend angle, smaller tube diameter and high reflective coefficient. Transmission within 20 mm circular aluminium tube and 35 mm galvanised aluminium tube are the best so far.

Finally, based on the initial viability results, it was seen that it is possible to implement an optical wireless communication infrastructure within the vehicular environment. Experimental validation of the system proposed shows that achieving high data rates is not a problem with the use of high brightness, high power LEDs as this system is
going to be implemented within the vehicle chassis, thus the eye safety constraints should not be a limiting factor. Therefore, in this study, optical wireless transmission within the vehicular environment is proposed, solving the problems of vehicular networking systems.
Publications associated with this research work

The following papers have been published as a result of the work contained within this thesis.

Conference Paper

Book Chapter

Journal Paper